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Abstract. An integro-iteration method is applied to solve the second order linear
differential equation. Although the procedure is quite elementary it produces the general
solution in form of a simple series which can be made to converge absolutely, at least in the
region of interest. Particular solutions with given initial or boundary values can be readily
obtained from the general solution.

Introduction

In this note we present an elementary method for deriving the general
solution, or any particular one with given boundary conditions, of a
second order linear differential equation, in a relatively simple form and,
most important, convenient both for analytical studies and for numerical
applications.

Basically the method used is an iterative one into - which a step of
integration has been inserted — thus the name "integro-iteration" proce-
dure. By this way one gets the general solution. From it the derivation
of any solution with given boundary conditions is straightforward.

We believe that for the solution of a second order linear differential
equation, the present method, at least for practical applications, is
preferable than the existing general ones, for the following reasons:

(i) The method is elementary and thus accessible to anybody with
only basic knowledge of mathematics.

(ii) It is quite flexible, as one has complete freedom in choosing the
unperturbed equation and also a large choice for its partial solutions.
This is quite helpful in fitting the solution to the conditions of the
problem, and

(iii) The solutions are obtained in form of a simple series which can
be made to converge absolutely, faster than an exponential one, at least
in the region of interest. To make clear this point, consider the case of a
boundary value problem. One applies e.g. Fredholm's method, and has
to compute two series. Each of these series is a multiple one, i.e. the nth
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term has n! components, while in the present method each term of the
series has only one component.

Applications of the method will appear in a series of forthcoming
papers, the first dealing with the solution of the Schrodinger equation
for central potential, under rather weak restrictions on it, both for
scattering and for bound states problems.

I. The Method. Solution of Type I

Suppose we want to find the general solution of the equations

z" + A{z)z = 0 (1)

around a point x = a.
We write (I) as

z" + B{x)z = C{x)z (2)

where B(x) is such that the "unperturbed" equation

u" + B(x) u = 0 (3)

is readily soluble.
Let uγ and u2 be two independent solutions of (3), normalised in

such a way that:

W(uu u2) = u^uΊ -u\u2 = \. (4)

Using uί and u2 we can put Eq. (2) under the form:

f x 1 ί x 1
z = uί [κί — j Cu2zdx'\ +u2 [κ2 + j Cu1zdx'\ (5)

with κ1 and κ2 arbitrary constants.
Now we split z as follows:

W , =

W7 =

x 1
jq — j Cu2(w1 + w2) dx'\ , (6a)

κ2 + J Cuί(w1 + vv2) dx' (6b)

W l + W 2 = z. (6c)

For the iteration we write

r * l

w(«) = M l | κ 1 - |CM 2 (w5 I ) + w(

2"
))<ix'J, (7a)

•JCtt1(Wi--1> + W?>)dx'J. (7b)
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At this point we insert the integration step, i.e. instead of applying the
iteration using Eqs. (7a) and (7b) as they stand, we integrate them first,
as follows. In Eq. (7a) we consider w2

n) to be known and integrate with
respect to w{"\ and in Eq. (7b) we consider w{"~ υ as known and integrate
with respect to w(

2

n). In this way we obtain

- J Cu2e
f(xΊw^dx] , (8a)

w<2»> = u2e
f{x)\c2 + J Cu1e-fw)Wζ-1)dx'\9 (8b)

X

= $Cu1u2dxf. (8c)

Note that the lower limit of integration in f(x) is irrelevant.
Starting with wf) = uie~f{x) we, finally, find:

(9a)

(9b)

where Φ, ̂ X J = 1 + | (~)"{9iM}». (10a)

Σ (-)"teW} n , (10b)

] (Ha)
α α

q2(x)=]cuje'2fdx1]
iCu2

2e
2fdx2. (lib)

α α

By {q}n we mean the 2fi-dimensional integral formed by n repetitions of
the double integral q. For example

{qi}2 = J Cu2

2e
2fdx1 ] Cu\e-2fdx2 ] Cu2

2e
2fdx31 Cu2e~2fdx4 e.t.c.

α α α a

The question of convergence of the series (10) is discussed in Part III.
The general solution z = wx + w2 is:

(12)
-uie-' f Cu\e2fΦ2 I X l ) dxt + u2e

fΦ2 [ % )3 2[a,a) 2\a,a)
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Two partial solutions of Eq. (2) are:

{ ) X \ 2 2 f ( X l ) 1 , (13a)) 2 \ 1 ί ( )
a, a) a \a, a)

x1. (13b)2 2 2 ( ) ί \ 2 J ) 1\a, a) J

a \a, a)

It is a matter of simple algebra to show that Eqs. (13) satisfy Eq. (2) as,

φ I X)=l-X_Cu2e2fdx1Ίcu2e-2fφ1(
X2)dx2

\a,aj "a "a \a,aj

The solutions (13a) and (13b) are independent as their Wronskian is
equal to 1.

