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Abstract. Unitary analytic representations of the conformal group are realized on
Hubert spaces of holomorphic or antiholomorphic functions over a tube domain in complex
Minkowski space. The distributional boundary values of these functions are tempered
distributions on real Minkowski space. The representations are characterized by an integral
scale dimension label n and two spin labels jί and j2. The connection between the dimension
n and the degree of singularity of the tempered distribution is investigated. We propose
an application to inclusive reactions of elementary particles.

0. Introduction and Summary

We study the connection of unitary analytic representations of
the conformal group 5(7(2,2) with distributions on Minkowski space.
The unitary representations we have in mind are realized on Hubert
spaces of functions that are holomorphic (or antiholomorphic) over
the tube domain in Minkowski space. This is a manifold of vectors
in complex Minkowski space whose real part is arbitrary and whose
imaginary part lies in the forward light cone. Each representation of
this series is characterized by a "scale dimension" n that is an integer,
and two spin labels j1 andj 2 . We are mainly concerned with the case
Λ =72= =0 The general case is algebraically more complicated, though
in principle our approach applies to arbitrary spins.

Any vector of such Hubert space possesses a tempered distribution
as distributional boundary value on Minkowski space. In turn, any
tempered distribution that can be regarded as a Fourier transform
of a tempered distribution with support in the forward light cone, is the
distributional boundary value of a holomorphic function which belongs
to a Hubert space carrying one of the representations of the series
considered. Our aim is to characterize the scale dimension n of the
representation by the degree of the singularities of the tempered distribu-
tion.
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We define first the unitary representations of 5(7(2, 2) on a compact
realization of the tube domain. This allows us to use a polynomial
basis in the Hubert spaces, and with its help to construct the Bergman
kernel explicitly. The Bergman kernel majorizes the polynomial increase
of any holomorphic function of a given Hubert space at the boundary of
the domain. Thus it determines an upper bound for the degree of the
singularity which the distributional boundary value may assume. In
turn we define generalized Fourier series on the Shilov boundary of the
compact domain. We show how these can be extended into the interior of
the domain. The scale dimension n is connected with the polynomial order
of increase of the coefficients of the Fourier series. Another technique for
extending distributions from the Shilov boundary into the interiour
makes use of the Szego kernel. It enables us to derive another (less
restrictive) estimate of the scale dimension.

The compact realization is mapped onto the noncompact tube domain
in complex Minkowski space by a matrix transformation of Cayley
type. All technical devices like the invariant scalar product, the Bergman
and the Szego kernels are carried over. The new Szego kernel is essentially
the Fourier transformed characteristic function of the forward light
cone. Since we have no natural Fourier expansion in the noncompact
realization, we use the Szego kernel to estimate the scale dimension of the
holomorphic extensions.

Finally we sketch some ideas of how this formalism could be applied
to physics. An application to inclusive reactions of elementary particles
seems to us most interesting. Any a priori (say from field theory) or
phenomenological information on the scale dimension n can be used
to deduce the convergence of an integral over structure functions that
is identical with the conformally invariant scalar product.

1. The Conformal Group

1.1. The Definition of the Conformal Group

We define the conformal group 517(2,2) as follows. We consider
complex 4 x 4 matrices

where A, B, C, D are 2 x 2 submatrices. The matrix M is assumed to
satisfy the constraint

M + H = HM~1 (1.2)
with
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and the 2x 2 unit matrix E. The constraint (1.2) is equivalent with the
set of three relations

A + A-C+C = E

D + D-B + B = E (1.4)

The group resulting from the constraint (1.2) is denoted (7(2, 2). If
the further constraint detM = 1 is fulfilled, we obtain the group Si/ (2, 2).

An immediate consequence of (1.4) is that A and D possess inverses.
By some elementary algebra one can show that (1.4) is equivalent with
the set of constraints.

AA+ -BB + =E

DD+-CC+=E (1.5)

AC+ -BD+ = 0.

12. The Maximal Compact Subgroup and Its Coset Space

The maximal compact subgroup of Si/ (2, 2) consists of the matrices

with the constraint

det(K1K2)=ί. (1.7)

It has the direct product structure (7 (2)® Si/ (2). Each matrix M of
Si/ (2, 2) can be uniquely decomposed in the fashion

A B\ (N,, ZNΛ/K, 0

C D Z + NI, N2 o K

where both matrices on the right-hand-side are in Si/ (2, 2). We want
N! and N2 to be positive definite, hermitean matrices. Z is an arbitrary
complex 2 x 2 matrix.

We consider (1.8) as an ansatz. Then

= N2K2.

Since the inverses of ,4 and D exist, we have necessarily
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The compatibility of these two definitions of Z is equivalent with the
last constraint (1.4). With Z defined by (1.10), N1 and N2 follow from (1.9)

(1.11)

As required they are positive definite and hermitean.
We still have to satisfy the other two constraints (1.4). First we have

from (1.11) and (1.9) that

KI = NΪIA, κ2 = N2

ίD (i.i2)
are unitary. This is the polar decomposition. Next it follows from (1.9)
and (1.4)

IV. =£ (u^

N2

2-N2Z
 +

These equations for N^ 2 can be solved to give

(1.14)

It follows that Z satisfies the conditions

£-ZZ + >0
(1.15)

that are in fact equivalent.
We have finally to show that the constraint (1.7) is satisfied. For this

purpose we decompose Z as

(1.16)

where ulf2eSU(2) and λlt2 are complex numbers. This decomposition
allows us to write Nl and N2 as

0 -!/>! 0

P μ2

so that

2\2Γ*

(1.17)

ZN-

0>ι 0
0 μ2 0 λ2μ\ ίuϊ1 0

7.1μί 0 μl 0 \0 M2 /

0 I2μ2 0 μ2 (1.18)
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The determinant of this matrix is easily computed

\*2\2)=l (1.19)

Therefore the constraint (1.7) is fulfilled.
It results that the cosets of the maximal compact subgroup (7(2) xSU(2)

can be mapped one-to-one on the domain of complex 2 x 2 matrices Z
that satisfy

£-Z + Z>0 (1.20)

We call this domain the compact realization of the coset space and denote
itbyD.

13. Left Translations on the Coset Space and unitary Representations

In this section we denote the inverse M"1 of any Me Si/ (2, 2) by

Then the left translation by M maps the coset space onto itself and the
explicit form of this mapping can be computed from

A B\IN,, ZN2\ JN[, Z'N2\/K[ 0 \
c D)(Z+N}, N2 ) \z'+N[, N2 ΛO K'J ( }

It results
Z' - (AZ + B) (CZ + 1))"1 . (1.23)

The arguments of the preceding section guarantee that the inverse of
CZ + D exists overD.

The Lebesgue measure onD is defined by

\dZ\= Π dRezt d l m Z i j . (1.24)
i,j=1.2

For arbitrary w = 4, 5, 6, ... we define the Hubert space ^2(D) by

j5fII

2(D)={/(Z) I /(Z) measurable on D and | |/ | |π<oo} (1.25)

where the norm (and a corresponding scalar product) is defined by

\\l = c J /(Z)|2[det(£-Z + Z)]"-4|dZ|. (1.26)

The normalization constant c is positive and is later fixed in such a
fashion that the norm of /(Z) = 1 is one.



