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Abstract. The unitary (pseudo unitary) time-evolution operator for a particle with spin
half (zero) in an external time-dependent electromagnetic (scalar) field is used to generate
a Bogoliubov automorphism on the algebra of the free in field. For the case of an electric
external field (scalar field) a finite expression for Ω0Ώί is given and the S-matrix constructed.
The latter is unitary and implements the Bogoliubov automorphism. Theorems by Shale
and Stinespring are rederived.

1. Introduction

Numerous papers have been devoted to the subject of quantum
theory of particles with spin zero and one half in external fields. The
formal aspects were well developed twenty years ago in particular
through the work of Feynman [1], Salam and Mathews [2], and
Schwinger [3]. A mathematical treatment of the theory is the purpose
of this article.

Several authors have prepared ground for such an attempt. Capri [4]
explains lucidly the "reduction to a onumber problem" (Section 4 and 5),
Boongarts [5] treats at length the case of a spin 1/2 oarticle in a stationary
external electromagnetic field. Verifying the assumptions of a theorem
by Shale and Stinespring [6] he proves existence of a time evolution
operator in Fock space under conditions essentially the same as the ones
in Theorem 6 for the case of time dependent external fields. In a previous
paper [7] the existence of an out vacuum in the Fock space of the infield
is discussed and assumptions necessary for the out-vacuum to exist are
verified for the first model to be analyzed below (Section 4).

In the second and the third section the classical theory of a spin
zero and spin 1/2 particle in an external field is reviewed to the extent
necessary for quantization. Specifically we consider two models, the
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first one being characterized by the Cauchy problem

{Π+m2)φ{x)=V(x)φ{x)

V{t,x) = 0 for | ί | > Γ (1.1)

φ{t,x)φin{t,x) for t<-T,

the second one by

( — W+m)ψ(x) =Λ(x)ψ(x)

Aμ(t,x) = 0 for | ί | > Γ (1.2)

ψ(U x) = ψin(t,x) for t<-T.

Pseudounitarity is proved for the time evolution operator of the spin
zero particle (Theorem 1). The c-number time evolution operators are
then used to construct automorphisms of the free field algebras (reduction
to c-number problem). They solve the q-number Cauchy problem
(Theorem 2 for the first, Theorem 5 for the second model) and preserve
the canonical structure (Bogoliubov automorphisms) due to pseudo-
unitarity respectively unitarity of the classical 5-matrix. For both
models an explicit form of the out-vacuum is given (Theorem 3, respec-
tively Theorem 6) under provisions having been established previously
for the first model. They are shown to be satisfied for the second model
in case of an external electric field only, A =0 (Theorem 7). A peculiarity
of the fermion field has to be coped with, already familiar from the case
of finite degrees of freedom (remark preceding Theorem 6). The vacua
are then used to construct the S-matrix which is unitary. This is explicitly
shown for the first model. The argument depends crucially upon pseudo-
unitarity (not just pseudoisometry) of the classical S-matrix. Existence of
a unitary ^-matrix for both models could have been deduced directly
from Theorem 4 respectively Theorem 7 and results of Shale (spin zero)
respectively Shale and Stinespring [6] (spin one half). The latter in the
formulation of Araki [8] is compared with Theorem 6 (Section 5).

Finally we remark that the discussion of the first model could
probably be shortened considerably making use of results by Kristensen,
Mejlbo and Poulsen [9].

2. Classical Theory for Spin Zero Particles

In order to discuss the Cauchy problem for a classical system it is
useful to rewrite (1.1) in terms of particle-antiparticle amplitudes a and b.
Simultaneously, we introduce some notations. The amplitudes a and b
are linked to the c-number field φ and it's conjugate momentum π in the
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well known manner,

ω\ 112 { 1 \ 1 / 2\ , .{ \1/2

2) Ύ '\2ω
(2.1)

γ/2
π

where - denotes complex conjugation and ω is the frequency operator,
Co = (-A + m2)1'2. The symbol -f will be used for the adjoint of operators.
The Cauchy problem (1.1) can be rewritten in the form of a Schrodinger
equation

φ(Ux) = φ,Jt,x) for t ^ - T

φ is a two component function φ(x) = ίτ and H a 2x2 matrix

operator

ί
/2 { 2 3 )

The Hubert space ξ> we are dealing with is the direct sum of two spaces of

square integrable functions L2

% = L2(d3x)®L2(d3x).

