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Abstract. We discuss the possibility of describing unstable systems, or dissipative
systems in general, by vectors in a Hubert space, evolving in time according to some non-
unitary group or semigroup of translations. If the states of the unstable or dissipative
system are embedded in a larger Hubert space containing "decay products" as well, so that
the time evolution of the system as a whole becomes unitary, we show that the infinitesimal
generator necessarily has all energies from minus to plus infinity in its spectrum. This
result supplements and extends the well-known fact that a positive energy spectrum is
incompatible with a decay law bounded by a decreasing exponential. As an example of
both facts, we discuss Zwanziger's irreducible, nonunitary representation of the Poincare
group; and we find its minimal, unitary extension (the Sz.-Nagy construction). The answer
provides a mathematically canonical approach to the Matthews-Salam theory of wave
functions for unstable, elementary particles, where the spectrum difficulty was already
recognized. We speculate on the possibility that the Matthews-Salam-Zwanziger represen-
tation might be a strong coupling approximation in the relativistic version of the Wigner-
Weisskopf theory, but we have not shown the existence of a physically acceptable model
where that is so.

I. Discussion

There have been some conjectures in recent years that strong inter-
action resonances in relativistic quantum physics may have a kinematic
characterization as "unstable particles," belonging to complex rest mass
eigenvalues of a nonunitary representation of the Poincare group [1—4].
That such resonances might have an intrinsic "integrity"1 [5] is an
appealing idea, suggested by the concept of "nuclear democracy" [6],
more particularly by the analytic S-matrix philosophy that resonance

1 Our use of the word "integrity" is less precise than that of Lurcat [5]. We have in
mind the same thing that we mean by the equally fuzzy "kinematic concept of unstable
particles." We use it as a term whose potential meaning is to be realized by the success
of some mathematical scheme such as that discussed here. Vaguely, it should mean that
there are characteristic properties of unstable particles that can be isolated independently
of any interaction and discussed without the aid of interaction dependent quantities like
the S matrix, or the relation between free and total Hamiltonians.
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and stable particle poles are to be treated on the same footing, although
they lie on different sheets, and by the Regge phenomenology, which
classifies stable and unstable particles alike by Regge trajectories. Indeed,
practitioners of the latter philosophy sometimes assign some sort of
integrity to entire Regge trajectories, which are to be exchanged just like
particles, and which in some theories are to generate "Landau singu-
larities" via iteration of unitarity, just as elementary particles do.

Although analytic S-matrix theorists would not feel compelled to do
so, if only because Hubert space has a vestigial role in their concept,
these ideas naturally suggest that one should try to associate unstable
particles with representations of the Poincare group, by analogy with
Wigner's classification of stable, elementary systems according to their
masses and spins. Some ways of doing that have been proposed [1-4] 2.

Although it does not explicitly push the correspondence between
elementary systems and representations of the Poincare group, the work
of Matthews and Salam [1] epitomizes both the attractive features and
the difficulties in physical interpretation of such an approach. They try
to make sense out of the description of an elementary unstable particle
by an ensemble of states decaying in proper time in the center of mo-
mentum frame by exp(— imτ — γτ\ for τ^O, where m>0 and y > 0
represent the mass and one-half the width. By Fourier transformation,
they get a mass distribution density matrix that is the usual Lorentzian
shape, but which includes all masses from plus to minus infinity.

They attempt to associate a local field with the unstable particle,
whose Umezawa-Kallen-Lehmann spectral function is of the Lorentzian
shape, cut off sharply below the physical threshold for the stable decay
products. In their model, the field for an unstable elementary particle is
conceived as a function of the free fields of the decay products.

Unfortunately, the modern development of rigorous field theory
makes it clear that their model is unrealizable, if taken too literally, in
which case the unstable particle field would have to be in the Borchers
class of the free fields; and up to now no realization exists. Their remarks
on the sense in which an elementary unstable particle can be described
by a mass wave function in the Hubert space of free decay products still
have a point; and we aim to discuss that below; but without the field
theoretical underpinning, their own criterion by which a theory of
elementary unstable particles is to be considered successful is not satis-

2 We do not attempt to review all of the fairly substantial literature on unstable
particles. Much of it can be traced from the references we cite. The paper of Lurcat [5]
and the book of Newton [7] are especially useful for that purpose. Lest there be some
misunderstanding, let us emphasize that it is not our purpose to criticize the orthodox
ways of understanding resonances and unstable particles; but rather it is to explore how
far a group theoretical description might reasonably be pushed.
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fied; namely, that it should be clear in what sense the kinematic descrip-
tion is or can be an approximation to dynamics.

We accept that as a sensible criterion; but the best we can do in this
paper is to formalize some of the reasons why it is difficult to satisfy, and
has not been satisfied even up to now, if one insists too strongly on
a kinematic concept. We do propose a speculation on how the Matthews-
Salam approach might conceivably be justified as a strong-coupling
version of the Wigner-Weisskopf model.

