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Abstract. We prove that, for the P(φ}2 quantum field theory, the Wightman functions
are Lorentz invariant if the energy-momentum spectrum lies in the forward light-cone. The
ingredients of the proof are the following facts, established by Glimm and Jaffe : the field
satisfies local commutativity, and also the estimates

where V is a space cut-off, uniformly in K

1. Introduction

Glimm and Jaffe [1] have proved that for the P(φ)2,v theory (the
self-interacting boson quantum field theory in two-dimensional space-
time, with a polynomial interaction and a periodic box cut-off, V) the
canonical conjugate field πv(g, t) = JπF(x, t) g(x) dx satisfies the estimate

±πv(g,t)^\\g\\2(Hv + I). (1)

Here Hv is the Hamiltonian for the cut-off theory, and / is the identity
operator. (There is a gap in the proof, in [1], of a similar estimate for
Vφv.) Furthermore [2] the field itself satisfies the estimate

±φv(f,t)^const\\f\\ί(Hv + I) (2)

where the constant is independent of V. These inequalities lead to bounds
on vacuum expectation values of products of φv and πv, showing that
these expectation values are tempered distributions. Since the bounds
are independent of V [2, 3] one obtains similar bounds for the smeared
n-point Wightman distributions for the theory with no cut-offs. In
particular, the Wightman function

Wn(zί,...zn) = ( Ω , φ ( 2 1 ) . . . φ ( z n ) Ω ) (3)
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where zj~(xj,tj), j = l, 2 . . .n , are real two-vectors, is a tempered
distribution invariant under translations, and so depends only on the
n — 1 differences Zj — Zj+\.

The field φ satisfies local commutativity, so that if z^ — zj+ί is space-
like, then

W (7 7 7 7 }— W (7 7 7 7 } ί4ϊy y n { z l ί ... Zp zj+1,... zj— y y n ( z l 9 . . . zj+1, Zp ... zj. (<+)

We say that the spectral condition holds if the simultaneous spectrum
of energy and momentum lies in the forward light-cone:

P°^±P 1 . (5)

The spectrum condition (5) has not yet been proved for the P(φ)2 theory.
The work of Glimm and Jaffe [1, 3] towards a proof of (5) has a gap,
pointed out by Frδhlich and Paris. In this paper we point out that the
facts already established in [1, 3], and the spectrum condition, imply
that the Wightman functions (3) are Lorentz invariant. If the vacuum is
not unique, then the reduction theory of Borchers, Maurin and Brattelli
[4] enables one to form the quotient Wightman theory over the centre,
to obtain a theory with a unique vacuum. Thus the spectrum condition
is the last remaining step in proving all the Wightman axioms.

The main step in the proof that (5) implies Lorentz invariance is to
note that the spectrum condition (5), temperedness and local commuta-
tivity imply that Wn satisfies the hypotheses of the theorem on finite
covariance of Bros, Epstein and Glaser [5], so that Wn(z) is a finite
covariant for each n. This means that Wn has the form

) (6)

where z = (z 1 ? . . . zw), z~(xpt ), and (/) and (k) are the ordered sets
(/ι, . . 7n), (k 1 ? . . .k j of non-negative integers, and j=jί + •••+;„,
k = ki-\ h kn. For each (/), (k), F ( j ) ( k ) is a Lorentz invariant distribution,
the boundary value (in the sense of &") of an invariant function holomor-
phic and one-valued in the "extended tube" in the n — 1 difference
vectors Zj — zj+1 on which W(z) depends. The form (6) is not unique,
since invariant polynomial factors can be absorbed in F(j}(k}. But there
exists a unique least value of N(ri), called the tensor rank of Wn.

We can isolate the part of Wn(z) with highest rank as follows. Let
z\-*z' = Λz be a real Lorentz transformation with parameter λ:

(7)

In terms of the light-cone coordinates uj = tj -f Xp Vj = tj — KJ it becomes

u' = λu:, υ'j = vJλ . (8)
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Introduce the new function

Wn(Λ,z)=Wn(Λz) (9)

Since F(j}(k}(Λz) = F(j}(k)(z\ we see that Wn(λ, z) is a polynomial in λ and
1//1, whose coefficients are themselves finite covariants in z. We define
N±(n) to be the degree of this polynomial in λ±1, and the coefficients of
λN + (π) and λ~N~ (n} will be called the leading terms as Λ,-> oo, 0, respectively.