58 W.Ruhl :

In the space ^n

2(D) we define the unitary representation T by

T M f ( Z ) = ldet(CZ + D)Γ"f(Z') (1-27)

where Z' is as in (1.23) and M as in (1.21). The unitarity of TM and the
operator relation

^ M ι ^ M 2 ~ ^ M ι M 2 (l 2o)

have yet to be proved.
In fact, from (1.4) and (1.23) we obtain

E - Z'+ Z' = (CZ + D)-1 + (E - Z+ Z) (CZ + D)"1 (1.29)
and

\dZ\ = \dZ'\ |det(CZ + D ) \ 8 . (1.30)

This gives immediately the isometry relation

that together with (1.28) for M2 = Ml

 1 implies the unitarity of TM.
In order to prove (1.28) we put

? T f 7 ( A 7 i Ώ \ (Γ" 7 i Π \~1 Π ^OAJ = luJ •> Zj =(A 1Z + lί1)(C1Z+L)1) (1.3Z)
and get

TM l(W)(Z)=TM l/(Z)

= [det(C1Z + D1)]~n/(Z1) (1.33)

- [det(QZ + Dj) det(C2Z} + D2}γn f((A2Zl + £2) (C2Zi + D2Γ ^

Now with

(1.34)

we obtain by elementary algebra

(C2Zt + D2) (QZ + DJ = (C,Z + D3) (1.35)
and

(A2Z1 + B2) (C2ZA + D2)'1 = (A3Z + B3) (C3Z + D3)~1 (1.36)

so that (1.28) follows.
The space ^7

2(D) possesses two invariant subspaces: The space
Jfn(D) of holomorphic functions in D and the space Jf/(D) of anti-
holomorphic functions in D. The restriction of T to these subspaces
gives irreducible unitary representations of 5(7(2,2). In Graev's classi-
fication [1,2] these representations belong to the series dQ. A general
member of this series is characterized by two additional spin labels jl

and j2 (see Section 3.1). The representations just constructed and mainly
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studied in this work have jt =j2 =0. A generalization of our arguments
to all spins is straightforward in principle but in practice beset with
computational complications.

1A An Orthonormal Basis

The set of all polynomials in the matrix elements of Z forms a
complete system of functions in J n̂(D). By a convenient choice of these
functions and the Schmidt orthogonalization procedure one can construct
an orthonormal basis in ^n(D). We shall construct such a basis now. The
corresponding complex conjugate functions form a basis in J n̂*(D).

We introduce first a set of convenient parameters in D. The de-
composition (1.16) of Z can obviously be done such that uv and u2 assume
the form

U'~e.0 ^. ' 2 (1.37)

with Pauli matrices σ2, σ3. They define cosets in 5(7(2). On these cosets
we introduce the normalized measures

d'μ(u2)= ——dφ2dt2

We denote the Lebesgue measure in the complex plane by

\dλ\ = dRελdlmλ . (1-39)

With the parameters appearing in the decomposition (1.16) we have

\dZ\ = Jd'μiu,} d'μ(u2) \dλ,\ \dλ2\ . (1.40)

After some algebra we find

As a comfortable check of the normalization of the functional deter-
minant (1.41) one can compute the integral

- (1.42)

where Vn denotes the volume of the unit sphere in n-dimensional real
Euclidean space. With the parameters (1.16) and polar coordinates
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for λv and λ2 the integral (1.42) reduces to a two-dimensional elementary
integral.

We introduce the set of polynomials

f zv*1 nJ (7\
(1.43)

where Njm is a normalization factor that renders the norm of these
functions equal to one. The polynomials DJ

qιq2 are known from the
theory of the representations of SU(2) and are defined by [3]

s S S-qι-q (1.44)

S7'S-qi-g2
^22

The polynomials (1.43) are homogeneous of degree

N = 2j + 2m (1.45)

in the elements of Z. For fixed N there are

3) (1-46)

of such polynomials (1.43). It is easy to see that these polynomials
are orthogonal and consequently linearly independent. On the other
hand there exist just SN linearly independent polynomials of the type

-ni l 7 ni2 7 n 2 ι 7«2
Zlί Z12 Z21 Z2

of fixed degree N — Σn^ of homogeneity. Hence the polynomials (1.43)
form an orthogonal basis in

Computation of the norm Njm yields

In order to have JV°° = 1 (see the remark after (1.26)) we set

c = π~4(π - 1) (n - 2)2 (n - 3). (1.49)

With this normalization Njm and Aj

q™q2(Z) are defined for all n^2.
We use this fact to extend our definition of the spaces (̂D) and J^*(D)
to include the numbers n = 2 and n — 3. We may first introduce them
formally as spaces of /2-summable sequences {aj

q™q2}. Then we define
for any finite sum

£ aJ

q™q2A
J

q™q2(Z) 2 = ]̂ KT<J2 (1.50)
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By Schwarz's inequality we have

Σ V \ajm \2

Jmqίq2

In the subsequent section we shall see that the right most sum in (1.51)
converges uniformly on any compact subset of D. Therefore the elements
of (̂D) that were introduced as /2-summable sequences of the
coefficients aj

q™q2 correspond to absolutely and uniformly convergent
series and hence to holomorphic functions in D. Finally we extend the
definition (1.50) to the whole Hubert space.

1.5. The Bergman Kernel Function

In the Hubert spaces J^(D) and Jf/(D) the unit operator can be
represented as an integral operator whose kernel is called the Bergman
kernel [4]. If (/1,/2),7 denotes the scalar product

(1.52)
D

and
XJ I(Zι ϊZ2) = X|1(Z2) (1.53)

the Bergman kernel function, then this Bergman kernel is defined such
that _

=

By Schwarz's inequality we obtain from (1.54)

\\fl\\KB

zl^\f(Z)\. (1.55)

From the hermiticity of the kernel and (1.54) we have

\\KB

z\\n = K B ( Z , Z ) ± . (1.56)

This can be inserted into (1.55) and gives an estimate for /(Z). The
normalization (1.49) of the scalar product implies

KB(Q,0) = { . (1.57)

On the space J^n

2(D) the Bergman kernel defines a projection operator
onto the subspace Jfπ(D), respectively J^*QD), namely /E ̂ 2(D),

(ί.JO)
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We compute the Bergman kernel for arbitrary n ̂  2. With the ortho-
normal basis (1.43) we have

jm

For almost all Z tZ2 we can perform the decomposition

ZjZ^-S^ 1 Ms"1, SeSL(2, C) (1.60)

such that both eigenvalues are in the open unit circle. In fact, if we had

Z Z+ x = λx \λ\ > 1 (161)

then with Z1 > 2 ^D and the shorthand y = λ~lZ'2x it would follow

0 -̂ /-y- ( Έf *7 *7 ^ "v^ ^ i ? ί^7 7 1 2 1 77^ iΛ <'"' 0 Γ 1 ίi^ i
"̂  I Λ , I XL — f j o X^ o I Λ I — I I/, y-^ 1 ^ 1 A -*-</ K / ^̂  ^ \ '*J^*j

Inserting (1.60) into (1.59) and using (1.43), (1.44), (1.48), (1.49) we have

(m + n-2)\(m + 2j + n-l)l

i - i m n _ 2 ) ! m ! ( m + 27'+l)! (Lg3)

This series can be summed. It converges absolutely if both /11 2 stay
inside the unit circle and yields

j)]-" (1.64)

= [det(£-Z,Z2-)]-".

