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Abstract. The role of co-moving atlases is discussed in connection with a possible
formulation of the problem of motion in General Relativity. The concept of co-moving
scheme is defined and applied to various cases of physical interest. In particular in the
Einstein-Max well case, we derive a general uniqueness proof for the Maxwell equations.

The dynamical meaning of the equation T1-7'̂ - = 0 is proved, and a scheme for the
solution of the problem of motion in co-moving co-ordinates is proposed.

§ 1. Introduction

In a previous paper [1] we have shown how the problem of motion for
a material continuum in General Relativity may be conveniently
formulated in terms of the projection operators associated to the con-
gruence Γ of stream-lines of the continuum itself.

Our results were obtained under the hypothesis Γe(C1,C2)
ί, a

condition which is general enough to include every physical situation,
with the only exception of shock waves [2-4].

However, almost all problems of actual physical interest may be
treated under the stronger condition Γ e (C2, C4).

In this case, it is always possible to choose local co-ordinates
(x1,*2,*3,;*4) in the space-time manifold i^4 in such a way that the
curves of Γ have local equation x4 = var.

We call such a collection of local co-ordinates a co-moving atlas.
The use of co-moving atlases simplifies the structure of the problem

of motion, and makes the whole formalism introduced in [1] more
transparent.

The object of the present paper is to discuss this particular view point,
and to indicate its implications.

* Lavoro eseguito nell'ambito dell'attivita dei Gruppi di Ricerca Matematica del
Consiglio Nazionale delle Ricerche.

1 The notation Cn stands for "piecewise Cπ"; the notation (Cm, Cn)(m<n) for "Cm,
piecewise CB".
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In Subsection 2.1 we show that there is a natural correspondence
between the determination of a (C2, Q) congruence of time-like curves,
and the selection of a suitable class of admissible atlases in τΓ4.

We also show that this selection may always be accomplished by
means of a set of co-ordinate conditions invariant under the group J
of internal transformations2 [5, 6]

=xα(x1,x2,x3), (1.1)

= x4(x1,x2,x3,x4). (1.2)

In Subsection 2.2 we introduce the concept of space tensor [7-9] and
analyse its properties.

These results are used in Section 3 to formulate the problem of
motion in terms of co-moving atlases. We introduce the so-called
co-moving scheme (Subsection 3.1) and apply it to an arbitrary material
continuum (Subsection 3.2) and to an electrically charged dust (Sub-
section 3.3). In the latter case, we also discuss the mathematical structure
of Maxwell's equations in the co-moving scheme.

Finally, in Section 4, we derive the equations of motion for both
types of continua discussed in Section 3, and propose a practical scheme
for the effective solution of the problem of motion.

§ 2. Mathematical Preliminaries

2.1. The Physical Frame of Reference Associated to a Given Congruence
of Curves

Let j/= {(l/(fl), fa(fl)), αe N} be a physically admissible atlas in the
manifold ̂ 4

 3 [10]. By choosing a suitable refinement of j/ (if necessary),
we may always assume that all the sets h(a}(U(a}) are open connected
subsets of the euclidean four-space E4 [11].

We denote by (x^, x2

α), x(

3

α), xfa}) the local co-ordinates defined by the
map/z ( α ). In each co-ordinate neighbourhood t/(α), let Γ(a) denote the
congruence of co-ordinate lines xfa} = var. All congruences Γ(a} are clearly
(C2, C4) and time-like. Each congruence Γ(a) defines in L/(α) a unique field
y of unit tangents, whose expression in local co-ordinates is
(a)

(«) I/-044

2 Unless otherwise stated, Latin indices will run from 1 to 4, and Greek indices from
1 to 3. Obviously, this convention will not apply to the subscripts (a), (b), etc. used in Sec-
tion 2 to label the various charts of the atlas jtf, as these subscripts are not tensor indices.

3 We recall that an atlas «s/ in ̂  is physically admissible if and only if in every chart
(C7(β),/ι(β))e«β/ the coefficients gtj of the metric are (C1,C3) and satisfy the inequalities
944 < 0, \gaβ\ positive definite.



