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On Event Horizons in Static Space-Times*
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Abstract. A proof of the (vacuum) Israel theorem on event horizons in static space-
times is given employing the Newman-Penrose formalism. The theorem is extended to
include the case of a static, massive, complex, scalar field.

1. Introduction

In recent years properties of event horizons have been studied in
some detail. Israel [1,2] has shown that among the asymptotically
fiat, static, vacuum fields only the Schwarzschild solutions with m > 0,
and among the corresponding electrovac space-times only the Reissner-
Nordstrom solutions with m2^ye2 have regular event horizons.
Chase [3] has found that in the presence of a static, asymptotically
flat, massless scalar field the event horizon has to be singular.

It has been conjectured [1,2,4], and Carter [5] has essentially
proved for the case of axial symmetry, that among the asymptotically
flat stationary vacuum space-times only the Kerr solutions with m ̂  a
have nonsingular event horizons. Unfortunately, Israel's proof of the
static case, relying heavily on a three-dimensional formalism, does not
easily generalize to the stationary case (where the Killing field is not
orthogonal to a family of hypersurfaces). In Sections 3 and 4 of the
present paper we give a fairly straightforward proof of the vacuum Israel
theorem using the well-known Newman-Penrose formalism [6]. Minimal
use is made of the hypersurfaces. It is hoped that this method will
generalize to the stationary case. Moreover, the differential equations
derived in Section 3 should prove useful in solving various other problems
involving static fields.

In Section 5 we extend the horizon theorem to include the case
of a general (possibly massive and complex) scalar field. Every such
field which is gravitationally coupled, static, and asymptotically flat
is found to become singular at a simply connected event horizon.
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2. Notation

The signature of space-time is taken to be (1, — 1, —1, —1). Greek
indices run from 0 to 3, Latin indices from 2 to 3. The summation
convention is used throughout. Ordinary differentiation is denoted by a
comma, (two-dimensional) covariant differentiation by a semicolon,
symmetrization by round brackets, and complex conjugation by a bar.

The Newman-Penrose formalism is too well known to require much
elaboration. The definition of the intrinsic derivatives (D9A,S9§), the
spin-coefficients (K, a, Q, T, e, a, /?, y, n, X, \x, v), the Weyl tensor com-
ponents (*P0, *Pl9 Y2, *P3, SP4) and the Ricci tensor components (<P00, <P01,
^0 2 ,^1 1 ?(P1 2 ,#2 2 ,yl) relative to an arbitrary null tetrad (/a, rf, ma, ma)
may be found in Ref. [6].

3. Basic Formulas

A static space-time possesses a regular hypersurface-orthogonal
Killing vector £ which is time-like over some domain. In this region
we may take the metric to be [1,2]

ds2 = V2dt2-(o2dV2-P2d82
2-Q

2d8l, (3.1)

where F = (£a£
a)1/2, and co,P, and Q are functions of V, 62 and 03.

At each point of this domain we take the null tetrad

(3.2)

and calculate the corresponding spin coefficients from their definition:

K = n = -T = -v = (2a))~15(o, (3.3a)

a = X = (2^2co)-1 [lnfPG-1)],! , (3.3b)

, (3.3c)

- i P , 3 ) , (3.3d)

(3.3e)

Taking into account the static nature of the fields the intrinsic derivatives
become

D=-A = -(2i/2coy1d/dV (3.4)

5 = 2~1/2(P-1 d/d62 + iQ'1 d/d63). (3.5)
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With the aid of Eqs. (3.3)-(3.5) the "Ricci identities" (Eqs. (4.2) of Ref. [6])
reduce to _

(3.6)

#22 = #00

#12 = - # 0 1

and _

DQ = 5K + Q2 + a2 + 2SQ + 2KK - 2KOL + $ 0 0 , (3.7a)

Do = 8K + 2QO - 2sa + 2/c2 + 2KOL + <P02 , (3.7b)

Da = ga — aa — KG + QK — 2SK + <P10 , (3.7c)

Ds = - 2£
2 + 2£g + i (^ 0 0 - 3/1 + * n ) , (3.7d)

5 £ = - 2 £ K : , (3.7e)

^^ _ da = - 4(7oc - 4SK + 2<P01, (3.7f)

(5a + 5"a = Q2 - a2 + 4aa - 4SQ - (Poo + 3 A + <Pn . (3.7g)

The "Bianchi identities" [7] yield the further equations

2D<P01 - d<P00 + 50O2 - 4S(DK + 5Q + KQ- KG) - 6K<P00

+ (4e - 6Q) $OI + 12KA - 2e<P10 + (2K - 4a) <£02 = 0

"̂ ~ 4e) # 0 0

2 + $2 0)-4^<l>1 1=0 (3.8)

01 O2 n - 3(5<f>00 + 65A - UK$00 + 36KA

— 12S(DK -\-SQ — KG + KQ) — $K<Pn — 2(j<P10

+ (4c - 6e) #01 + (2K - 4a) $ 0 2 = 0.

Due to Eqs. (3.6) the invariant square of the Riemann tensor becomes

&R*fiy3RaPy* = l#02 " 4ecr|2 + 4|*oi - 4e*|2 + 3($0 0 - 2A 2+ 4|#0 i |2 + |# 0 2 | 2 + 2*fx + 6^ 2 .