W(z) is analytic at space-like separated points, that is, points for
which each difference (xi — xj,tί — t^ is a space-like vector; this means
that if {$1; . . ., &n} is a space-like separated collection of open sets in 1R2,
then the functional W'.&^Jx ••• x &(OJ-+<C defined by f = (fί9 .../„)
H>(Ω, φ(/t) . . . φ(fn) Ω) = W;(/) is given by an integral.

From now on, we assume the spectrum condition holds. The idea
of our method is to use (1) to derive bounds on the vacuum expectation
values of products n(f^) ... π(/n) along space-like orbits of the Lorentz
group in IR2", thus obtaining bounds for N±(n). These bounds are
improved by applying the Schwarz inequality; analytic continuation and
an application of temperedness shows that any non-invariant part of the
function (3) must be a rational function. Use of (2) locally then shows that
there can be no poles in the non-invariant part, which is thus a poly-
nomial. Positivity implies that this polynomial is a constant, thus proving
Lorentz invariance.

Cannon and Jaffe [6] have proved that the Lorentz group acts as
an automorphism group of the observable algebra for the φ2 theory,
and this has been extended to the φl" and P(φ)2 theories by Rosen [7]
and Klein [8]. However, it remains to be proved that these automor-
phisms are implemented by unitary operators, and the present paper is a
step towards this.

2. Bounds on the Expectation Values of Products of π

Following the methods of Glimm and Jaffe [1, 3], the estimate (1)
leads to

the inequality holding as matrix elements between vectors from a dense
set. If g E ̂ (1R), we can approximate Jπ(/, t) g(t) dt by a Riemann sum,

to obtain ±π(f®g)^ \\f\\2 ||0||1(H + /). So, putting R = (H + /)"1, we
obtain

±R*π(f®g)R*^\\f \\2\\g\\!. (lOa)

Similarly, (2) leads to

±R*φ(f®g)R*^const\\f \\i\\g\\t. (lOb)
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Write WΛΛ®^®...®/,,®^) for (Ω,π(fl®gί)...π(fn®gn}Ω\ Then
we get the bounds

^ I I /i II 2 l l f l i l l i { I I / 2 U 2 I l 0 2 l l ι \\(H + I)2...R*π(fn®gJR*Ω\\

+ I I / 2 U 2 1102 I I ι l l ( W + / ) .

Proceeding in the same way, we arrive at

ϋl^ Π ll/.

where ||| ||| is a sum of products of L^norms of the various g{ and their
time derivatives, with at most n— I derivatives in any term. The property
of HI HI that we need is

lll^ίOO-O^giHOU-1) as A -.00. (12)

Actually, the inequality (11) is first established for the periodic theory
in a box of volume V; then, letting V-^oo through a subsequence, we
obtain (11) for the theory without cut-offs. The requisite convergence is
established in [3]. Let Wπ(λ, z)=Wπ(Λz\ and let N±(09 n) be the tensor
rank of Wπ.

Lemma 1. For any n, N±(Q, n) ̂  3π/2 — 1.

Proof. Let G(z) be the leading term of Wn for A-»oo. Hermiticity
of π implies that G is real at space-like points. Without loss in generality,
we may assume that there exists a space-like point z = (xi,ΐί,x2,ϊ2,. .xn,ϊn)
such that G(z ) = 4δ > 0. Then there exists a space-like neighbourhood
N = {z; |Xl - jq| ̂  Γj \tί - 1 J ̂  r, . . . , \tn - ΐn\ ^ r} such that G ̂  2δ in Jf.
Since Jf is a closed region of analy ticity of the coefficient of λj in Wπ(λ, z)
for each j, these coefficients are bounded in Jf , so Wπ(λ, z) is dominated
by its leading term, λN'(0'n)G(z) as A-^oo. Hence there exists A 0 ^ l
such that

Wςμ,^^^^^0'^ f o r a l l λ^λQ,zejr. (13)
Therefore

Wς(z)= Wςμ,^"^)^^^0'^ for all λ^λ0, A~lze,^. (14)
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Let g e 3>(Δ\ g(t) ̂  0, \g(t] at = 1, where A = [- ir, |r] ClR, and let /(x)
be the characteristic function of A. Let

We now show that

$Wπ(z)hλ(z-Λz)dz^δλN+(Q n>-n if λ^λ0. (15)

Since λ $ g ( λ t ) d t = 1 and j/(Ax)dx = λ~ 1

? it is sufficient to prove that

if zesupp/Z;. But since λ^ 1 we have |±Λ,± l/λ\ ^2A, and from (7), if
z' = Λ-1z9 \t'j\ = ± \ ( λ + l / λ ) t j + (l/λ-λ)xj\^(\tj\ + \xj\)λ^r on supp/zA;
similarly, |x}| rg r on supphλ. Thus /I lz + zz Jf and (15) follows.