Problem of Motion in Co-moving Co-ordinates 323

Now, let Ω be a connected domain of i^4. Then, a necessary and sufficient
condition that the fields 1 y , a e N\ may be pieced together to form a well

l(α) J

defined vector field y over the whole of Ω is that, for every a,beN, the
equation ~ f

i ^(α) /O OΛ

7 = ^ -^T" (Z2)
(α) (b) VX(b)

be satisfied in the overlap l/(α)π V(b}r\Ω 4.
Notice that, whenever this condition is satisfied, the congruences Γ(α)

themselves may be pieced together to form a unique (C2, C4) time-like
congruence Γ defined over the whole of Ω. In this case we say that the
atlas &/ is adapted to Γ. Notice also that, if Eq. (2.2) is satisfied for a
given _choice of Ω, then (by continuity), it is also satisfied if we replace
Ω by Ω. Therefore, we may always assume that the domain Ω is closed.

Using Eq. (2. 1), we see that Eq. (2.2) is mathematically equivalent to the
condition that for every α, b e N, the transformation of local co-ordinates

dxa

fyαAΐ)1 satisfy —^-=0 at every point xeh(b}(U(a}nU(b}nΩ). Trans-
vχ(b)

formations of the form
α = xα(x1,x2,x3), (2.3)

ΓV,*2,*3,*4) (2.4)

constitute a group «/, called the group of internal transformations. We
can therefore state

Theorem 2.1. A physically admissible atlas sέ defines a unique (C2, C4)
time-like congruence Γ in a closed connected domain Ωci^4 if and only
if for every pair of charts (U(a)9 h(a)\ (U(b}, h(b}) e <$$, the transformation

is an internal transformation.

We now try to invert the result stated in Theorem 3.1.
Let Γ be a (C2, C4) time-like congruence defined in a domain Ω C ̂ 4.
We denote by [Γ] the totality of physically admissible atlases

adapted to Γ, and call it the physical frame of reference associated to the
congruence Γ. Then, once the domain Ω has been fixed, the knowledge
of the congruence Γ is mathematically equivalent to the knowledge of
the class [Γ].

To identify the latter, we need the concept of co-ordinate conditions.
A set # of co-ordinate conditions is a collection of m (m ̂  4) equations

of non tensorial character, which do not impose any restriction on the
geometry of i^4, but only on the choice of the local co-ordinates.

4 Obviously, we regard Eq. (2.2) as an identity whenever U(a)nU(b)nΩ — 0.
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For a given set # of co-ordinate conditions, we denote by [#] the
totality of physically admissible atlases consistent with <β. Then, ̂  itself
is physically admissible if and only if [#] is not empty. In the latter case,
we introduce the set G(̂ ) of all the transformations between the local
co-ordinates associated to the atlases si e

Theorem 2.2. Every (C2, C4) time-like congruence defined in a domain
Ω C "̂4 identifies in Ω a unique set <$ of admissible co-ordinate conditions
such that G^} = J> and [#] = [Γ]. Conversely, given any admissible set
%> of co-ordinate conditions in Ω, satisfying G(Ή) = </, there is a unique
congruence Γ defined in Ω and such that [Γ] =

Proof. Let Γ be a (C2, C4) time-like congruence in Ω. Consider the
field λ of unit tangents to the lines of Γ. Then, by Eq. (2.1), an atlas j/ is
adapted to Γ if and only if in every chart of j/ the condition

Aα = 0 (2.5)

is satisfied at every point of Ω. Our assumptions ensure that Eqs. (2.5)
constitute a set ̂  of physically admissible co-ordinate conditions in Ω.
We have thus [#] = [Γ]. The condition G((£) = J is also verified by
direct computation. This proves the first part of Theorem 2.2.

Conversely, let # be an admissible set of co-ordinate conditions in Ω,
satisfying G(#) = J. Then, for every atlas j/ e pi] and every pair of
charts (l/(α), Λ(α)),(t7(5), Λ(ft)) e j^, the transformation ft^ft^1 : h(b}(U(a}nU(b)

nί2)->£4 belongs to G(V) (by definition), and is therefore an internal
transformation. By Theorem 2.1, this implies that the atlas jtf defines
a unique time-like congruence Γ^ in Ω.