The domain D{H0) of the selfadjoint operator Ho is most conveniently
given in the space of Fourier transformed functions f>

D(H0) = I2 {d3p(p2 + m2))®!2 {d3p(p2 + m2)). (2.4)

The physical charge of a field can be used to define an indefinite

scalar product in §

lφ,φ-] = iμ3xφ(x)dlφ(x). (2.5)

Introducing the metric tensor g

it can be written in terms of the positive definite scalar product

(2.7)
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H is pseudo-selfadjoint with respect to g

(2.8)

The following theorem summarizes results which will be important in
the sequel

Theorem 1. Let V be a testfunction in S and V(t, •) = 0 for \t\>T.
Then there exists a time evolution operator U{t2, ί j , norm continuous in
t1eR and t2 e R, such that

i) u{t2,t,)u{tut0)=u(t29αt/(ί,o = i9t2>tx>t0.
ii) φ{t)=U(t9tQ)φ(t0), φ(to)eD(Ho) is a solution of the Cauchy

problem (1.1) with data φ(t0).
iii) U(t0, ίx) is pseudo-unitary with respect to the physical metric g,

UiψJgU + itotJ = U + (t0, tJgUito, tj = g.
iv) U induces a causal propagation, i.e. if φ(t0) has support in the

complement of {x | |JC| ^ R} then φ(t\ t ^ ί0, has support in the complement
of{x\\x\ + \t-t0\^R}.

All but statement iii) are standard results [10]. We will now give a
proof for iii) which at the same time reproduces i) and ii) using the
concept of the product integral [11]. Since Ho is selfadjoint it is appro-
priate to investigate the Cauchy problem (2.2) in the interaction picture

idtφ = 11^)4)
(2 9)

φ(t, x) = φ in(0, x) for t S ~ T

H1{t) = giH°tH1e-iHot.

We first show the following statement leading immediately to a proof of
Theorem 1

Lemma 1. Under the assumptions of Theorem 1 there exists a time
evolution operator U(tl9t2) such that

i) U(ί 2ί!) t/(i l 910) = U(t2, t0), U{t, t) = 1, t 2 ^ tx ^ t0.
ii) φ(t) = ϋ(U - T) φin{0, x) is a solution of the Cauchy problem (2.9).

iii) ϋ is pseudo-unitary.

Proof. Existence of U{tl912) is guaranteed [12] by the statement of the
following

Lemma 2. Under the assumption of Theorem ί Hx (t) is a bounded
operator in § and norm continuous in t.
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Proof. 1. H^t) is bounded: It is sufficient to prove that Hx is bounded.
However, each term v in the matrix operator /^ is a bounded operator
on L2(d3p) from which the assertion follows.

2. [HQ,/-^] is bounded: It is sufficient to prove that ω~1/2Vω1/2 is
a bounded operator on L2(d3p). Consider the expression

(/, ω~112 Vω1/2g) = J d3p d3qf(p) F{p, q) V(p - q) g(q) (2.10)

where we denoted by F the function

F{p, q) = {p2 + m2y1/4(q2 + m 2 ) 1 / 4 . (2.11)

The right hand side of (2.10) can be estimated in the following manner

\$d*pd3qf(p)F{p,q)V(p-q)g(q)\

^(\d3s\V(s)\sυp\F(p,p-s)ή \\f\\ \\g\\ .
However since

sup|F(p, p-s)\^ Am2 + s 2

P

we get
\(f,ω-ίl2Vω1/2g)\S const||/|| ||^|| . (2.13)

Combining the last inequality with

||ω-i/2Fωi/2|| = \{f,ω-ll2Vω1/2g)\

the statement follows.
3. i?± (ί) is norm continuous: Let φ be an element in D(H0).H(t)φ

is strongly differentiable

i e l H ^ H Λ e φ

+ (operator uniformly bounded in t)φ .

Integrating this equation we get

-f (operator uniformly bounded in ί) φ .

Having just proved that [iί 0, H{] is bounded we can estimate the right
hand side of (2.15) as follows

^ ( t 2 - ί i ) const | |ψ | | . (2.16)
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Since D(H0) is dense in § the last two relations imply the statement made
in Lemma 2

\\H{t2)-H(t1)\\ S\t2~k\const. (2.17)

In continuation of the proof of Lemma 1 we define the product integral
over Hx (t) which exists as limit in the norm topology due to Lemma 2 as
we mentioned earlier:

U{t2it1) = f[{ί-iH1{t)dt)= ]imΰN(t29t1)9 (2.18)
t N-*oo

ϋN(t2,t1) = e-u'"ii'2)...e'iΔt'tl{tι+Δt) (2.19)

Defining the bounded operators

U{t2, tx) = e~iHot2 ϋ(t2, tx)eiH^ (2.20)

one readily checks the first two statements of Theorem 1.
Turning to the last statement of Lemma 1, we notice the following:

The same way as U has been defined as the norm limit of UN the adjoint
U+ is the norm limit of

JJ+ __ eiΔtH1{t1+Δt) ^ eiΔtHx{t2) ^ (2.21)

Since u + gUN = g= UNg U+ (2.22)

as a consequence of the definitions (2.15) and (2.18) and because of the
norm continuity of the product operation for bounded operators on a
Hubert space U is shown to be pseudo-unitary

U+gϋ=ϋgU+=g. (2.23)

However, this proves the third statement of Theorem 1 too, due to (2.20).
Concluding this section we should like to draw attention to two facts:

First, the classical S-matrix Scl mapping free incoming states for time
t = 0 onto free outgoing states at the same time is pseudo-unitary,

Φm = sΛn (2-24)

This is just a special case of the pseudo-unitarity of U because of

Scl = U(T, - T). (2.25)
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Secondly, one could replace the product integral in (2.18) by a Dyson
integral

ϋ(t2, ίx) = Texp - i J dt Hγ (t) (2.26)
fi

defined as a power series and converging in norm due to Lemma 2.