For Zt and Z2 both in compact subsets of ID we find absolute and uniform
convergence of the series (1.59). This proves the assertion made after (1 .51).

The estimate (1.55) can now be given the explicit form

|/(Z)|^||/||π[det(£-ZZ+)f ! (1.65)

Consequently the elements of J n̂(D) and J^*(D) increase at most
polynomially if Z tends to the boundary 3D of D. According to a general
theory of boundary values of analytic functions the boundary values
are distributions of a certain type [5, 6]. We are mainly concerned
with these boundary value distributions in the sequel.
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1.6. The Shilov Boundary

The boundary c D of D is given by those matrices Z for which in
the decomposition (1.16) either 1^1 = 1 or |Λ,2 | = 1. This is a seven
dimensional manifold. In order to characterize analytic functions on ID
it suffices, however, to give their boundary values on the Shilov boundary
[7]. The Shilov boundary $ of ID consists of all unitary matrices

S-{Z|Zeί7(Z)}. (1.66)

We denote the elements of S by X. Then

X = e*φu, u e 5(7(2). (1.67)

We introduce the normalized measure on S

(Loo)

where dμ(ι/)is the normalized Haar measure on SU(2). As one possible
set of parameters we may use

Due to the constraint
%2 + β2 + y2 + δ2 = l (1.70)

only three of these parameters are independent. It is easy to verify that
the Haar measure on SU(2) in these parameters assumes the form

dμ(u) = ^-dΩ4 (1.71)
i24

where dΩ4 is the Lebesgue measure on the surface of the unit sphere
in four dimensional Euclidean space, Ω4 is the total area of this surface,
Ω4-2π2.

We consider measurable and square integrable functions g(X) on S.
They constitute the Hubert space <£ 2(S). These functions can be expanded
into a generalized Fourier series

+ 00 GO + j

0W= Σ Σ Σ <,2(2; + l)V(I"+^i)jιί2(«) (1.72)
m= - oo j = 0 qιq2= -j

where m runs over all integers and 2j over the nonnegative integers as
usual. Half integral m do not occur since the substitution

M-> — M , φ— »φ -f 2π
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must leave both sides of (1.72) unchanged. The series (1.72) converges
in the =^2(S) norm sense.

Restricting the summation in (1.72) to subsets we define the following
new functions (the "positive, negative, and neutral parts'' of g(X})

00 OO + j

g+(X)= Σ Σ Σ (•••)«-/ T \ / Z—i L^t /_/ x '

j=0 m = 0 <jι<Z2 = - j

oo -2j +j

g_(X}= Σ Σ Γ (•••) (1-73)^J \ / ^_j /_j ^^ \ / \ /

7 = 0 w = —oo qιq2 = ~~j

oo - 1 + j1

,%w= Σ Σ Σ (-).
j = 1 m = - 2 j + 1 qιq2~ -j

They are all elements of the space J^2($). From (1.72) and (1.73) follows

( χ ) j ^ c , (χ\ _L n (X} = n(X)-\-a00 (174)

We treat the positive part first. We make use of

ei(m+j)φDj

qιq2(u) = (detXΓ D j

q ι q 2 ( X ) . (1.75)

If we let the real parameters α, j8, y, ^ (1.69) and φ (1.67) assume complex
values, X appears as the boundary value of Z and (deiX)m DJ

qιq2(X]
as the boundary value of (detZ)mD^ιq2(Z). In a sense still to be specified
we may therefore consider the series

f+(Z)= Σ Σ Σ <2(2;>l)iJV^Ji«2(Z) (1.76)
m = 0 j = 0 91^2= -j

as the holomorphic extension of l̂  + (Ar) intoD.
It is easy to see that the coefficients (2j + 1)^ Njm are bounded for

any fixed n^2. ParsevaΓs equation for the part g + (X) in ^2(S) yields

\\g+\\r>(S> = ϊ\3 + (X)\2dμ(X)= Σ Σ Σ KJ2 (1-77)
m = 0 j = 0 qiq2= -j

Consequently /+(Z) converges in the norm of ^n(D) for all ft ̂ 2, that
means in particular, it converges uniformly in each compact subset
ofiD towards a holomorphic function. This holomorphic function assumes
the boundary value g + (X) on the Shilov boundary S in the sense of an
^2(S) limit.

The negative part can be treated quite analogously. We have [3]

(1.78)
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We introduce the shorthands

m' — — ra — 2; , m' — 0,1,2, ...
(1.79)

- -

and get as antiholomorphic extension of g _ (X)

/-(z) = Σ Σ Σ a%2(2j + ί)*NSm'A%q2(z+). (i.8θ)
m' = 0 j = 0 qιq2= ~j

This series is uniformly convergent on any compact subset ofD towards
an antiholomorphic function, it lies in J^*(D) for all n ̂  2, and assumes
the function g-(X] on the Shilov boundary.

For the sake of brevity we denote the subspaces of functions g + (X) and
g~(X) by «£?+($) and <£?*($), respectively. An elegant presentation of
the mapping of JS?ί(S) into J^QD) (of J§?*(S) into ^fn*(D)) can be given
by means of the Szego kernel function KS(Z19 Z2) [4].

Let e^fπ(D) denote the image of JS?+(S) under the extension
g+(X)-+f+(Z). In this subspace we introduce the Szego norm

H/+||s= + s >

and a corresponding scalar product. A Szego orthonormal basis in
jftnQD) is then given by

Sfta(Z) = (2j + 1)* (det ZΓ Dj lβ2(Z)

m = 0, l ,2 , . . . , -j^qί,q2^+j, 2j = 0 , l , 2 , . . . .

The Szego kernel function is then defined by

XS(Z1,Z2)= Σ Σ Σ S^^Z^S^JZz). (1.83)
m ^ O j = 0 q\q 2= ~ j

Comparing (1.82) with (1.48), (1.49) we recognize that the Szego kernel
is identical with the Bergman kernel for n = 2. Therefore from (1.64) we have

if Zi eD but Z2 = X lies on the Shilov boundary, the Szego kernel
function is holomorphic in Zx and square integrable in X with respect
to the measure (1.68). We denote

and have —

respectively
r J r (7} = (K'S n\ (]<ΓS n \ (1 87"!

5 Commun math Phys., Vol. 27
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The formulae (1.86) and (1.87) can be viewed upon as generalizations of
Hubert transforms.