Moreover, let j/1? j/2

 e [̂ Ί Then, it may be easily checked that also

Therefore, by the previous argument, ̂  defines a unique congruence
Tm in Ω. In view of the definition of & (see footnote 5) this implies
ΓΛ/ι = Γ^2 = Γ@ά=Γ. We have thus pf] - [Γ], and the proof of Theorem 2.2
is complete.

An immediate consequence of Theorem 2.2 is the following

Corollary 2.1. The determination of a (C2? C4) ίirae ίi/ce congruence Γ
in Ω is mathematically equivalent to the determination of a set *& of
co-ordinate conditions defined in Ω and invariant under the group of
internal transformations.

5 We recall that, if j^ = {(C/(β), Λ(β))} and j&2 = {(V(b), k(b))}, the union ̂  uj/2

 is tne

atlas ^ = {(^(c),z(c))} defined by (W(c), z(c)) - (C/(B), Λ(|I)) for c = 2 n - l and (^(c),z(c))

= (K ( B ),fe ( l l ))forc = 2n [11].



Problem of Motion in Co-moving Co-ordinates 325

2.2. Space Tensors

Let [Γ] be the physical frame of reference associated to a (C2, C4)
time-like congruence Γ. The group </ acts transitively on [Γ] : for every
pair of atlases j^l5 ja/2 G [Γ], the transformation of local co-ordinates
between ^/1 and j/2 belongs to J> and conversely.

Definition 2.1. A space tensor T is a quantity that behaves like a
three- tensor under the transformations (2.3), and like a scalar under the
transformations (2.4).

It may be easily proved that every four-tensor may be resolved into
a suitable collection of space tensors by means of a natural projection
technique.

Therefore, space tensors may be used instead of four-tensors in the
formulation of physical laws in the frame of reference [Γ].

The projection technique indicated above has been thoroughly
investigated by Cattaneo [6-8] (see also Ref. [9]). Here we only quote
some elementary results that are relevant to the subsequent discussion,
and refer the reader to the Bibliography for further information.

(i) Given any contravariant four-tensor τ^"'ir, any quantity obtained
by saturating p indices of Tli'"ir (0 ̂  p ̂  r) with the vector field yt defined
by Eq. (2.1), and letting the remaining r — p indices run from 1 to 3
is a contravariant space tensor of rank r — p. Thus, for example, the tensor
Tij generates four space tensors of rank 2, 1 and 0, namely Taβ,

τ~" α r~rcf. T"1

α 4 «J 4 and ^ *, j . i j - - .
y-944 I/ -044 044

(ii) The previous procedure, applied to the metric tensor glj, yelds
only one non trivial space tensor, namely g"β. We take g"β as the con-
travariant metric tensor in the reference [Γ], and define the corresponding
covariant metric tensor yaβ by the condition g*λyλβ = δΛ

β.
This yields

Jaβ = 9aβ + JaJβ - (2-6)

With the aid of y^β we may now lower the indices of every space tensor
obtained in (i)

(iii) The spatial Ricci tensor ήλμv is defined by

nλμv = Vyzλμv (2.7)

where γ = det(ya^) and sλμv is the permutation symbol. We have then

fiλμv _ _ (Ί Ί'\
Ί — ~78λμv V"l )
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as may be easily checked. We let the reader verify that ήAμv is (apart from
sign) the only non trivial space tensor obtained from the Ricci tensor
ηίjki jn ̂  through the process indicated in (i).

§ 3. Formulation of the Problem of Motion

3.1. The Co-moving Scheme

Let Ttj be the energy-momentum tensor of a material continuum
whose hystory is contained in a world tube Ωci^4.

Let the hypersurfaces S - with local equation /(x1, x2, x3, x4) = 0 -
and B - with local equation x4 = 0 - be the boundary of Ω and a spatial
section of Ω respectively. We denote by μ and V1 respectively the density
and four-velocity of the continuum, and by Γ the corresponding con-
gruence of stream-lines (these being world-lines having V1 for unit
tangents).