3. Classical Theory for Spin 1/2 Particles

In analogy to the previous case we rephrase the classical Cauchy
problem (1.2) in terms of particle-antiparticle amplitudes yt(x, s), bt(x, s),
(interaction-picture). Let ψ(x) be a solution of (1.2) in the Hubert space § 1 / 2

(ψ,ψ)= $d3xψ(x)ψ{x).

Traditionally, ψ is decomposed into plane waves [13] (tacitly assuming
summation over s, s = 1, 2)

2π) J "\ω(p)J (3.2)

• {e-ipxu{p, s) at{p, s) 4- eipxυ(p, s) K (p, s)).

The vector φ

φ(p) = (•=-* . I (3.3)

is an element of § 1 / 2

(φ, φ) = Σ J d3p(|αf(p, s)\2 + |5f(p, 5)|2) = (ψ, ψ). (3.4)
s

x) can be rewritten in terms of the bounded operator

^)ll2(u(-ids)υ(ids))

in § 1 / 2

/m\ 1 / 2

— (u(- id, s) at(x, s) + v(id, s) bt{x, s)) (3.5)
ω j

where we used the abbreviations

(at(x,s)\_( 1 \ 3 / 2

f , - i p > - M
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Eq. (3.5) can be inverted using well known orthogonality relations among
the plane wave solution of the Dirac equation [13]

m\ 1 / 2 _
u(-id,s)ψ(x)\

f υ(id,s)ψ(x)

The Cauchy problem (1.2) in terms of particle antiparticle amplitudes and
the interaction picture has the form

idtφ = Ht (t)φ; φ{t) = φin(0, x\t<-T

r~ i H t τ τ iHt r i H t ± ( a t ( x , s ) \ (3.8)
HΛt) = eιHQtHΛe~ιHQt φ = eιHotφ=\J n

\bt(x,
ω 0
0 - ω

m\ 1 / 2 (ύ{—id,s)Λu( — id, s') ύ( — id, s)Aυ(iδ,s')
TT

1"\ω) \v(id,s)Λu(-id,s') v(id,s)Av{id,s/) )\ω

Notice the close analogy to the previous case (2.9).
We will refrain from proving anything concerning the solution of the

Cauchy problem (1.2) and (3.8) since it would parallel to closely the
reasoning in the previous case (Lemma 1). Let us however, state the
following result:

Lemma 3. Let Λμ(x) be a test function in S(R 4) and Aμ(t, x) = 0 for
\t\ > T. Then there exists a time evolutipn operator U(tί912) such that

i) ϋ(t2j1ιϋ(tuto)=ϋ(t2jo\ 1/(^0 = 1, t 2 ^ t l ^ t 0 .
ii) φ(t) = U{tx - T) φin(0) is a solution of the Cauchy problem (3.8).

iii) U is unitary.

The above statement implies through (2.20) again a theorem anal-
ogous to Theorem 1. Notice however, that pseudo-unitarity has been
replaced by unitarity due to the positive definite charge in a c number
theory for particles with half integer spin. The S-matrix is defined as
previously (2.25). Again the norm continuity of Hx (t) can be shown and
allows U to be written in terms of a product integral or a norm con-
vergent Dyson integral.

4. Quantum Theory for Spin Zero Particles

The onumber solution of the Cauchy problem (1.2) can be used to
generate a time evolution automorphisme αf, teR, on the algebra
95(5) of the free in field thereby generating the solution of the g-number
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Cauchy problem (reduction to c-number problem). Some properties of

α are compiled in

2. Provided the statements in Theorem ί hold the mapping a t.

= U(t)φin(x) (4.1)

generates an automorphisme of the algebra of bounded operators 93 (g) in

the Fock space g o/ tfie ./ϊeM aί ί = 0. /n particular

Φo*(x) = SGlφin(x)9 (4.2)

a t /jas rfte following properties,
i) (aί^in) (*) restricted to the linear sub space D i n of states with smooth

wave functions and only finitely many particles

*>m = {( Π Π <ίfDbMΩ'}
l \m=l«=l

fu9i test functions; M,NeZ+\ (4.3)

is the unique solution of the q-number Cauchy problem (2.9).
ii) at is local; i.e. the field φ{x) defined in terms of the particle operators

a and b in φ(x) (2.1)

φ(x) = (atφin) (x) = e~iHot U(t) φjx) (4.4)

is local,

[φ(x%φ(xrί] = 0 if (x-x f <0.

iii) af is a Bogoliuboυ automorphisme (preserves canonical structure).