One can make use of the integral representation (1.86) in the following
manner that will become important in the sequel. From (1.86) and the
hermiticity of the Szego kernel we deduce by means of Schwarz's
inequality

l/+(Z)|^||Kf|μ ( S ) | |0+ | |*'<s>

= \\g+\\^(S}K
s(Z,Z)*.

Inserted into (1.26) we obtain an estimate for the norm of/+(Z)

||/J»^c|0^,(SJ[det(E-Z+Z)]"-6 |dZ|. (1.89)
3)

This norm is therefore finite whenever n ̂  6. This estimate is therefore
less restrictive than the one found by estimating the coefficients of the
Fourier series, which resulted in a finite norm for all n g: 2.

1.7. Distributions on the Shilov Boundary

We consider the space of infinitely differentiable functions on $
with the usual topology which we denote by <f(S). The continuous
linear functional on this space form the dual space (f'($) of distributions
on S. Each distribution φ(X) can be expanded in a generalized Fourier
series like the functions of J£2(§) but the expansion coefficients are now
allowed to increase poly normally (see (1.72))

Σ K,2I
2 ̂  C(i + H +j)s (1.90)

4142= -j

rather than being square summable. 5 is a fixed integer, C any positive
constant depending only on φ.

Such Fourier expansion allows us to split each distribution φ(X)
uniquely into three parts φ + (X\ φ~(X\ φQ(X) just as in (1.73). These
parts add up to

φ + (X) + φ - ( X ) + φo(X) = φ(X) + a°Ό°Q. U.91)

All these Fourier expansions of distributions converge in the topology
of (J"(S). Another way to define the parts of φ(X) is by requiring

(1.92)

for any test function g(X).
We consider the Szego kernel (1.84) with the first argument Z in ID

and the second argument X on S. Then it is infinitely differentiable in
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X for fixed Z. Therefore we can define Hubert transforms of the dis-
tribution φ(X) (where the notation (...,. . .) denotes the scalar product
of J^2(S) extended to test functions and distributions)

/+(Z) = (Kf,φ) = CKΪ,φ + ), (1.93)

/_(Z) = (Kf,φ) = ( K f , φ _ ) . (1.94)

These are holomorphic, respectively antiholomorphic in D. In fact
we shall see that they lie in the Hubert spaces J^(D) or J^*(D) whenever
n^n0. We construct a connection between n0 on the one hand and
the polynomial order s in (1.90) on the other hand. However, we start
formulating another theorem first.

Let /(Z) be an element of J"fπ(D). Then /(Z) approaches a distrib-
ution φ(X) e if' (S) if Z tends to X e S in the sense of the topology of
<ef($). <pPO can be represented as the (n — 2)nd derivative of a square
integrable function g + (X)e &+(§). In turn, the holomorphic extension
(1,93) of φ(X) gives us back /(Z). (Theorem A).

For the proof we start from the expansion

fw= Σ Σ Σ <;2^rJz) a-95)
m - O j = 0 4142 = ~ /

The basis elements ΔJ

q™q2(Z) are homogeneous polynomials in the elements
of Z of degree N = 2j + 2m. Therefore Eider's differential operator yields

2(Z). (1.96)

Hence /(Z) can be represented in the form

where
6^2 = {(2j + l)*N^(27 + 2m+ir 2}" 1< 2. (1.98)

It is an easy task to prove that the factor in curly brackets in (1.98)
increases both with j and m monotonically such that its minimum is
assumed for j = m — 0. This minimum is one. Consequently

1-99)

and by ParsevaΓs equation

Σ



68 W.Rϋhl:

Therefore we can write

\(Z) (1.101)
Λ

 zι
where

h(Z)^g + (X)e^2

+(S). (1.102)

The differential operator in (1.101) tends towards a differential operator
of order n — 2 on S. This completes the proof.

We consider next a distribution

<P(X)= Σ Σ Σ *£q2(2j+l)*(detX)miyqiq2(X) (1.103)
m = 0 j = 0 g ι g 2 = - j

so that φ(X) is equal to its positive part. We define an "integral order"
n0 of φ(X). For this purpose we introduce the notation

** = Σ Σ </. N = 2j + 2m. (1.104)
j.m

JVf ixed

Due to (1.90) there exist real numbers ω such that

(1.105)

Let n0 be the smallest integer in the set of these ω (the possibility n0 = — co
is admitted). Then we can represent φ(X) in the form

Σ (̂  + D""6^2m,j,qιq2

(det AΓ)M /)j lβ2(X) , no - max(n0, 0) .

Hence due to (1.105) it appears as the n'0 — th order derivative of a
square integrable function g + (X) e =£?+($).

Let n0 be the integral order of the distribution φ(X\ φ(X} = φ + (X}.
Then φ(X) possesses a holomorphic extension of the type (1.93) that
lies in ^(D) for all

,*)). (1.107)

With the help of the representation (1.106) this extension can also be
written as

(1.108)

where /+ (Z) is the extension ofg + (X) e ̂ 2 (S) (Theorem B).
In order to prove this theorem we must only show that the premise

£ σN(N+ lΓ2"δ<oo (1.109)
N = 0
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implies
00 00 +j

Σ Σ Σ I^Γ«l2<°o (
m = 0 j = 0 <?ι<32 = ~J

for all n g: 2ri0 + 2. Here bj

q™q2 denotes

In fact, we get

+J r 1
V V^ lk/ m 12 <•* I d ' i 1 \ (\jjm\21

;,m <?ι<?2= -j IN fixed J

Nfixed /
(™ 1M /'λΓ i 1 M ^ Λ Γ i 1\2«ό '

(N + w-1) ! l "v 7

For all n satisfying (1.107) the factor in front of the curly bracket is
bounded in N by a number Cn. Therefore (1.110) follows.

Another version of Theorem B is obtained with the help of the Szego
kernel. We know from the general theory of distributions [8] that a
distribution φ(X) e $'($) can be represented as

) = D%g(X) (1.113)

where D™ is a differential operator of order |m|, |m| = £ mlj9

i j

Dt= Σ ftW Π ίτ~V'' Pi W are polynomials, (1.114)

and ^f(X) is square integrable. The holomorphic extension of φ + (X]
is obviously

/+(Z) = D'^Ks(Z,^)ί? + (X)£//ιW. (1.115)
s

Schwarz's inequality implies

|/+(Z)|g||Z)SKl||^(S)|9+|μ(S). (1.116)

The hermiticity of the Szego kernel and (1.86) yield

ll^z^zll^/s) - D™D*ξKs(Z, Z)1 1 z z\\x (s) z z v

^M[det(£-ZZ + )]"2"2 | m |.