We shall also need the equations

Dco=- 2COQ + ]/2o;2 F(<£Oo -3A + 4>n), (3.10)

D(PQ)=-2QPQ, (3.11)

D(P<2aTx) = - ]/2PQV(0oo -3A + * n ) , (3.12)

which are easily derived from Eqs. (3.3b), (3.3c), (3.3e), (3.4) and (3.7d).
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The scalar R of intrinsic curvature of the two-space t = const,
V = const is given by [8]

- i R ^ - ^ + Gu+A + Qt-o2, (3.13)

with Q and a being (apart from a constant factor) the components of
extrinsic curvature of the two-surface with respect to the hyper-surface
t = constant (called I1). From Eqs. (3.3e), (3.6) and (3.13) we obtain a
formula we shall need later, namely

1 1'2i 2 2 &oo]. (3.14)

4. The Israel Theorem

The Israel theorem may be stated as follows [9]: The Schwarzschild
solutions with m>0 are the only static, asymptotically flat, vacuum
space-times with a family of simply connected equipotential surfaces
which converge to a nonsingular event horizon with finite two-dimen-
sional intrinsic geometry. The remainder of the proof of this theorem
follows closely Israel's original proof. However, the necessary identities
and the interior boundary conditions are obtained from the results of
Section 3.

Since the space is asymptotically flat the metric has (in suitable
coordinates) the asymptotic form

P r ^ l , Q(rsinO)-1-+1, F - ^ l - m r " 1 (m = const),

cor~2-*m~1
9 gr-+2~112, r-+oo .

With the aid of Eqs. (3.1), (3.3c), (3.4) and (3.10) the three-dimensional
(t = const) Laplacian of V is found to vanish. If V has a positive lower
bound on I we conclude from the harmonicity of V and its constant
asymptotic value one that space-time is flat and the theorem is trivially
true.

Therefore, we will assume that the greatest lower bound of V on
I is zero. For a nonsingular event horizon V = 0 the invariant square
of the Riemann tensor must remain bounded as K-»0 + . From Eqs. (3.9)
and (3.14) we find the following boundary conditions at F = 0+ :

K = G = Q = 0, (4.2)

QV-1 = -2~5I2CDR. (4.3)

From Eqs. (4.2) and (3.3a) we deduce that on V = 0 +, co is a constant (co0).
Let us now integrate Eq. (3.12) over I. Using the asymptotic condi-

tions Eq. (4.1) we arrive at the equality

— =4nm, (4.4)
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where
so= j ds= j PQ(o+,e29o3)de2do3

v=o+ v=o +

is the area of the two-space F = 0 + , t = const (Eq. (4.4) implies that m
is non-negative). From the equation

(4.5)

as well as Eqs. (3.7a) and (3.10)—(3.12) we arrive at the identities

d
(PQQV1 CD~1/2) = 2~3/2PQV'1 \2V2OJ1'2 -4co1/2(KK + a2)] , (4.6)

dV
Q

[(QV + 21/2 co'1) PQCQ'1] (4.7)
dV

where V2 is the two-dimensional Laplacian. Upon integrating Eqs. (4.6)
and (4.7) over I we obtain, with the aid of the boundary conditions
Eqs. (4.1), (4.2) and (4.3) and the Gauss-Bonnet theorem, the inequalities
So ^ ncol, 4m^a>0, with equality if and only if K = a = 0. That equality
must actually hold is seen by comparing these inequalities with Eq. (4.4).
Defining r by V = 21/2rg it is not difficult to solve Eqs. (3.3), (3.7) and (3.8)
(with K = a = 0) and find the exterior Schwarzschild metric in its usual
form.

5. The Scalar Field

In this section we show that there are no static, asymptotically flat,
"scalar" space-times with a family of simply connected equipotential
surfaces which converge to a non-singular event horizon with finite two-
dimensional intrinsic geometry. This theorem has previously been proved
for the massless scalar field only [3].

The asymptotic form of the metric is given by Eq. (4.1), that of the
scalar field <j> by

k
(/) = — + 0(r~ 2), k = const.

Again, if V has a positive lower bound on I we can easily show that
(j) = 0 and the space is flat. We assume, therefore, that the equipotential
surface V= 0 + forms an inner boundary of I.

The Ricci tensor for a (complex) scalar field </> satisfying the Klein-
Gordon equation

^ = 0 (5.1)
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is given by _

Its dyad components with respect to the tetrad of Eq. (3.2) are easily
calculated to be

(5.2)

From Eqs. (3.9) and (5.2) we infer that for a non-singular event horizon
K9 cr, g->0 and a ) " 1 ^ , ! and ^>,a (and hence 0 itself) remain bounded
as F->0 + . (It should be noted that these conclusions are still valid
and that the theorem is still true if we add a contribution from an electric
field to the Ricci tensor.)

Writing Eq. (5.1) in the form

dV

we deduce that

8

Integration of Eq. (5.3) over r yields

J Vfco-^^dS- J Vfico-^^dS^O, (5.4)
=l F=0+

with equality if and only if

Since both integrals in Eq. (5.4) vanish, as seen from the exterior and
interior boundary conditions, we conclude that <\> = 0. (If JX = 0 we have
to use the fact that </> vanishes asymptotically.)

Acknowledgements. I am indebted to W. Israel and H. Kiinzle for many valuable
discussions.
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