Preceding to the proof of Theorem 2 we wish to make two remarks:

i) It is well known that 93 (g) has the two alternative representa-

tions [14]

în(̂ )-bA(fl) i y? g r e a i t e s t functions}" (4.5)

= {...feL2,geL2 real}"

where " denotes the double commutand.
(ii) \3nάer the piomήori oϊ statement i) m Theot^m 2, φ(x) (4Λ) is the

solution of the ^-number Cauchy problem (2.2) on £ i n .

Proo/ o/ Theorem 2. 1. αf is an automorphisme of 93 (g): According to
the corollary of Theorem 1, C/(t) maps ξ> onto §. Together with (4.5) this
shows that αt is an automorphisme.

10 Commun math Phys , Vol 25
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2. octφin is a solution of the g-number Cauchy problem: For any
F e § and fixed x e D i n

is continuous [15]. Therefore, the second statement of Theorem 1
implies

= φin(H?ϋτ(t)F)x

which proves the assertion up to the verification of the initial data, which
however, is trivial.

3. atφin is the unique solution of the q-number problem: Let x and F
be defined as above and let ψt be a solution of the Cauchy problem on T)in.
Then the differential equation for atφin and ψt implies

(octφin — ψt)x = constxVf e R .

However, the initial condition force the constant to vanish.
4. αt is local: It is not difficult to convince ones self that the commu-

tator [_φ{x\ φ + (x')] is a onumber. Therefore

c(x) = [ψ(x), φ + (t'J)-] = <Ω[ψ(x), ψ(ί',/)]Ω> V/e

But c(x) is a solution of the differential Eq. (1.2) hence a smooth function
in t and vanishes for t = t' and JC outside the support of /. By Hugghens
principle for the c-number solutions of (1.2) [10] c(x) has to vanish for
x space-like to the set {(£', xf) \ x' e supp/}.

5. αf is a Bogoliubov automorphism: We are going to show that due
to the pseudo-unitarity of U (corollary to Theorem 1) at(x) and bt(x) are
canonical,

Cy,(Λ«,+(0)] = (f,g), (4.6)

\bmKia)Λ = (f,g) (4.7)

and all other commutators will vanish. Due to (4.1) the first commutator
is given by (we suppress the arguments in U(t, — T))

[αJLtt /) + bίίϋάf), <({/+ g) + biαφΐ2 fif)] = (/, (ϋn U^-U, 2 ϋ+2)g)

= W,g) (4.8)

For the last step we used (2.23) and the canonical structure of the free in
field φin. All the other commutators can be computed along the same
lines.

Next we have to discuss whether the automorphism α of the Fock
space algebra 93 can be unitarily implemented. A necessary and as it
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can be shown also sufficient condition for the existence of a unitary
operator U(ί), t e R, such that

(£) (4.9)

is given in Theorem 3. The proof will be constructive and therefore of
some practical interest.

Theorem 3. // ΰ(t) is pseudo-unitary the operator

W'^ϋnHtiUuit) (4.10)

is well defined. In particular if L(t) is Hilbert-Schmidt (H.S.),

ί = 1 i = l

{/;}> {Qi} e a c n orthogonal basis of Z^,

the nontriυial vector χ,

χ = exp - X λ{at K Ωin, yt = α^l/J, fef = ftin^) (4.11)
i

is up to normalization and a phase the unique vacuum Ωt for atφin. The
time evolution operator U(t) acting in 5 and in particular the S-matrix

S = U(Γ) (4.12)
is unitary.

Remark: If L(t) is H.S. the operator

M ( ί ) = - ( S 1

+

1 ) " 1 S ί 1 (4.14)

is H.S. too because the class of H.S. operators is a + -invariant ideal in
the set of bounded operators 33 (L2) in L2.

Proof. 1. The operator L(t) is well defined: According to Theorem 1
U is pseudo-unitary (7.23), in particular

Hence UnUn^l (4.15)

which forces the kernel of ϋn to vanish. Un is therefore invertible and
the inverse U ^ 1 is defined on the range R(ϋn) of Un. The next argument
shows that the range of Un is in fact the hole space L2. Assume that / is
in the orthogonal complement of R(Un):
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Hence / is in the kernel of U^. However, from pseudo-unitary one
concludes „ „

^ii^i2^i+2 + l . (4.16)

By the same argument as before / has to vanish.
2. The Aj's are strictly smaller than one: Again because of (4.16) it

follows that + ~_λ ~ ί +

and this implies λt g 1: Let Λ0 = 1 and / 0 be the corresponding eigen-
vector of LL+. Eq. (4.17) implies

Neither U11

1 nor Ull

1+ can have a nontrivial kernel because UίU U^
and their inverses are bounded and everywhere defined.