Inserting the last two expressions into the norm (1.26) gives

| |/+ | |n

2^cM||^+ | | |2 ( $ )j[det(£-Z+Z)Γ-6-2H|JZ| (1.118)
B

which is finite for π^2|m| + 6. If we use the representation (1.106)
we find n'0 — m|, and we have finally the condition n ̂  2nό + 6 instead
of (1.107).
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1.8. The Delta Distribution

As an example we study the delta distribution on S that is defined by

(1.119)
$

for all continuous functions g(X) on $. in the expansion

= Σ Σ <2i27+l)*(detAT^,,2W (1.120)
m= - GO j = 0 qιq2= ~ I

the coefficients are easily computed from (1.119)

<,2 = (2;+l)*δ, l β 2. (1.121)

This yields

m = 0 j = 0

The positive part of the delta distribution possesses the analytic extension

d + ( Z ) - KS(Z< E) - [det(£ - Z)] "2 (1.123)

as can be seen most easily from (1.93). Similarly the distribution 0-(X)
possesses the antiholomorphic extension

d_(Z) = K s ( E , Z ) . (1.124)

The norm of d + ( Z ) in J^n(D) can be computed explicitly. After some
algebra we find

KΊ '-Oη^
It follows that d+ (Z) lies in all J^(D) for n ̂  6.

This exact result can be compared with the proposition of Theorem B.
From (1.46) we have

so that ω is any real number bigger than two. The integral order nQ is
three. From (1.107) we have π^ 8. On the other hand the property that
HO is an integer enters only the second part of Theorem B. The assertion
of the first part can be improved if we allow also for half-integral π0.
Let us denote these "half-integral order" nOQ. In the present example we
find n00 = 5/2 and from (1.107) the stronger estimate n^l.
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2. The Coset Space as a Tube Domain in Complex Minkowski Space

2.1, Preliminary Remarks

We define the complex Minkowski space <C4 as the vector space of
complex four vectors

w - ( v v 0 , w 1 , w 2 5 w 3 ) . (2.1)

Real four vectors constitute the real Minkowski space M4. Both in C4

and in M 4we have a bilinear form

3

Σ wk\v'h , wvv — w2 . (2.2)
k= 1

In <C4 we define a tube domain by
3

T = J w I w = u + iv, u, v e M4, u0 >

which we call f/ze tube domain in the sequel.
The tube domain plays an important role in field theory. We define the

forward light conelL in M 4by

Then the Fourier transform of any tempered distribution of ̂ '(M4) with
support inJL (by a bar over a set we mean the closure) is itself a tempered
distribution which possesses a holomorphic extension into T. In turn
this holomorphic function assumes the Fourier transform on the boundary
M4 of T in the sense of a limit in the 5^(M4) topology [9].

2.2. A Transformation of the Cayley Type

We introduce a mapping of the bounded manifold ID into C4 by

W = W(Z) = i(E -Z)(E + ZΓ1

Λ (2 5}
M/-w 0 £+ £ w σ, l > J j

i = l

σ, are the Pauli matrices. If Z is unitary, W is hermitean and vice versa.
The definition (1.20) ofD guarantees that W=W(Z] is holomorphic
onD. The inverse mapping is

Z - Z(W) = (E-i WΓ1 (E + IW). (2.6)

Inserting (2.6) into (1.20) yields

- W) . (2.7)
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If we put W=U + iV9w = u + iv,u,ve M4, we have from (2.7) that V
is positive semi-definite (it turns out to be positive definite, indeed)
for all Z eD. This means

or w e T. _
hi turn, if w 6 T, then det (E — iW) + 0. To show this we set w = u + iv,

v eC, and get

det (E -iW) = (l + 2v0 -u2 + v2) - 2ί(u0 + uv) . (2.8)

Therefore, if det (E -iW} = 0, then

U2 = l + 2v0 + v2^l (2.9)

since v elL Consequently we have w0 Φ 0 and sign MO = sign (MI;) whenever
Z ΦO. In any case it follows M0 + M i ; Φ O for all t elL. This contradicts

It follows that the mapping W=W(Z) is one-to-one and pseudo-
conformal fromD onto T.

We denote those points of the boundary 5 D where one of the two
eigenvalues of Z is equal to — 1 by N. On<9D — N the mapping (2.5)
is continuous and the image is the boundary of T. If in addition Z is
unitary, namely an element of the Shilov boundary S, then ί/Fis hermitean
and the set S — (SnN) is consequently mapped one-to-one on M4.

The Lebesgue measure \dZ\ onD (1 .24) and the Lebesgue measure on T

\dW\= Π dRewμdImwμ = d4ud4v (2.10)
μ = 0

are connected by the functional determinant J1

\dZ\ = Jί\dW\ (2.11)

where elementary algebra yields

/^)Γ8. (2.12)

Similarly the measure dμ(X) on S (1.68) and the Lebesgue measure on
M4 are related by the functional determinant J2

dμ(X) = J2d
4u (2.13)

with

* i U ) \ 4. (2.14)
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2 .3. The Tube Domain as a Homogeneous Space

The pseudo-conformal mapping (2.5) induces a transformation of T
by means of the rational transformation (1.23) ofΊD. This transformation
of T is again rational and allows the ansatz

QΓl . (2.15)

Inserting (2.5) into (2.15), solving for Z', and comparing with (1.23) we get

(2.16)

where we fixed an overall constant factor for convenience. The question
arises as to how the set of constraints (1.4) on A, B, C, D that guarantee
that the matrix M lies in (7(2, 2), maps on an equivalent set of constraints
for R, S, T, Q. We give the result without the lengthy derivation. The
set desired is ,

K 1 = fi±

R+Q = E + H2-iH33 (2.17)

where Hhi = i to 4, are hermitean but otherwise arbitrary matrices.
We consider two subgroups of S U(2, 2) in detail. We make use of the

fact that the transformations (2.15) themselves have the group structure
S C/(2, 2)/Z4 (where Z4 denotes the four element centre). The first subgroup
Gl is defined by the premise T = 0. That this constraint defines a
subgroup will turn out immediately (see (2.19)). From (2.17) follows

R + =Q'1 (2.18)

S = RH4.

Thus (2.15) reduces to

W' = (RW + S)Q-i=R(W + H4)R+ (2.19)

If detK — 1, this transformation (2.19) consists of a real translation
and a real pseudo-rotation in T. This subgroup of Gl defined by the
constraint det# = l is identical with the "inhomogeneous SL(2, C)"
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group. However, detK need not be equal to one. Let us assume

R = λE9 λ = eηί + iη\ ^ 2 real
(2.20)

S = JΪ4 = 0.

Then
W' = e2ηιW. (2.21)

Due to (2.16) we have

A = D = eίη2chη1 £ , B = C = -eiη2shηl E (2.22)

so that
A B\ /

C D] V - s h f t E , chη.E) l ;

with the determinant e4ιη2. In order that this matrix is in 5(7(2,2) we
must have

β" / 2e{l, + /, -1, -i}. (2.24)

If ηv = 0 the elements (2.20) constitute the central subgroup Z4 of
S(/(2,2) with the four elements (2.24). If f?2 = 0 the elements (2.20)
form a one-parameter subgroup of dilations. We denote it D. Then
G1 has the total content

G, = {Dx [SL(2, C)/Z2 x T4]} ®Z4 (2.25)

where T4 is the group of real translations in T and x denotes the
semidirect product.