We obtain a bound on JV+(0, n) by comparing (15) with (11) and (12).
Since I I / U 2 = r*, Eq. (11) gives, using (12)

f Wn(z) hλ(z - Λz) dz £λ-*» HI λng(λtj . . . g(λtn)\\\ = 0(λ**~ l ] . (16)

(Note that translation by — Λz does not alter the norms.) Comparing
(16) with (15) gives ]V+(0, n) ̂  3n/2 — 1. In the same way, by considering
;.-»0 instead of λ-+ oo, we show that ΛΓ(0, n) ̂  3n/2 - 1. Π

3. Consequences of the Schwarz Inequality

Let Wntn(λ9z) = (Ω9φ(ΛZl)...φ(ΛzJπ(Λzm+ί)...π(Λzn+JΩ). Then
^n has the unique expansion

Wm,n(λ,z)= X A kWiw(z)

where P^π is a tempered distribution of tensor rank fc, the boundary
value of a function holomorphic in the extended tube, having a one-
valued continuation into the union of the permuted extended tubes [9].
Because of local commutatίvity, N±(m, n) are independent of the order
among φ and π.

Lemma 2. For any j ^m, k^n, we have

N±(m, n) ^^{N±(2m - 2j, 2n - 2k) + ΛΓ±(2;, 2k)} .

Proof. Let /, ̂ 0, /^e^OR2), 7 = 1,2, ... m + n, be chosen with
mutually space-like supports such that the real holomorphic function
Wmn(z)is of one sign, say > 0, on supptΛ ® ® /m+ΪI). Let ff(z) = fj (Λz).
Schwarz's inequality then gives

\(Ω, φ(f?} . . . φ(tf) π(f*+ ,)... n(f^n) Ω)\

π(tt+l)... π(f*+ k ) Ω \ \ .
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The right-hand side is

The left-hand side has leading term ;^±JV±(m'n)

 with non-zero coefficient,
for some choice of /15 . . . fm+n. Hence result. Π

Lemma 3. N±(09n)^n.

Remark. This is exactly the rank we would expect for an nih time
derivative of a scalar.

Proof. We first prove it for even n by induction. It is true for n = 2
(Lemma 1). Write N(n) for JV* (0, n). Suppose then that N(n -2) = n-2,
where n is even. Then by Lemma 2,

-2;)} for all .

Choose 2j = n — 2. Then

N(w) ̂  %{N(n - 2) + N(2rc - n + 2)} ̂  i(π - 2 + N(n + 2)}

^ M« - 2 + i DV(2» + N(2(n + 2) - 2j)]}

- 3(n - 2)/4 + N(n + 6)/4 ̂  7(n - 2)/8 + N(n + 14)/8 ̂  . . .

^ n - 2 + N(n + 2r+ 1 - 2)/2r ̂  n - 2 + {3(n + 2r+ 1 - 2)/2 - l}/2r

by Lemma 1. Thus N(n) ^ n + 1 + 3 (n - 2)/2r+ 1 - l/2r < n + 2 for large r.
We now remark that N(n) is even. For, the tempered distribution W0n

is the limit in &*' of the vacuum expectation values for the theory with
a box cut-off, and these approximate vacua are invariant under the P T
transformation z-^—z. The even-ness of W0n(z) persists in the limit.
Since N(ή) is thus an even integer < n + 2, and n is even, we get N(n) ^ n.
If n is odd we apply Lemma 2 and use N(2j) ^ 2j to get the result. Π

Lemma 4. // /or some even integer n, N± (n, 0) = 0, then N±(n, 2} ̂  2.