3. χ is a well defined vector in the Fock space of the in field: Consider
the sequence {χN},

We claim {χN} is a Cauchy sequence. Let M and JV be natural numbers.
A straightforward calculation yields

Π i ;2 Π Ί JT
i = i 1 — Aj Ϊ = 1 1 Aj

Hence {χN} is Cauchy if and only if the infinite product

is finite. However according to a lemma of υ. Neumann [16] this is
equivalent to L being Hilbert-Schmidt, Σλf<oo.

Remark. A slight generalization shows that the sequence of operators

Q P N

i=lj=l s=l

P, Q, mi9 Πj positive integers

converges on the dense linear subspace (£in C $,

P Q \ • }

Π Π aΐmι^n3^in) P> Q> mh nj positive integers>. (4.19)

4. χ is annihilated by at and bt
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We check only the first one of the two equations. at is given in terms of the
in field as follows (4.1)

at{f) = a i n([/iϊ/) + Kn(U?2f) . (4.20)

Using (4.15) and (4.16) one proves that U^ is invertible and U+~ι has
range R(U^ ~ι) = L2 the same way we proceeded to prove the analogous
statement for U. Hence it is sufficient to show

atΦn^fdx = °> fi a nY element of the basis {/J . (4.21)

Since the following relations hold on (Sin

a,(Uι+Γ1fi) = ai + λibΐ (4.22)

we are left with the verification of

(ai + λιbt)χ = 0. (4.23)

Due to (4.13) Eq. (4.22) reduces to the well known relation

(α; + ; ^ ;

+ ) e - A ^ i > +ί2 i n = 0. (4.24)

5. The time evolution operator U(ί) is unitary: Define the linear time
evolution operator U(ί) on (£in (4.13) as follows

U(t)Ω in = Ω,

(4.25)

α* stands for a or a +. It is readily seen from the canonical structure of
α in, bin as well as αf, bt that H is a densely defined isometry on g :

U+(t)U(t) = l. (4.26)

It remains to be shown that U is actually unitary or equivalently, that
the range R(U) of U is dense in g.

Let us first show that there is an expression similar to (4.11) for Ωin

in terms of at, bt and Ωt. Recalling that under the assumption of the
theorem M (4.14),

M = Σμihi®ki

is H.S. We define on 6rin

al = at(ki)

b\ = bfa) (4.27)
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ξ is well defined in g the same way as χ (Section 4 and 5) and one shows
that ξ is annihilated by yin, bin. Hence the vector Ω[n

Ω[n = {ξξyil2ξ (4.28)

differs from Ωin at most by a phase.
Denoting by x an arbitrary element in g there is in any ε-neighbor-

hood of x a second element y which can be generated from Ωin by a finite
application of yin, bin

y= Σ c{mi,nJ)atn(ϋή1h1r...a+^
finite
sum

-.'KnΦϊlKT'Ωin (4.29)

mt, pi positive integers, i = 1,..., s j = 1,..., t.

\x-y\<ε.

It suffices to show that y is in the closure of the range R(U), of U(ί) which
is in turn the case if any vector

z = a-^ϋn1 h,r ... a+tfΰ1 hf b+JU^ k^ ... fc+fe k,ΓΩ[n (4.30)

is contained in R(U). To simplify the algebra we consider the case
m{ = 0, ί = 1 ... ί, and make use of the identity on £ i n

^ ( f / i V Λ ^ α r + μ / b ί . (4.31)

Now z can be rewritten

/2 Π (a'ι+ + S W ι exp - Σ M + ̂ ;+ Or (432)

and is therefore (Section 3, Remark (4.18)) the strong limit of the
sequence {zN}

*N = (χχΓ 1 / 2 Π Wι++ϊιbT Π ^" μ ι β ί + ft;+Ot- (4.33)
1 = 1 i = l

zN is the limit of the sequence {zNM}

z»M = iXXYm Π (αί+ +fti>ίΓ ft ( Σ ί*')"1 {-wtKf)Qt. (4.34)
1 = 1 i = l \k = 0 J

Hence the diagonal elements wN = zNiV are converging towards z. But
wN is by construction an element in the range of U(ί).

According to Theorem 3 it is sufficient for existence and uniqueness
(up to a phase) of the time evolution operator U(ί) and in particular of the
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S-matrix to investigate the operator L(t) and to prove L(t) to be H.S.
That this is indeed the case we will quote without proof [7]:

Theorem 4. Let U be the operator of the corollary to Theorem 1. Then
the operator

L(t) =ϋi-1

1 (t)U12(t) (4.35)

is Hίlbert-Schmidt.