The other subgroup of SU(29 2) that is of particular interest, G2, is
defined by the requirements

S = 0 , Q = E. (2.26)
From (2.17) follows

jF/2 — H$ = //4 = 0

T=H,=t0E- ίkσk,ίμreal. (2.27)
k = l

The transformation (2.15) reduces in this case to

Since
det(£ -I- TW) = 1 + 2rw + £ 2w 2 (2.29)

we get from (2.28)
ι/t; _1_ ι/ι> t

(2.30)
, + w2t,,
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These are the "special conformal transformations" of T. They form an
abelian four-dimensional Lie group. G2 is free of central elements of
5(7(2,2).

2A. Hίlbert Spaces

In order to avoid too many repetitions we discuss only spaces of holo-
morphic functions from now on. The spaces of antiholomorphic functions
can be treated analogously.

We start from the spaces J^(D). Let /(Z) be any function of (̂D).
Then we define a function F(w) which is holomorphic in T by

F(wHm»/(Z(w)) (2.31)

where mq(w) is a multiplier function that has to be holomorphic in T,
too. For later purposes the following class of multipliers is most convenient

mq(w) = 22n~2lάet(E-ίW}']-n + q (2.32)

where q is any integer.
For two functions F1<2(w) defined by (2.31) with the same q we

introduce the scalar product (see (1.49) and (1.52))

(2.33)
T

such that

(Fi,f2)n,, = (/i,/2).. (234)

Both (2.31) and (2.33) establish a natural isomorphism of the space
^0D) on a Hubert space Jf^(T) of holomorphic functions on T.

By means of the pseudo-conformal mapping (2.5) T has become a
homogeneous space for 17 (2, 2). We assume that A, B, C, D and corre-
spondingly R, S, T, Q belong to the matrix M"1. Then we can read off
the mapping F-+TMF from the diagram

f 4 > P
J (2.31)' Γ

( 1 . 2 7 ) 1

It has the form
TMF(w) = μg(M,w)F(w') (2.35)

with w' defined by (2.15) and a multiplier μq(M, w) that can be computed
from (2.31) and (2.32). We find

μq(M, w) = [det(E- iW) (E-iW'Γlγ

-
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The case q = 0 is of particular simplicity both in (2.33) and (2.36). Never-
theless, we need also the cases q φ 0. The operators TM present another
realization of the same unitary representations of S U(2, 2) that were
defined on the function spaces J^n(D).

The Bergman kernel function for the Hubert spaces 3tfn ^(T) is
easily computed. We require

F(w) = (K*,F)n,q (2.37)

for all F e J^(T). With the Bergman kernel (1.64) for the spaces
and the mapping (2.31) we obtain

Kf (w2) = K B (w 1 ? w 2 )
(238)

= mq(w, ) mq(w2) KB(Z(w,\ Z(w2)) .

Inserting (2.6) and (2.32) yields

"

By means of Schwarz's inequality we obtain from (2.37) for any F e ffln ^(T)

The label q has obviously been introduced to account for the polynomial
increase of tempered distributions at infinity.

Similarly we consider the mapping of S on M4 induced by the
mapping (2.5). Remembering the relation (2.13), (2.14) between the
respective measures, we define

G(u) = [det(£- iU)Y2 g(X(u))

£ T K , {2AiϊU = u0E+ X ukσk, uμ E M4

and
9 \3

This leads to a natural isomorphism between the space ^2($) and the
Hubert space J^2(IM4). Another choice of the phase in the relation
between G and g (2.41) would do the same job. But our choice is most
convenient for the purpose of holomorphic extensions.

Finally we are interested in the Szego kernel for M4. We set

Ks(wi9 w2) = Kj1(w2) - 2~4 [K - w2)
2]~2 . (2.43)
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If g(X) e &2(S) possesses the holomorphic extension /+ (Z) of its positive
part g + (X) (see (1.86)) _

/+ (Z) = (Ks

z, g)#2(S) (2.44)

then (2.41) and (2.42) imply

/+(Z(w)) = (—) J d4uKs(Z(w), X(u))g(X(u)) |det(£- i[/)|"4

In (2.45) we may replace G(u) by G+(u) that is obtained from (2.41) by
inserting the positive part g + (X) of g(X). It follows that

G + (w)= lim (X*, G)^2 ( M ), w = M + iι?. (2.46)
υ -> 0 in 1L

The functions G + (u) form the subspace ^+(M4) of
For any function Ge t£\ (M4) the holomorphic extension into T is

obtained by the scalar product with X*, (Xj;,, G). We notice that X£
itself is in <£\. (M4) whenever i; = Im w φ 0. In fact, we have

(X^, X^2(M4) - X^2(Wl) - Xs(Wl, w2) (2.47)

and therefore
\\Ks

w\\^(M^Ks(w,w)-<κ (2.48)

2.5. Distributions Over Real Mίnkowski Space

We define the space of test functions ^2(M4) [8] to consist of
all infinitely differentiable functions G(u) for which the norms

(2.49)

are finite for all orders m. Here and in the sequel Dl

u denotes the differential
operator

3 / rlD-= n
It is easy to see that K^ lies in ^^2(IM4) whenever ImwφO. To see
this one expresses the differentiation with respect to u by differentiation
with respect to w and uses (2.47), (2.48). The linear continuous functional
on ^2(M4) form the dual space ^2(M4) which is a subspace of
the space y(M4) of tempered distributions over M4. Let Φ(u) be a
distribution of ^2(M4). Then the extension of the scalar product
in 5£ 2(M4) to test functions and distributions in the case

(x£,Φ) (2.50)
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yields a holomorphic function in T. We would like to define a positive
part Φ+(u) of Φ(u) such that

tends to Φ + (u) in an appropriate topology whenever Imw->0 in IL.
In the subsequent section we shall then study the holomorphic functions
F(w) as elements of ^^(T).

First we notice that (2.41) defines a continuous mapping of <f(S)
into 2>χ2( MO- For the proof of this statement we insert (2.41) into (2.49)
and use Leibniz's rule. Then we verify first that

[det (E - i UJ] 2 D™ [det (E - i [/)] ~ 2

is bounded over M4 for each m, and second that for the infinitely
differentiable map U-+X = X(U) each derivative is bounded, too.
Finally g(X) and its derivatives can be estimated by their supremum.
We display the different estimates.

Evaluating the determinant yields

iU) = (l-iu0}
2 + £ u\. (2.51)

For fixed R2 = ul + Σu% the inequalities

1 + 2R2 ^ |det (E - ί U)\2 ^ (1 + R2}2 (2.52)

are easily established. Moreover

D^άQt(E-iU}Y2 = P^(u}{_ά^(E-iU)Y2-^ (2.53)

where P\m\(u) is a polynomial in the vector components of u of maximal
degree |m|. Therefore for some constant Cm

|P(m|(ι/)|^Cm(l+2^2)-H (2.54)
and

|[det(£ - it/)]2 D"[det(£- iU)Γ2\ ^ Cm . (2.55)

The map (2.6) gives

X(U) = (E-iUΓ1(E + iU)
(2.JOJ

- 2[det(E - it/)]"1 (E-ίU)-E
where

U = u0E- V ukσk. (2.57)
Therefore

i i

= |[det(£-ίl/)]-1-Wβ |w | + 1( (2.58)

for any matrix element of X. Q|m| + 1(M) denotes a polynomial of maximal
degree |m| + 1, and an analogous estimate as in (2.54) is used.
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Finally we have

sup|[det(E-il/)]2DiG(w)|2

H
(2.59)

with positive constants Ak that are independent of g. This completes the
proof.