The object of the problem of motion is to determine μ and Γ inside
Ω, in terms of a given set of initial and boundary data specified on the
hypersurfaces B and S. In general, this requires also the determination
of the geometry of space-time inside Ω.

To achieve this goal, we have at our disposal Einstein's field equations,
and an auxiliary set of equations related to the physical structure of the
continuum. We shall now indicate how the mathematical results obtained
in Section 2 may be conveniently applied to the discussion of this
problem.

We start with the tentative hypothesis Γ e (C2, C4)
 6. Then, according

to Theorem 2.2, the class [Γ] of admissible atlases adapted to Γ is not
empty.

We call [Γ] the co-moving frame of reference associated to the given
continuum. In view of the discussion in Section 2.1, we may regard the
problem of motion as consisting of the determination of the density μ
and of the co-moving frame [Γ].

By Theorem 2.2, this may be achieved by determining μ and a set ̂
of admissible co-ordinate conditions defined in Ω and satisfying G(^) = </
and [̂ ] = [Γ]. Finally, as the class [Γ] is already completely characterized
by the condition

Kα = 0 (3.1)

we see that the conditions in Ή must be mathematically equivalent to
Eq. (3.1). We have now two possibilities: we may either analyse the

6 Notice that we cannot take this hypothesis for granted α-priori, as the congruence Γ
is one of the unknowns of our problem, and has to be determined in terms of the data at
our disposal Therefore, for the time being, we may only suppose Γe(C2,C4). Later on,
we shall be able to discuss the legitimacy of this hypothesis.
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problem of motion in the usual way, and determine μ and Γ in terms
of the data at our disposal. In this case, the determination of the co-
moving frame of reference [Γ] is rather academic, and is trivially
accomplished by means of Eq. (3.1), which are now an effective set of
co-ordinate conditions.

Or we may adopt what we call the co-moving scheme, which consists
of formulating everything in the co-moving frame of reference [Γ] from
the very beginning. The situation in then reversed: the congruence Γ
of stream-lines of the continuum in [Γ] is no longer an unknown, as it
coincides with the congruence of co-ordinate lines x4 = var. in any atlas

On the other hand, the co-moving frame of reference [Γ] is no longer
determined by Eq. (3.1) (which are now identically satisfied by definition),
so that we have to look for a set # of three effective co-ordinate conditions
able to identify [Γ]. If we compare this fact with the previous formulation
of the problem of motion, we conclude.

Theorem 3.1. In the co-moving scheme, the problem of motion for a
material continuum is reduced to the determination of the density μ and of
a set ̂  of effective co-ordinate conditions satisfying G(^) = J> and [̂ ] = \JΓ\.

Once the problem has been solved, the conditions in %> must be mathe-
matically equivalent to Eq. (3.1).

Definition 3.1. The equations of motion for a material continuum
in the co-moving scheme are a set of four (partial differential) equations
satisfying the following properties:

(i) they express the relevant kinematical quantities μ and ̂  in terms
of the dynamical effects described by the fields gtj;

(ii) the remain non-trivial (i.e. they do not reduce to identities) if we
neglect the local gravitational effects by letting the gravitational constant
k-+0inί2 7 .

We shall now apply the co-moving scheme to various cases of
physical interest. Notice that, in accepting this scheme, we are explicitly
giving up general covariance. However, we still require covariance under
the group ./of internal transformations, so that we are entitled to use
the results stated in Subsection 2.2.

3.2. The Purely Gravitational Case

For a large class of continua, the four-velocity field V1 and density μ
are related to the energy-momentum tensor Ttj by the eigenvalue

The reason for this condition has already been discussed in Ref. [1].
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equation [12] 8

F^O, (3.2)
with normalization

gtjVV^-l. (3.3)

We assume that the eigenvalue μ exists and is real, positive and non
degenerate. In this case, the energy-momentum tensor Ttj admits a
unique decomposition of the form

T^μVM-St, (3.4)
with

S^ = 0. (3.5)