Remark. Due to the fact that Un and ϋ{[1 is bounded the condition in
Theorem 4 can be replaced by

(4.36)

5. Quantum Theory for Spin 1/2 Particles

As in the previous case the solution of the c-number Cauchy problem
can be used to generate an automorphism oct on the C*-algebra & i n(§ 1 / 2)
generated by creation and annihilation operators of the in-field,

Φin(f) =
a(fi) (5.1)

Q i n(§i/2) is isomorphic to a selfdual canonical anticommutation relation
{SDC) algebra &SDC(ft, JΓ) [8] defined as follows: Let ft be a complex
Hilbert-space

1 = 1 s =

and Γ the antiunitary involution

ΓF = (5.2)
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The algebra QS1)C(Λ, Γ) is generated by operators B(F) given in terms
of a free spin 1/2 field

{
Ψ { X ) = ^ d 3

= j i 3 p / i f e s ) Φ , s ) + jd 3p/ 2(p,S)b + (p,s) (5.3)

+ J d3pf3(p, s) a+ (p, s) + f d3p/4(P> s) b(p, s).

B and it's adjoint have the following properties characteristic for generators
of an abstract SDC algebra:

i) B(F) is linear in F.
ii) {B{F)B+ (G)} = (G, F). (5.4)

iii) B + (F) = B(ΓF).

There is a subspace of Λ ίsomorphίc to § 1 / 2 with the projection
operator P , .

PF-π, • ( 5 5 )

One checks readily that

ΓPΓ + P=l (5.6)

which is the defining property of a basis projection [8].
Having defined B in terms of ψ one can consider B in the Fock

representation of ψ with vacuum Ώ, and calculate the two point func-
tion, it turns out that

{ΩB+ (F) B(G)Ω) = (F, PG). (5.7)

In particular

(Ω, B(F) B+(G)Ω) = 0 VGePfi . (5.8)

The last equation is the defining property of the Fock state on £}SDC(ίt, F)
in the terminology of Araki.

The ^-number Cauchy problem is now solved using the results of
the corresponding c-number problem as in the previous case (Theorem 2).

Theorem 5. // Λμ(x) are test functions, Aμef{R4~\ and Λμ(t, x) = 0
for [t[ > T the mapping at defined by

a(x sV

U(t):=U(t,-T)
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generates an automorphism of &in(§i/2) wiίft the properties
i) atφin(x) is the unique solution of the q-number Cauchy problem (1.2).

iί) at is local
iii) at is a Bogoliubov automorphism.

Proof 1. ott is an automorphism of Q i n(δi / 2). This is an immediate
consequence of the well known relation (notation (5.1))

\\al(f)\\^(f,f%\\b!n(g)\\^(g,g) (5.10)

and of Lemma 3, setting forth among other statements that 17 mapps § 1 / 2

onto § 1 / 2 .
2. oίtφin(x) is a solution of the g-number Cauchy problem. Due to

(5.10) and the second statement of Lemma 3 one gets

= φin(H[(t)U(ήf)

where ΐlτ denotes the transposed operator of U. It remains to check
the initial data, however this is straightforward.

3. The proof of uniqueness and locality parallels the corresponding
statement for the case of spin zero particles and will not be given here.
We are left with demonstrating the last statement of Theorem 5, αf is a
Bogoliubov automorphism,

{at(f\ < (g)} = (/, g) feL2®C\geL2® C2

{bt(f)X(g)} = (f,g).

Concentrating on the first equation we get due to (5.9) for the left hand
side

^U^g)} = (/, (Un 17+ + U12U^g)

= (/̂ ) (5.13)

The last step makes use of the canonical structure of the free spin 1/2
field and unitary of U (Lemma 3). All the other commutators are
computed the same way.

Now we have to discuss whether the automorphism at of Q in(Si/2)
can be unitarily implemented in the Fock space g i n of the in-field.
According to a theorem of Shale and Stinespring [6, 8] it is sufficient
for a unitary operator U(ί)

n ( / ) U W

bt(f) = U(t)bin(f)U-1(t)

to exist, that Ul2 is a Hilbert-Schmidt operator in § 1 / 2 . l ί(ί) is unique up
to a phase due to the irreducibility of the Fock representation of
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Q i n (§ 1 / 2 ) However we are going to impose some more stringent assump-
tions on U in order to get a closed formula for the vacuum state Ωt

of at and bt analogous to (4.11). One can not expect the condition
II ^i 2II HS < °° t o be sufficient for Ωt to be of the form (4.11) as the following
arguments shows.

Let a and b be two fermion operators and Ω their vacuum

aΩ = bΩ = 0

{a,a+} = {b,b + } = l.

The Bogoliubov transformation

aβ= acosβ + b+ sin/?

+ (5.16)

bβ = — aύnβ + b cosβ

can be implemented by the unitary transformation

U(β) = exp-β{ab-b+a+)

aβ=U(β)aU-1(β) (5.17)

bβ=U(β)bU-1(β).

The vacuum Ωβ can be computed and turns out to be

Ωβ = (l + tg2β)-1/2e-tsβa+b+Ω (5.18)

which makes sense only for |tg/J| + oo. Notice that (5.18) is a simple
expression in terms of tgβ but not in β. It is this reason that makes
the formula superior to

Ωβ = e-β{ab~b + a+)Ω. (5.19)

The following theorem contains the generalization of (5.18) to the
case of a field.