Hence ^2(M4) maps continuously into <f ($). Namely, let Φ(u)
), G(M) e ̂ 2(M4) and g be defined by (2.41). Then

(G, Φ)jz>2(M4) - (0, φ)^2(s) (2.60)

defines a distribution φ e <f '($). If g is the Szego kernel Ks

z then

(X|,φ) = (X|,φ + ) (2.61)

tends to φ + (X) in the sense of the <£"($) topology when Z-»XeS.
Explicitly we may write for an arbitrary testfunction g e <f (S)

(2.62)

and the limit can be realized as the limit of partial sums of the generalized
Fourier expansion (1.73).

If we want to carry this limit theorem over to Minkowski space, we
must change the space of distributions. It is most convenient to consider
tempered distributions. It is obvious that any infinitely differentiable
and rapidly decreasing function G(u) on Minkowski space maps onto a
function of <?($) under (2.41). This mapping is moreover continuous from
^(]M4) into (f (S). For an explicit proof of this statement one makes
use of estimates analogous to (2.51)-(2.59). Therefore the space <£"($)
maps continuously into the space 5^'(IM4) of tempered distributions
over Minkowski space. It may happen that different distributions of
$'(&) map on the same tempered distribution. An example for this
behaviour is the distribution δ( — X). It is obtained from δ(X) (Section 1.8)
by translation with — E and has support only at —E. This distribution
maps on the trivial tempered distribution.

Hence the holomorphic extension (2.50)

(w, u) Φ(u) d4u (2.63)

with Φe^2(M4) has a boundary value Φ + (u) that is assumed in the
sense of the tempered topology. This solves our problem posed at the
beginning of this section. However, a deeper insight is gained if we
compare our result with an approach based on Fourier and Laplace trans-
formations. As a tempered distribution Φ can be considered as the
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Fourier transform of another tempered distribution

(2.64)

and similarly

Φ + (u) = $d*teituΦ + (t}. (2.65)

Since Φ was assumed to be in ^2(IM4), it follows that Φ(t) is realized
by a slowly increasing and locally square integrable function. Therefore
we can decompose Φ(t) uniquely into the sum of two tempered distri-
butions by

Φ(f) = 0L(f) Φ(f) + (1 - ΘL(t)) Φ(ί) (2.66)

with θL(t) the characteristic function of the forward light cone

Due to the theorem quoted in Section 2.1 we have

Φ + (ί) = θL(OΦ(f) (2.68)

almost everywhere. By the same theorem we have that F(w) is the Laplace
transform of Φ + (t) for Im w Φ 0

F(w) = JΛe ί ί w Φ + (t) (2.69)

as a proper integral. By means of the Laplace transformation of the
characteristic function of the forward light cone

9 \ 3 /9 7A\
~ Ks(w,0) (2 7ϋ)

we can reexpress F(w) as a convolution integral

F(w) - j J4t/τ(w - u) Φ(u) . (2.71)

The two formulae (2.63) and (2.71) are obviously identical.
If Φ(u) is a general tempered distribution, this decomposition of

Φ(t) is no longer unique. In this case we represent Φ(u) as

Φ(u) = D™ [det (E - i £/)]* G(u) (2.72)

where G(ύ) is square integrable [8]. Then the function

F(w) = D«[det(£ - ιP^]k (Xj, GW4) (2.73)

is holomorphic in T and possesses

D-[det(£- /£/)]* G+(w)

as distributional boundary value which is assumed in the tempered
distribution topology. The non-uniqueness of the decomposition (2.66)
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for tempered distributions Φ(u) is reflected by the fact that certain
polynomials in u can be added to

[det(JE-il/)]*G(M)

without changing Φ(u) nor the square integrability of G(u).

2.6. Holomorphic Extensions as Elements of Hubert Spaces

The estimate (2.40) and a well-known theorem [10] assure us that
the elements F(w) of 3?n >g(T) possess tempered distributions Φ(u) as
boundary values on Minkowski space, such that F is the Laplace transform
of the inverse Fourier transform Φ(t) of Φ(u). A characterization of
this distributional boundary value as a derivative of a certain order of
a square integrable function is easy to obtain from Theorem A (Section 1 . 7).
We are therefore interested in the opposite problem. Given a tempered
distribution Φ(u) that possesses a holomorphic extension in T, we want
to find out for which labels n and q F(w) is an element of Jfπ>q(T).

First we write Φ(u) as in (2.72)

Φ(M) = D*[det(E- W}~]k G(u) (2.74)

where G is square integrable and can moreover be chosen such that its
inverse Fourier transform G(ί) has support in the forward light cone.
Then we have as holomorphic extension in T

F(w) = D™ [det(£ - iW)f (K*9 G)^^ (2.75)

Preceding now as in the alternative form of Theorem B in Section 1.7,
we apply Schwarz's inequality

2(M4)D^|det(£- iW)\2k K>, w) (2.76)

Inserted into (2.33) this yields

• |det(£- iW)Γ2qD™D%\dQt(E- ίW)\2k K5(w, w)

Our task consists in estimating this integral.
We have

with a polynomial R2\m\ + 4k(w> w) of maximal degree 2|m +4k. We put

(u2 + v2) (2.79)
6 Commun math. Phys., Vol. 27
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and obtain for large R
2^ |det(£ - i W)\2 . (2.80)

Hence we have for all w with a certain constant Cm k

Λ2|m| + 4*(w, w)g Cm.t|det(£- /H/)|2H + « . (2.81)

The right hand side of (2.77) is majorized this way by

cCMfk||G||!2(M4^ (2.82)

with n' = n-2-2\m\. (2.83)

Therefore the integral (2.77) converges whenever

ri>4
(2.84)

2n'-2g + 2 | w | + 4 f c ^ 0 .

Rewriting the conditions (2.84) in terms of n we obtain

rc>2|m| + 6
~ ' ' (2.85)

q^n-\m\-2 + 2k

as sufficient conditions for the finiteness of ||F||Πsί. Of course these
conditions need not be necessary. The first condition involves n only,
that means: n is determined primarily by the local singularities of Φ(u).