Proof. By Lemma 2,

N(n, 2) ̂  I {JV(n, 0) + N(n9 4)} - \ N(n, 4) ̂  N(n, 8)/4 g ^ N(n, 2r + 1)/2r

^ {JV(2n, 0) + N(0, 2^ + 2)}/2r+ 1 ̂  JV(2n, 0)βr+1 + 2 ,

by Lemma 3; letting r-> oo, we get N±(n, 2) ̂  2. Π

4. The Analytic Structure of the Non-Invariant Terms

This and the next section are devoted to proving that if, for some n,
N±(n-2,2)^2, then JV±(n,0) = 0. The idea is that if Wn.2t29 which is
the second time derivative of WntQ9 is a second rank tensor, then Wnt0

must be a scalar. This is not obvious, since differentiation with respect
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to Xj and tj can decrease the tensor rank, as well as increase it. Indeed,
by Eq. (8), d/duj decreases the tensor rank by one and δ/dVj increases it,
or vanishes. Since

(Ω, φ(Zl) φ(z2)... φ(zn) Ω) = - £ (Ω, π ( Z l ) φ ( z 2 ) . . . n ( Z j ) . . . φ(zn) Ω)
7 = 2

the assumption N(n — 2, 2) ̂  2 implies that every second derivative of
Wn0, with respect to time, has rank ^2. Let W+ be the part of Wn0

S2W 82W+

of highest rank, N + (n, 0). Then ——-̂ — contains the term ——-— of rank
otiotj cVidVj

N + (n, 0) + 2, the remaining terms being of smaller rank. If N + (n - 2,2) ̂  2
S2W +

is assumed, we see that either N+ (n, 0) = 0 or ——-— vanishes for all i, /.
dVidVj

Thus if N + (n, 0) > 0, W+ has the form

7=1

Lemma 5.// N+(n — 2,2)<Ξ2, ί/ien W+ is a rational function,
holomorphic if u{ φ uj9 i = 1, 2,... n; j = 1,2,... n.

Proof. Wj+ is analytic if Im^ — u2) > 0, Im(u2 — u3] > 0,...
... Im(ww_! — MΠ) > 0; with the variables in the other order, it is analytic
if lm(uί — w2)<0, Im(M2 — W 3 ) < 0 , . . . Im(w n_! — «„)<0. The two func-
tions coincide at a real point ( w l 5 . . . un) if there exists a real v, such that
(M I ? υl ... wn, un) is space-like. This is true if t^φi^; for then we may
order the points uh <uί2< <uίn, and choose the u's arranged in the
other order, υtί >vh> •• >υin. This ensures that every difference
(ut - Uj, vt - v) = (zf - z) is space-like: (zf - z/ = (wf - u^) (ϋf - ΌJ) < 0.
Then, by the edge-of-the-wedge theorem ([10], Theorem 2-16) W}

+ is
holomorphic and one-valued in a ([^-neighbourhood of the real axis,
omitting the hyperplanes ut = HJ. We now show that if M 2 , . . . wn are real,
no two being equal, then Wj

+(uίιu2, ...«„) has an analytic continuation
to every point in the ux-plane, except the real points u1 — Upj — 2, 3,... n.
Suppose uh<uί3< ••• <uίn, and Imw^O. Then a complex Lorentz
transformation u-+λu, where λ has a small negative imaginary part,
leads us to a point for which Imi^ > Imw ί 2 > ••• > Imu ίn. This lies in the
forward tube corresponding to the permutation (1,2,... n)-»(l, z ' 2 , . . .z w ).
The boundary value as Imw1->0 is the W + (z) corresponding to this
permutation. This is real iΐuί φ 1^,7 = 2, 3,... n, since P^w0(z)is real there.
The Schwarz reflection principle then ensures that W + (z) has a one-
valued continuation into the whole urplane, omitting the points u1 = up