Theorem 6. Let U be a unitary operator in § 1 / 2 = L 2 (d 3 x)®C 4 and
ε > 0 such that

\\Un-l\\<l-ε
1 J1 " (5.20)
Hl/l2llHS<β

where || || (|| ||#s) denotes the operator (Ήilbert-Schmidt) norm in
L2(d3x)(x)C2. Then the operator

L=U1-1

1 U12

is a well defined H.S. operator,

L= Σλifi®gi,Σλf<aol>λi>0
, (5.21)

{//}? {#;} e a c n orthogonal basis in L (d3x)®C
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and the nontrivial vector χt

χt = exp — Σ Xta^ bf Ωin, at = ain(fy, bt = bϊn(g^ (5.22)

is up to normalization a vacuum Ωt for atφin

Qt = {XtXt)~1/2Xf (5-23)

Ωt is unique up to a phase.

Remark. Proceeding as in the case of spin zero one could make use
of the explicit form of Ωt and construct the unitary time evolution
operator U(ί).

Proof 1. L is a well defined H.S. operator and 0^λt < 1: ΰn has a
bounded inverse

HL/ΓiΊl^ 4" ( 5 2 4 )

and therefore

2. χt is well defined and nonvanishing: Consider the sequence {χN},

XN= Π β " l ί f l i + b i + Ω i n (5-26)
i = l

In analogy to the spin zero case we claim that {χN} is a Cauchy sequence.
A straightforward calculation yields:

M

γi(i + λf)-ll{i + λf)
(5.27)

However the infinite product
00

converges if and only if Σ λf < oo [17].
3. χt is annihilated by at and bt\ We concentrate on the second of

the two relations:

- Σ λ{a^ ftf

+ Ωin = 0, (5.28)

- Σ ^ α + 5 + Ω ^ O . (5.29)

Calculating formally only because the necessary justifications are simple
to provide due to the last paragraph, we compute first

' ΐ2f)e'λtai+bi+ (5.30)
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which leads to

R. Seiler:

= ( e x p - . (5.31)

The second factor on the right hand side can be computed using the
unitarity relation

and yields

a+(LU2

+

2f)=-a

(5.32)

(5.33)

proving (5.29).
4. Uniqueness of the vacuum can be derived either by applying the

same method as in the previous case or making use of the theorem by
Shale and Stinespring [6].

The remaining part of this section will be an application of Theorem 6
to the automorphisme ott of Q in(§i/2) defined by (5.9). As a first step
we are going to compare the assumptions made in theorem 6 with the
ones in the theorem of Shale and Stinespring (formulation of Araki) as
anticipated previously. The isometry of QSDC(5^, Γ) and £^(§1/2) induces
in &S D C0^ Π a n automorphism corresponding to at again denoted by
the same symbol, α, is given explicitly by

= B(Ft)

Uτ(t) 0
0 U + (

(5.34)

h

The necessary and sufficient condition for αt to be unitarily implementable
in the Fock representation of QSBC(Λ, Γ) is [8]

(1-P)
Uτ(ή 0

0 U+(
< oo . (5.35)

HS

One readily verifies that (5.35) is equivalent to

(5.36)
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The first inequality is part of the assumption of Theorem 6. The second
one is satisfied provided U^1 and ϋ2

+

2 are bounded in norm, which they
are (5.20), since

u2

+

i^ϋ1-1

1ϋ12ϋ2

+

2 (5.37)

due to the unitarity relations for ϋ. Hence the assumptions of Theorem 6

imply (5.35).
Next we are going to demonstrate that under the conditions of

Theorem 5 together with A = 0 the statement of Theorem 6 is applicable,
i.e. there is a t0 > - T such that for t < t0 the assumptions of Theorem 6
(5.20) are satisfied. In fact it is only necessary to show the second in-
equality because U(t) is norm continuous and ϋ(—T)=l. The following
result reduces the proof to a discussion of Hί:

Lemma 4. Let U{t) be the time evolution operator of the Cauchy

problem (3.%) and

c(ί): = l - 2 ( ί + Γ ) sup 11̂ (5)11 > 0 . (5.38)

Then

d(t):= sup
-Γ<s<ί I

T
HS

l |t/i2(ί)llHs<c-1(ί)d(ί). (5.39)

Proof. As it has been remarked earlier (Section 3) U(t) can be
represented in terms of a norm converging Dyson series. The n-th
term of the series contributes to ϋί2 be means of 2n multiple integrals
of the form

Λ(iz, &,) = ( - 0 " j dt1{H1)iιkί...
tkfdtk(H1)12... X dtn(Hi)inkn

-T -T -T

Zj, ki = 1, 2, I = 1 ... n .