We note that to each of the partial solutions corresponds one of the
functions Φγ and Φ2. These functions Φx and Φ2 are called "central"
functions for the solution of the Eq. (2).

II. Solution of Type II

Consider the pair of functions:

: \ =e-
f\l-]cu2e2fdxί]cu2e-2fΦιdx2\ (15a)

^' &/ L a a J

and FJ X) =1 + \Cu\dxA ^a'aJdx2. (15b)

( X \
fulfill the

a, βj

same differential equation, i.e.

3

\2Cuϊ Cui

2

-C\y = (

and therefore their Wronskian is constant

W{u2\/C.Huu2]/C.F1) = Cu2

2W(H1,F1) = const.

If we choose in Eqs. (15) the limit a such that u1(a) = 0 and put
JC

f = j Cut u2dx\ this Wronskian is zero and Hί=F1, or
a

I X \ fCuχu2dx' ( X \

ΦΛ \=ea FA . (16)
\a, a \a, a
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Inserting Eq. (16) into Eq. (13a), after some integrations by parts we
derive:

(17)
a U2

I x \
where F J is given by (15b).

\a,aj
This is another expression for the solution z1? when it fulfills the

condition

Analogous expressions we can derive for the solution z2.

III. Convergence

If we have generally
X Xί

q= j φίdxγ j φ2dx2 (18)
a a

it is easy to prove that

where q= $\φί\dx1 J \φ2\dx2> (19)
a a

For example
X Xί

J
X2 X3

S $\<Pi\dx1 j \φ2\dx2 j l^ildxa J
a a a a

< j\φί\dxί j \φ2\dx2 J \φί\dx3 j
a a

rx xί γ

L 1 α Ί

12

- 2

2! 2!

as x ^ x 1 ^ x 2 ^ x 3 ^ « (orx^ jc 1 ^x 2
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Therefore a sufficient condition for the convergence of a series of the
00

tyPe Σ (±)" Wn *s ̂ a t tf g i y e n by (19), is finite.

Returning to our case we have that sufficient conditions for the
/ x \ I x \

convergence of Φ J and Fλ are respectively:
\α, a) \a, a)

\Cu\e-2f\dx2<M< oo ,

\\Cu\\dx, J dx2<N<oo.

(20)

(21)

( X \
and is

If tίx and w2 are real, w1(α) = 0, and if in the interval (α, x) no zeros
of w2 exist, then we have

ϊ\Cul\dXl$
1

u\
,= \\Cuίu2\dxι.

( X \ / X

and ΦΛ is:
. (22)

IV. Application to Problems with Boundary Conditions

1. The Homogeneous Equation

a) Initial value problems. The conditions on the solution z can be
reduced to, z(a) = 0 and z'(a) = λ1.

To obtain this solution it is enough to choose one of ux and u2 to
fulfill the same conditions i.e.

«!(<!)= 0 ,

Then either (13a) or (17) represent the required solution.
b) Boundary value problems. Here we can reduce the requirements

of the problem to the conditions

z(α) = 0, (23a)

z(b) = 0. (23b)
1 This condition is not necessary, as only the first one defines the solution apart from a

factor which is irrelevant for homogeneous equations.
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Choosing u1 and u2 such that

M!(fl) = 0 , (24a)

u2(b) = 0 (24b)

we see that condition (23a) is satisfied for (13a) or (17). In order that also
condition (23b) is fulfilled we must have

for Eq. (13a) Φ1(
b)=0, (25)

forEq. (17) Fx ( b ) =0 . (25a)
\a,a)

These are the eigenvalue equations. We note that because of (16) these
are equivalent.

If instead of (13a) we used (13b) we find as eigenvalue equation

but it is obvious that

Any parameter existing in Eq. (1) can be used to derive eigenvalues from
Eq. (24)

2. The Inhomogeneous Equation

z" + A(x)z = D{x). (26)

As it is known the general solution is:
X X

z = c1z1 + c2z2 — Zi iDz^x^ + z2 \Dzxdx1 (27)
a a

where zx and z2 are two independent solutions of the homogeneous
equation and cx and c2 arbitrary constants.

The procedure to find special solutions with fixed boundary condi-
tions is quite trivial. We mention here only the case of a boundary value
problem in which we demand

z(a) = 0, z(ft) = 0

and it happens Φλ\ I = 0 or FA = 0) .
\a, a) \ \a, a) )
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By choosing uί and u2 such that

M1(fl) = 0 , U2(b) = 0

we find that the conditions for the existence of the solution is

(28)

which expresses the third Fredholm's theorem. Then the solution is not
uniquely defined. We obtain

Γ x 1 x

z = z1\c — j Dz2dx1 + z2 I Dzγ άxx (29)
Y a J a

where c is arbitrary constant.
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