The tensor Stj defined by Eq. (3.5) is called the stress-tensor of the con-
tinuum. This tensor is usually a function of the velocity field V\ of the
metric tensor gtj, and of n other quantities λi9 ..., λn (pressure, viscosity,
elastic constants, etc.) which depend on the physical structure of the
continuum [13]. Moreover, in every physically definite situation, the
quantities λί9 ..., λn are not independent, but are in fact related to one
another and to μ, V1 and gtj by n state equations

gξ(μ,V\gίj,λ1,...,λn) = 0 (ξ= 1, 2, ..., n) . (3.6)

We regard the theoretical expression for Stj in terms of the physical
parameters

and the state equations (3.6) as data for the problem in study.
These equations may be written in the equivalent form

which is more convenient for the subsequent discussion.
In the co-moving scheme we are entitled to write

(3.7)

(3.6')

(3.7')

V1 = Y , (3.8)

the components y' being defined by Eq. (2.1).
Then Eq. (3.2) simplifies to

Ti4 + μgί4 = Q, (3.9)

* = 0, (3.10a)

[T44=-μg44, (3.10b)

8 The only notable exception to Eq. (3.2) arises in the case of a material continuum
interacting with an electromagnetic field. To this purpose, see Subsection 3.3.
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while Eq. (3.3) is identically satisfied. Conversely, in view of the assumed
non-degeneracy of the eigenvalue μ, it may be easily seen that Eq. (3. 10 a)
is mathematically equivalent to Eq. (3.1) through the eigenvalue equa-
tion (3.2). We may thus regard Eq. (3.10 a) itself as an alternative characteri-
zation of the co-moving frame of reference [Γ].

Also, by Eqs. (3.5), (3.8) we obtain

Si4 = 0, SΛβ = γΛμγβvS
fί\ (3.11)

which shows that the stress tensor Stj is a space tensor in [Γ].
Finally, by Eqs. (3.6'), (3.7'), (3.8) we obtain

, (3.12)

Sij-Stjfag^, (3.13)
while Eq. (3.4) becomes

Tij = μyiyj-Sij(μ,gij). (3.14)

Eqs. (3.8)-(3.14) describe the properties of the given continuum in the
co-moving frame of reference. To discuss the problem of motion we have
still at our disposal Einstein's gravitational equations

Gi3=-κTij9 (3.15)

and a suitable set of initial and boundary data specified on the hyper-
surfaces B and S defined in Subsection 3.1.

Eqs. (3. 10 a, b), (3. 15) imply

(3.16a)

(3.16b)

Eq. (3.16b) relates the density μ of the continuum to the gravitational
fields gtj.

Moreover, according to the discussion following Eqs. (3. 10 a, b),
we see that Eq. (3.16a) are mathematically equivalent to Eq. (3.1) through
the field equation (3.15) and the eigenvalue equation (3.2). We may thus
take Eq. (3. 16 a) as the relevant co-ordinate conditions that identify the
co-moving frame of reference [Γ]. If we compare these facts with Defini-
tion 3.1, we see that Eqs. (3. 16 a, b) satisfy the condition (i) stated there.
However, it is easily verified that they do not satisfy condition (ii), as
both equations reduce to identities in the limit κ->0 (=>G^ ->0).

We can therefore state

Theorem 3.2. In the co-moving scheme, the determination of the
equations of motion for a material continuum satisfying the eigenvalue
equation (3.2) is reduced to the following problem: to find a system of
3 + 1 equations, mathematically equivalent to Eqs. (3.16a, b), and having
the property of being non trivial in the limit τc->0.
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3.3. The Einstein-Maxwell System

We now come to the only notable case in which Eq. (3.2) is violated,
namely the case of a material continuum interacting with an electro-
magnetic field. To avoid unnecessary complications, we restrict our
analysis to a charged incoherent dust, i.e. to an energy-momentum
tensor of the simple form

η. = μ^ + τ... (3.17)

Here τ/<7 denotes the electromagnetic energy-momentum tensor, which
is defined in terms of the electromagnetic tensor Ftj by

(3.18)

The tensor Fij is antisymmetric, and satisfies the Maxwell equations

J//j = ji> (3. 19 a)
j

//7 = 0 (3.19b)
with

JWP. (3.20)

σ denoting the charge density of the dust, and *Flj = ̂ ηljkmFkm being the
dual of the tensor Fij.