; = 2, 3 , . . . n .
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The boundary value of Wj+ is a distribution in M I ? so the singularities
in uί are of finite order [10, Theorem 2-10]. Hence there exists a poly-

n n

nomial f] (u^ -uk)"k, such that Y[ (u1 -uk)
flkW+(u1,... un) is entire in

k=2 7=1

M!, for M 2 , . . . un in some neighbourhood of the real axis (namely, the
neighbourhood given by the edge-of-the-wedge theorem). By the con-
tinuity theorem for functions of several complex variables, it is entire in
uί whenever u2 -.. un are such that the function is analytic in ul for some
M X . Now, Wj+ is the Laplace transform of a tempered distribution with
support in the right half-space in each of its variables. It is therefore
bounded by a polynomial in real and positive imaginary directions
[10, Theorem 2-8]. By considering the boundary value from below in the
Mi-plane, we similarly obtain a polynomial bound in the lower half-

n

plane. Hence f| (w t — uk)
nk W}

+ is a polynomial in M J . The coefficients in
k = 2

this polynomial are functions of M 2, . . . M Π , holomorphic in the union
of the permuted extended tubes in these variables. Proceeding in the
same way, we conclude by induction that there exist numbers nik,

n

ϊ, fe = 1, 2,... n, such that f] (u{ — ukY
lkWj+ is a polynomial. This holds for

i = k

each7, so W+ is a rational function, holomorphic unless Ui = uk. Π
Similarly, we show that W~, the part of least rank, is a rational func-

tion of Z I } . . . , Z M , linear in the M'S and holomorphic unless vi = vj for
some ij.

5. Bounds on the Local Singularities of Wightman Functions

Let us consider W+ as a function of ui—u2, the other variables
v,u2 — M 3 , . . . M w _ i — un being held fixed. Since it is a rational function,
we can expand as a partial fraction

W+(z)= £ ap(ul-u2)?+ £ br/(uί-u2γ+ Σ <W(«i-«/. (17)
P ^ O r = l j^3

s

Here, all the sums are finite, and αp} fcr, csj are linear functions of v, and
are rational functions of u2 — M 3, w3 — w 4 , . . . M Π _ ! — Mn, analytic unless

M. = Mj. for some f Φ j, i ̂  2, j ̂  2. The idea is to isolate the worst singularity
of l^ + (z) at z1=z2, namely bR(uί — u2)~R

9 which will turn to be too
singular to be allowed by (1) and (2) unless R = 0.

Let us choose (z3,... zπ)elR 2 π~ 4, mutually space-like and such that
IM^I > ε t say, j = 3,4,... n, and such that bR(v, u2,... un) is, say, ̂  δ > 0,
in some neighbourhood Jf of (z3,... zn) provided \u2\ <εΐ and |ϋj|<ει,
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j = 1,2. Let G(z 3,... zn) e Q)(Jf] and ε > 0, ε < ε t be chosen such that

|PF + (z1,z2;G)|>^||G||1 ul-u2\~R for all z 1 ? z 2 e£ ε

where
Bε = {z1? z2; w j < ε, |w2 | < ε, l i J < ε, \v2\ < ε}.

This can always be done, since the leading term bR/(u1 — u2)
R dominates

W + as u t -> M 2, and £>R ̂  (5 on the support of G. Since

W+ =
1 ιN~ («, 0)

Nl
W(λ,z))

where AT = N + (rc, 0) + N ~ (n, 0), we obtain the lower bound

>C\u1-u2\~R for all (zl9z2)εBε9 (18)

where C = ^ΛM<5 1| G H i . Now let /:1R-^IR+ have its support in [0, 1], and
be such that J/(ί) at — 1. Then for each value of the large parameter ρ,
define /ρ(ί) = ρ/(ρί), and ̂ (z l5z2) = ̂ (xj /ρ(ίt) fρ(x2 - 2/ρ) /ρ(ί2 - 2/ρ).
The supports of /ιρ in z1 and z2 are disjoint, and z1 and z2 cannot coincide
with any zJ9 7^3, if the latter lie in jV and ρ is large enough. On the
support of hβ9 I
supp/ιρ,

Since supp/ίρ C J5ε, we have, from (18),

^1, |ρΓ 2-2|^l and |ρx2-2|^l. Hence, on

1^1 + \t2\

if ρ>ρ 0-8/ε.