The H.S. norm of A(iι, kt) can be estimated as follows

sup \\Hι(s

Hence

\\U12(t)\\HS^2 Σ \Άt+T)( sup 11̂ (5)11)1 " " ^ ( ί ) . (5.40)\
π=tL

For t being sufficiently close to - T(5.38) the sum converges and yields

p
T<s<t
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Notice that c(t) obeys a Lipschitz condition at t = —T due to it's
definition

\c(t) - ί f g const (t -f Γ), t^-T. (5.42)

For the rest of the proof it is therefore sufficient to demonstrate the
continuity of d(f)at t= — T.

Lemma 5. For any ε>0 there exists a to> — T such that

d(t)<ε V-TSt^t0 (5.43)

provided the external field is merely electric, A=0.

In accordance with the previous definition (3.8) the operator Hx has
the following representation in momentum space

m \ 1 / 2 fe

iω{q)t 0

ύ{-q,s)A{q-p)u{-p,r) ύ{- q,s)Λ{q- p)v{ + p,r)\

v(+q,s)A(q-p)u(-p,r) ϋ{+ q,s)A(q- p)v{ + p,r))

m y/2

A straightforward calculation using the relations

2^w(p, S)M(P, S)= —

__m^m (5.45)

- Σ v{p, s) v{p, s) = ^ m

yields

} dt(Hx
2- r HS ω(p) ω(q) J

5 dtdί' Traced -p)

_ p)l£+£\ '

The trace can be easily computed using well known rules,

2 , d3v d3p s

dt(Hh 12
-T HS

where (, )e denotes the Euclidian sclar product. A power counting
argument shows that the H.S. norm can not expected to be finite for
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arbitrary external fields. For an electric field only (5.47) specializes to

HS = i MpJ Ί m A dtdfI°(t'P ' q)Aθ(t'> P - q) (5.48)

A partial integration in t and t' leads to

hi
HS

= $d3

Pd
3qI1(p,q)J(s,p,q)

l{P'q)
PQ~m

ω(p)ω(q)(ω(p) + ω(q))2

J{s,p,q):= \φ)\2+ \dtdt'a{t)κ{t')e-
o

(5.49)

dt<x(t)e?i(ω(p)+o)(q)t

α(s):= ]dtA0{t, )

where we set T — 0 for convenience. Since lλ (p, <̂) is bounded and J(s, p, q)
converges pointwise to zero for s->0 it is sufficient to find an integrable
function majorizing I^p.q). For J we use the crude estimate

J(s, p, qr) ̂  const, sup \A{t,p-q)\2. (5.50)

It is therefore sufficient to discuss the integral

μ3pd3q\A(t,p-q)\2I1(p,q)=μ3r\A(t,r)\2$d3pIι(p,\p-r\). (5.51)

h(P > \P — r\) i s smaller than 72(p, r)

ω(p)ω(p -r)-pr- ω2(p)
I2(P,r)' = -

Integrating over angles dΩ(p) results in

(5.52)

(6pή-1 [(m2 + (p + r)2)3/2 - (w2 + (p - r)2)3/2] - |

1/m2 + (p - r)2 (|/m2 + p2 + |/m2 + (p - r

(5.53)

r) 2 ) 2

One readily verifies that the above expression is integrable in p because
in the numerator the dominant parts cancel. A straightforward analysis
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leads to

J d3pl2(p, r) ^ const (r + 1). (5.54)

Hence

sup \A{t9p-q)\) I2(p,q)
0<t<s

is integrable and majorizes by construction the integrand IXJ. Hence we
proved the following result:

Theorem 7. Provided the assumptions of Theorem 5 are met and A = 0,
there exists a constant to> — T such that inequalities (5.20) are satisfied
for -T^t^t0.

Finally we are going to indicate how the previous argument has to
be altered such as to give a proof of existence of a unitary S-matrix
under the assumption of Theorem 5. For t0 > t the S-matrix can be
constructed as in the case of spin zero (4.25) as has been shown earlier.
In order to construct the S-matrix by a finite number of similar steps
one has to prove that the lengths of the intervals on the time axis can
be chosen uniformly in length. The key to this statement is the following
strengthened version of Lemma 5:

Lemma 6. Provided the external field is purely electric, A = 0, d(t)
vanishes att— — T as (t + T):

d(t) = const (t+T).

The proof of Lemma 6 follows the one of Lemma 5 up to inequality (5.5)
which is replaced by (T= 0)

J(s,p,q)^s2const sup \A(t,p-q)\2+( sup |gradpA(t,p-q)\2). (5.55)

Hence

hi

2
, 2 Λ , 2Ss2χ2 sup P ( ί , )||? (5.56)

HS

where || ||x denotes the Sobolev norm || | | 2 = || | | 2 + llgrad | |2 and
|| || the usual L2-norm. The constant χ is independent of A and s.
Combining (5.56) and (5.42) leads to

2χ sup ||y4(5, )lli

which shows that indeed the lengths of the intervals covering the set
(— T, + T) can be chosen uniformly.
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Remark: In x-space Eq. (5.46) reads

ί
2 Jidx-m

HS

= -m2μ3xd3y Trace A(x)γ°[ x ΔJx-y)
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