As usual, we analyse the system (3.17) -r (3.20) in the world-tube Ω
introduced in Subsection 3.1.

To this purpose, we consider the complex tensor field

Mίj = Fίj + i*Fij . (3.21)

In terms of this field, Eqs. (3. 19 a, b) may be synthesized in the single
SyStem W. (3.22)

By the antisymmetry of Mij, this gives

(lAdlM^j^yϊglJ1. (3.22')

For i = 4, Eq. (3.22') imply

(]/\g\M^\a = ]/\g\J4. (3.23)

Eq. (3.23) does not involve any time derivative; therefore, on the initial
hypersurface B, it constitutes a consistency condition for the Cauchy data.

Theorem 3.3. Let the consistency condition (3.23) be satisfied on B.
Then the system (3.22) is mathematically equivalent to

{<\/\g\Maf).} = ]/\g\J", (3.24 a),

IA<=° (3 24b)
in the whole domain Ω.
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Proof. Obviously Eq. (3.22) imply Eqs. (3.24a, b), as, in view of the
antisymmetry of Ml J, we have

MV = 0. (3.25)

Conversely, assume Eqs. (3.24a, b) and the consistency conditions (3.23)
on B. Then, by Eqs. (3.23)-r(3.25), the vector field Wiά=Mij,n-ΐ
satisfies

Kj=°0 i n Ω ' S

W* = 0 on B. (3.28)

It may be easily verified that Eqs. (3.26) -r (3.28) admit the unique solution
Wi = 0, i.e. Mljnj = Jl in the whole domain Ω. This completes the proof
of Theorem 3.3.

We may thus regard Eqs. (3.20), (3.24 a, b) and the consistency con-
dition (3.23) as our basic system of electromagnetic field equations in Ω.

In the co-moving scheme, this system is greatly simplified by the
condition V1 = yl. In fact, in this case, Eq. (3.20) implies

(3.29)
I/ -#44

so that Eqs. (3.24 a, b) reduce to

, (3.30)

= 0. (3.31)

If we denote by σ0 and y0 the initial values of σ and y (= άQtyaβ) on the
hypersurface B, and make use of Eq. (3.29) and of the identity γ4y\g\ = ]/y
we see that Eq. (3.31) leads immediately to

(3.32)

Eq. (3.31) expresses the conservation law for the electric charge in the
co-moving scheme; in particular, it shows that the charge density σ in Ω
is uniquely determined in terms of the gravitational fields gtj and of the
initial data.

We are still left with the differential system (3.30). In order to analyse
its mathematical structure, it is convenient to introduce the complex
space vector

Ma = E^iH.= /^- + ±-iήΛλμF
λ" (3.33)

|/ —#44 ^
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whose real and imaginary part are respectively the electric and the
magnetic field associated to the electromagnetic tensor Fij in the co-
mo ving frame of reference [Γ] 9.

Theorem 3.4. The components Mlj are uniquely expressed in terms
of Mn in the linear form . . .. ~J α J MlJ=ClJ«Ma (3.34)
with

Cija = ( f g a j - fg"1) - itδl

μδi + (fδj

v - yjδi) yμ] if
v a (3.35)

We omit the proof of Theorem 3.4, as it is easily obtained by direct
computation.

It is now convenient to introduce four complex matrices Cj of order 3,
whose entries are given by

(CjYβά^f -}Ag\C«jβ. (3.36)

We have then, by Eqs. (3.35), (3.36)

(Cλγβ=-i]/\g\ήλΛβ

9 (3.37)

(C4Tβ = y4]/\g\ (g«β - iyβή^β] = }/y(g«β - iyμή
μaβ). (3.38)

Eqs. (3.37), (3.38) show that all the matrices Cj are hermitian, and that
C4 is positive definite (check).

Moreover, Eqs. (3.34), (3.36) imply

Coming back to the system (3.30), we see by Eq. (3.39) that it may be
written in matrix form as

(CsM)tj = CjMj + CjjM = 0. (3.40)

In view of the stated properties of the matrices O7, the system (3.40) is
linear, hyperbolic and hermitian.