(19)

The left hand side of (19) is independent of λ, so we may put λ=l. We
now get a contradiction with Eqs. (1) and (2), unless R = 0. By repeated
differentiation, ff*ldλN(λN~ W(λ9 z)) is a sum of terms

f Π

dkφ(z2) (20)

Here, At,... Gf are integers coming from the differentiation of t'p x'j given
by Eq. (7), and products of such expressions, several times with respect
to λ, and then putting λ=i. The important feature is that the/h derivative
of the field φ(z^ carries a "small" factor t\xs

l9 with r + s=j=jo+jl'9
and the fcth derivative of the field φ(z2) carries a "small" factor ί^x2,
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with y-\-m = k = kQ + kl. Let

dk°
flf2=

Then (20) is bounded by a finite sum of terms of the form

const |(0, φtΛ <g> 0 1) <f>(/2 (x) 02) φ(z 3) ... <*>&) Ω) (G)|

^ const ||K"0(/1®^1)^(H + /)^^(/2®6f2)JR-(/ί + /)K-.

(21)

g const I I Λ I I J I ^ I I J

by Eq. (10), where the constant and C are independent of ρ. Now

l l / ι l l ι = 0(ρ*-W2llι=0(ρk'^

\\92\\ ι = 0(ρk^),

as ρ -» oo. Thus (21) is bounded by

This contradicts (19) unless R = Q, since R is an integer. Hence the part
of W of highest rank has no poles mui—u2. Since the labels 1 and 2 were
arbitrary, we have proved:

Lemma 6. If the spectrum condition holds, and N(n — 2,2) ^ 2, then
Wn

+ is a polynomial

6. The Consequences of Positivity : the Proof Completed

The idea of this Section is that the tensor of highest rank, W + ,
dominates the positivity condition on the Wightman functions, for large
λ, and so satisfies positivity by itself. We also show that no polynomial
other than a constant can satisfy the positivity condition, so that W +

of Lemma 6 is a constant.

Lemma 7. Let F(z1,...z2n) be a symmetric polynomial of 2n ίwo-
vectors z1 ? ... z2π, satisfying

a) $F(zl,...z2n)f(zn,...Zl)f(zn+l,...z2n)d2zl...d
2z2nm

b) F(z1,...z2a) = F(zl + a,...z

Then F is of degree zero.
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Proof. Regard F as a function of z1 - z2, . . . zn_ 1 - zn\ zn + ί - zn+ 2, . . .
... z2«-ι — z2n, and the other two variables zn and zn + 1 in the combina-
tion zn-zn+ί. Thus, for any fe ^(IR2(M~ 1}), and h e ̂ (IR2), we have

l F ( f ® f ,zn-zn+1)h(zJh(zn+1)d2znd
2zn+ί^Q.

So, for fixed /, F(/® /; zn — zn + x) is of positive type, but is a polynomial.
Bochner's theorem then implies that it is independent of zn — zn+1. By
polarization, F(f®g\ zn — zn+ί) is independent of zn — zn+ί. Hence
F(zί — z2, ... z2n-ι — Z2n) is independent of zn — zn+1 when zl — z2, ...
. . . z t t_ ! - zw, zn+ ! - z^ + 2, . . . z2n_ l - z2n are held fixed. Regarding F now

2n fip

as a function of z l 5 . . . z2n, the above result implies that dF = £ — — dz^
i ^zj

is zero if dzl = ••• = dzn, dzπ + 1 = ••• =dz2n, but no other restrictions are
π 3F

placed. Hence ]Γ — — = 0. By symmetry, the sums of every n gradients of
i vzj

F are zero. For n > 1, this implies that any two gradients of F are equal,
and hence that they vanish. For n — 1, Bochner's theorem gives the result
immediately. Π

Lemma 8. // N±(2n- 2, 2) ̂  2, ί/zerc N* (2n, 0) - 0.

Proof. By Lemma 6, the part W + of W2n of highest tensor rank is a
polynomial. By Lemma 7, it is not positive semi-definite unless of zero
degree. Hence there exists a function /e^(lR2") such that W + ( f ® f ]
= -(5<0. Then ]/I7 + (/Λ®/^)- - ;*£, where N=_N(2n,0). Now, if
N>0, W+ dominates W2n as λ->αo, so that W2n(fΛ®fΛ}-+ - oo as
/l-»oo. This violates positivity. Hence N + (2n, 0) = 0. Similarly, by con-
sidering W~ and letting λ-*0, we prove that N~(2n — 2, 2)^2 implies
JV~(2n,0) = 0. Π

Theorem. // the spectrum condition holds, all the Wightman functions
are Lorentz invariant.

Proof. If n is even, we combine Lemmas 8 and 4, and apply induction,
starting with n—\. If n is odd, this result and Lemma 2, gives the result
in that case too. Π
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