3. Applications

3.1. Conformally Covariant Fields

The connection between classical field theory and the representation
theory of the Poincare group is well known. In a similar spirit we can
consider the distributional boundary values Φ(u) of a holomorphic
function F(w) as parts of a classical conformally covariant field [11].
Classical fields are vector valued functions over Minkowski space with
values in a space that carries a representation of the little group for
the origin in Minkowski coordinate space. In our case the little group
is that subgroup of Sί/(2, 2) that maps w ^ O into vt/ = 0 under (2.15).
It consists of dilations, the group SL(2, C), special conformal trans-
formations, the central elements, and the products of all these. In this
section it is most convenient to set q = 0 and to consider only the spaces

^.,o(T).
F i r s t w e p u t R = ri£ j Areaι ,3.1)

in (2.20) and obtain the dilation operators

λ-nΦ(λ'1u) (3.2)
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with the generator

- i ̂ Ά Φ(u) = i (n + uμ -/-) Φ(u). (3.3)
dλ \ λ = ί \ duj

Following a customary use we call n the "scale dimension" of the field
Φ(u). The fact that n is limited to n ̂  2, whereas the "canonical scale
dimension" of a scalar field is one, could cause us to try an "analytic
continuation" of our approach in n to values smaller than two. Compari-
son with the analogous problem in the case of the group SU(i, 1) shows
that this attempt might force us to change the metric and switch to
another series of representations.

The special conformal transformations are obtained from (2.35)

TtΦ(u) = (1 + 2tu + t2u2Γn Φ(uf) (3.4)

where u is defined in (2.30). In infinitesimal form we get

τ^ ^/ \ . δ Φ(u]

'">df '

2nuμ - (u2gμv - 2uμu,) -^--\ Φ(u).
CUV J

The representation of the little group of u = 0 is trivial for the special
conformal group

0. (3.6)

Infinitesimal elements of 5L(2, C) yield

d
duv v duμ Φ(u). (3.7)

The corresponding representation of the little group for u = 0 is again
trivial, our fields are scalar (spin zero). Since scalar fields are too narrow
a class for reasonable applications we are forced to generalize our
concepts.

Classical fields with non-zero spin are in fact obtained from the
other members of the series dQ [1]. These spaces consist of functions
f ( X , y, Z) which depend on complex matrices X, Y, Z. / is assumed to
be holomorphic (respectively antiholomorphic) for fixed X and Y
and for Z in D. It is moreover a homogeneous polynomial of degree
2/1(2/2) in the elements of the first row of the 2 x 2 matrix X(Y).
Therefore we have in particular (see (1.44))

+ jι +h
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Let Kίι2 be matrices and dμ(K) the normalized Haar measure of 5(7(2).
Nίt2

 are tne matrix functions (1.14) of Z. A sesquilinear form for these
functions can then be introduced by

• [det(£ - Z+ Z)]-4 dμ(KJ dμ(K2) \dZ\

• ̂ (Atf) β&2(#22) [det(E- Z+Z)Γ~4 \dZ\ .

With the same notations as in (ί.21)-(1.23) we define

T M f ( X , y, Z) - [det(CZ + D)]~" f ( ( A + BZ + ) X, (CZ + D) Ύ, Z'}. (3.10)

For n ̂  4 + 2j1 -h 2/2 integral, the sesquilinear form (3.9) obviously
converges and defines a scalar product that is invariant. Correspondingly
it determines a Hubert space of functions f ( X , Y , Z ) that carries a
unitary irreducible representation of £17(2,2). By similar arguments as
used for the casej\ — j2 = 0 in Section 1.4 we may extend the validity of the
scalar product till n = 3 + 2j^+ 2j2. But an attempt to go down further
fails for the same reasons as in the casejΊ =j2 — 0.

The theory of these representations and their distributional boundary
values can be carried through similarly as in the case j1 =J2—Q The
scale dimension of the boundary limit Φqίq2(u) is n—j1 —j2 The repre-
sentation of the little group for u = 0 contains the finite dimensional
representation ( j ί J 2 ) of SL(2, C). If we compare these results with
classical fields [11] we should have

π = l + 2/ 1 +2/ 2 (3.11)

for canonical free fields. For vector currents (/t = j2 = ^) and for the
energy-momentum tensor (jί =j2 = 1) we find instead

n = 2 + 2J!+2j2. (3.12)

We can therefore apply our formalism not to these basic objects but
rather to products of fields and currents.

3.2. Operator Products and Inclusive Reactions

One calls inclusive reactions those processes where two elementary
particles hit and thereby produce a bulk of new particles, a fraction
of which is only observed. Examples are

proton + proton -> pion + anything
or

photon -f- proton —»anything .
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The cross section for these processes depends on the total four momentum
P of the unobserved objects. This momentum lies in the forward light
cone. By means of a Fourier transformation, after splitting off an
appropriate kinematical factor, these cross sections can be related with
the diagonal matrix elements of products of local operators. These
matrix elements are assumed to be tempered distributions. Therefore
they possess a holomorphic extension into the tube domain.

As an example we study the first process quoted above. In the centre-
of-momentum system of the ingoing protons the cross section is [12]

i n , 2 π π l , 2 i n (3.13)
a q
dσ= i

*+ spins

with the proton momenta

Pl=(E,Q,Q,p), p2 = (£,0,0, -p), pl = pl = M2

and the pion momentum
4 = Pi + P2 - P -

Using the completeness of physical states and the spectrum condition we
get

p2,P) (3.14)

where the support of A in the variable P lies in the forward light cone.
Therefore the function F(w) defined as the Laplace transform

p29P) (3.15)

is holomorphic in T.
A formula for the norm \\F\\ntq can only be implicitly given for

general index q (see (2.33))

\\F\\2n,* = ί ̂ 4pί d4P'Mn.q(P, P') A(pι, p2, P) A(Pl,p2, P') . (3.16)

Note that A is a real function. Mn^q is then defined by the integral

MΛtί(P,P') = c f d4u$d4veip(u + iv}-ίp'(u-ίv}(v2)n-4\deί(E-iW)\-2(i.
M4 1L (3-17)

For q = 0 a simple expression results (for q<QMnq is obtained from
this expression by derivation)

M^0-8π(n-l)!(π-2)!ό(P-P')(P2)~" + 2 . (3.18)

Hence the norm of F is

\\F\\l0 = ̂ π(n-l)l(n-2)^d4P(P2Γn + 2 ( A ( p ^ p 2 , P ) ) 2 . (3.19)

Whenever the unobserved set of particles may consist of a single
(stable) particle this norm does obviously not exist since A contains a term
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δ(P2 — m2). Apart from the deuteron which we want to neglect, a stable
particle with baryon number two is known not to exist. However, in the
photon induced process quoted at the beginning the proton itself is
such a particle. In these cases we must try q > 0. Evaluation of the
integral (3.17) is not easy for these q.

In the customary treatment of an inclusive process like inelastic
electron-proton scattering one performs an asymptotic expansion of the
operator product at the light cone [13]

j(X)j(θ) = ΣC*WFM (3 2°)
Λ-2-0 α

where Fα(0) is a local operator and CΛ(X) a homogeneous or associate
homogeneous distribution whose degree is determined by dimensional
arguments. The distribution cα(x) of maximal singularity dominates the
function A in the "scaling limit" P2-»oo. This light cone singularity
is quite unlikely to dominate the on-shell processes like the one-pion
inclusive process discussed here [14]. Instead we obtain an integrability
condition (3.19) for A which accounts for the high-P behaviour in a
more implicit way but on the other hand reflects the influence of all
types of singularities.
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