Systems of this kind obey a general uniqueness theorem, analogous to
the one valid for symmetric hyperbolic systems in the real field [1,14,15].

Here we only state the final result, which arises from a slight modifica-
tion of the method shown in Ref. [14] for the symmetric hyperbolic case:
the system (3.40) admits a unique solution MeC^Ω) consistent with
the initial and boundary data if and only if

(i) the value of M is given on the initial hypersurface B,

(ii) the boundary conditions are sufficient to ensure that, if M(1) and
M(2) are any two allowable values for M on the hypersurface S, the

9 We let the reader verify that the fields Ea and Ha defined by Eq. (3.33) are indeed space
vectors in [Γ].
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Poynting vector J>λ = ήλ«β(E[2} -E(^}(H}}2} - H(

β

1}) associated to the
difference M(2) - M(1) satisfies Pλnλ ̂  0 at every point of S (nλ being the
outgoing normal to S).

The previous results show that, whenever the initial and boundary
data are suitably chosen (i.e. whenever the problem in study is well
posed) the electromagnetic field Fίj and the charge density σ in the
co-moving frame of reference are uniquely determined in terms of the
gravitational fields gtj (and of course, of the initial and boundary data
themselves) by Eqs. (3.40) and (3.32) respectively.

In the co-moving scheme we are thus entitled to write

* = <r(9ij), (3.41)

Ftj = Fij(atj) (3-42)

and also, by Eqs. (3.17), (3.18)

τij(gpq). (3.43)

If we now want to proceed to the study of the problem of motion, we
have still at our disposal Einstein's gravitational equations (3.15).

An argument similar to the one already used in Subsection 2.2 then
shows that Eqs. (3.15), (3.43) imply

Gl + κτl(gίj) = Q, (3.44a)

G44 + Kτ^faij) = κμg44 , (3.44 b)

and that Eq. (3.44 a) are mathematically equivalent to the co-ordinate
conditions that identify the co-moving frame of reference [Γ].

Noticing that the left-hand sides of both Eqs. (3.44 a, b) depend only
on gij9 and that both equations reduce to identities in the limit τc->0
(r^G^ -^0), exactly as in Subsection 2.2 we conclude.

Theorem 3.5. In the co-moving scheme, the determination of the
equations of motion for a charged dust is reduced to the following problem :
to find a system of 3 + 1 equations, mathematically equivalent to Eqs.
(3.44 a, b), and having the property of being non-trivial in the limit τc->0.

§ 4. The Equations of Motion in the Co-moving Scheme

We now come to the only problem which is still left open after the
analysis of Section 3, namely the determination of the equations of
motion for the given continuum in the co-moving scheme.

23 Commun. math. Phys., Vol. 22
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To this purpose, we consider again the world-tube Ω and the hyper-
surfaces B and S introduced in Subsection 3.1. We have then

Theorem 4.1. Let Wlj eC^Ω) be a symmetric tensor field satisfying

W* = Q on B, (4.1)

Wijfj = 0 on S. (4.2)

Then, in the domain Ω, the following statements are mathematically
equivalent:

(α) WtJ = 0

(β)

ω

The proof of Theorem 4.1 follows directly from the results contained in
Lemma 2.1 and Lemma 2.2 of Ref. [1], applied to the special case V{ = yl.
We leave the details of the proof as an exercise to the reader.

If we now make the identification

WιJ — Glj + κTlj, (4.3)

the conditions (4.1), (4.2) are necessarily fulfilled, and are in fact to be
regarded as consistency conditions for the initial and boundary data
[1,10]. We can thus replace Eqs. (α) - which, in view of Eq. (4.3), are
now Einstein's gravitational equations - by any of the systems (β), (y),

(δ), (4
Let us consider the system (β) first. In the co-moving scheme, com-

parison with Eqs. (3.10a, b) and (3.44a, b) yelds

GI=Q,
(4.4 a)

(4.4 b)

(4.4 c)
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in the purely gravitational case, and

R«β=-κ(T«β-±Tg«β), (4.5 a)

«4 + κτl = 0, (4.5 b)

G44+κτ44 = κμg44 (4.5 c)

for a charged dust.
Comparison of Eqs. (4.4 a, b, c), (4.5 a, b, c) with Theorems 3.2 and

3.5 implies.

Theorem 4.2. Let the symmetric tensor field Wlj be defined by Eq. (4.3).
Then, in the co-moving scheme, the system (β) of Theorem 4.1 consists of the
equation

) (4.6)

and of a set of 3+ 1 equations that are mathematically equivalent to the
equations of motion for the given continuum, whether or not on electro-
magnetic field is present.

Corollary 4.1. In the co-moving scheme, the equations of motion for the
given continuum are the divergence equations

T% = 0. (4.7)

More precisely, the equation

Ti,,j = 0 (4.8)

relates the density μ of the continuum to the gravitational fields gtj, while
the equations

TΛjnj = 0 (4.9)

constitute a set of co-ordinate conditions for the co-moving frame of
reference [JΓ].

Proof. The fact that Eq. (4.7) are mathematically equivalent to the
equations of motion is an immediate consequence of Theorems 4.1 and
4.2, and of the Bianchi identities G/7

/A/ = 0. Moreover, it is easily seen that
Eq. (4.7) remain nontrivial in the limit τc-*0. Therefore, by Definition 3.1,
Eq. (4.7) are indeed the equations of motion for the given continuum.

The second assertion of Corollary 4.1 depends on the fact that,
always in view of Theorem 4.1, Eq. (4.8) is mathematically equivalent
to Eq. (4.4 c) (or to Eq. (4.5 c)), while Eq. (4.9) are mathematically equi-
valent to Eq. (4.4 b) (or to Eq. (4.5 b)).

However, this fact may also be seen directly. In fact, according to the
results shown in Section 3 (Eqs. (3.14), (3.43)), in the co-moving scheme



336 E. Massa:

we are always entitled to write

Tίj=Tij(μ,gίj). (4.10)

We may thus use Eqs. (4.8), (4.10) and the initial and boundary data to
express μ - and therefore also Ttj - as functions of gtj.

Once this has been done, Eq. (4.9) involve the metric tensor only,
so that they are indeed a set of co-ordinate conditions. The previous
arguments show that Eq. (4.9) are in fact the co-ordinate conditions that
identify the co-moving frame of reference [Γ].

The proof of Corollary 4.1 is thus complete.
We conclude this Section by discussing how one could - at least in

principle - determine the gravitational fields in the co-moving scheme,
and thus obtain an effective solution of the problem of motion.

We have already noticed that, by means of Eqs. (4.8), (4.10), we may
express the energy-momentum tensor Ttj in the form Ttj = 7 (̂0^-).

Once this has been done, we have still at our disposal the three
co-ordinate conditions (4.9), and the remaining set of gravitational
equations (4.6), i.e. a system of 9 independent equations involving the ten
unknown components gtj only.

The indeterminacy of this situation is only apparent, as the whole
formalism related to the co-moving scheme is obviously invariant under
the group «/ of internal transformations, so that we cannot expect a
unique determination of gtj in the co-moving frame of reference.

In practice, however, we may always remove this indeterminacy by
adding one extra co-ordinate condition, able to select a particular atlas
j/ in [Γ].

As a final remark, we notice that we may now answer the question
raised in Section 3.1 (footnote 6) on the legitimacy of the assump-
tion Γe(C2,C4). In fact, this assumption is valid if and only if the
co-moving frame of reference [Γ] is not empty, i.e. if [Γ] contains at
least one admissible atlas stf. This requires that the class {g^} of solutions
obtained by means of the co-moving scheme contains at least a field
flfίt/6(Cl5C3).

The previous arguments show that this condition is surely satisfied
provided that the equations describing the internal structure of the
continuum and the initial and boundary data are sufficiently smooth
(at least (C1?C3)).

Part of this work has been performed while the Author was a scholar at the Dublin
Institute for Advanced Studies, School of Theoretical Physics. The Author wishes to
express his sincere gratitude to Prof. J. L. Synge and to Prof. J. R. Me Connell for their
warm hospitality, and to Prof. P. C. Vaidya for many helpful discussions.
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