Zwanziger's work [2], although done independently, is related to the
wave-function aspect of the Matthews-Salam theory. He considers a
nonunitary, irreducible representation of the Poincare group, defined on
the space of four- velocity wave functions

ί
λ=-s

with four-momentum operators

u0 = j/1 + ii2, Pμ = (m — ί y ) u μ , m > 0 , y > 0 ,

which are normal3, but not self-adjoint. The translations are represented
by the nonunitary operators T(b) = exρ(iP fo), while the Lorentz trans-
formations have the usual, unitary representation for half-integer spin S.
The squared mass operator is a complex, Poincare invariant, P - P
= (m-ίy)2.

Zwanziger showed that the vectors in #fυ evolve and decay expo-
nentially for positive times4

in the way characteristic of an unstable particle of rest mass m and
invariant lifetime τ = 1/2 y. His representation is thus a candidate to
realize in an economical way the concept of an unstable particle as an
elementary system, transforming according to an irreducible, nonunitary
representation of the Poincare group. This representation was also
studied by Kawai and Goto [4], who discussed its second quantization
in a way different from that of Matthews and Salam.

Beltrametti and Luzzato [3] considered a more general class of non-
unitary, irreducible representations, of which Zwanziger's becomes a
special case.

3 A normal operator commutes with its adjoint.
4 For negative ί, the evolution operators are unbounded, and ψt will be defined only

for vectors in a dense domain. For positive ί, V(t) is bounded and no domain questions
arise; furthermore it is a contraction, i.e., its bound is not bigger than one, so it does not
increase the norm of any vector on which it operates.
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None of these authors included a criterion of acceptability like that
of Matthews and Salam in the scope of their discussions.

One can imagine variations on this approach to allow reducible
representations of the group, especially if he wants to include several
spins [8], or a Regge trajectory, in one representation having some
properties of integrity whose precise formulation is to be discovered.

We want to discuss the physical interpretation of the general type of
theory with a group law of time evolution, but first let us mention the
rather different proposal of Lurςat [5]. He describes unstable particles
by a multiplicity-free representation of the Poincare group on a space
of density matrices belonging to characteristic mass distributions such
as one observes in the decay products. So far this is just an abstraction
of some key elements of the Matthews-Salam theory, as he points out.
But in addition he requires that the density matrices correspond to
intrinsically impure statistical mixtures, due to the operation of a con-
tinuous superselection rule in the mass. He appears to rule out the
possibility of discussing the time evolution or decay law of such states,
making a sharp distinction between his concept and that of a metastable
state, for which such things make sense. The major criticism of his theory
is the same as that of the others; a clearer picture of how the kinematic
description can be fitted into some dynamical scheme needs to be
developed.

Let us return now to the type of theory where unstable particles
correspond to a representation of the Poincare group with nonunitary
time evolution. It seems natural to interpret the nonunitarity of the time
evolution, or the decay of the unstable particle vectors in 3tfυ for positive
times, as being due to a loss of probability from 2tfυ into the Hubert
space of states of the decay products, J>fD. Unfortunately, the most
obvious way of formulating this interpretation leads inevitably to the
appearance of unbounded energies, both above and below, in the space
of decay products.

This phenomenon has been known for some time, in case the decay
law for positive time is exponential [9]. We review that situation in the
Appendix. If the time evolution in ̂  obeys a group law for positive
times (or a semigroup law), and if it is represented by nonunitary contrac-
tions that are also normal operators, having a normal infinitesimal gen-
erator such that the imaginary part is strictly less than a negative number,
as in Zwanziger's theory, that can be shown to enforce a decay law
bounded by an exponential. Our main technical result in this paper is
a precise statement and proof of the fact that the phenomenon of un-
bounded negative energies in the spectrum occurs whenever the semi-
group law is obeyed, whether or not the exponential bound is valid.
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We formalize the above approach as follows. We assume that an
elementary unstable particle has enough integrity to deserve a (separable)
Hubert space of states of its own, ̂ ^ and we assume that the evolution
of these states for positive times is described by a weakly continuous,
one-parameter family of contractions V(t\ which form an Abelian
semigroup:

V(t)V(t')=V(t + tf) for ί,ί'^0, 7(0) = / .

We assume that V(t) is not unitary for any t > 0. We have in mind that
φt = V(t) φ decays strongly, but we don't need detailed properties of
V(f) for our argument. It need not be defined at all for negative ί. It is
a standard theorem that every continuous, contraction semigroup of the
above type has as infinitesimal generator a dissipative operator5; and
our remarks apply not only to unstable particles but to a certain class
of dissipative systems in general. It goes without saying that the time
evolution typically does not obey a semigroup law in dissipative situa-
tions that arise by considering non-isolated subsystems of a larger,
isolated system.

To interpret the nonunitarity of V(t) as being due to the fact that we
are restricting ourselves to the space of unstable particle states, we say
that if we included the space of the decay products as well, and described
the evolution of the system "unstable particle" plus "decay products" as
a whole, there would be no loss of probability; the time evolution would
be unitary.

Our framework is thus the following: there is a larger Hubert space
Jj? in which j^v is embedded, J4fv C ̂ f, and there is a continuous, unitary
representation U(t) of the time evolution group on Jtf* which becomes
V(i) when restricted to positive times and to the subspace J^. Namely,
for ί^O,

where Eυ is the projection operator for 3tfυ in ffl.
We are always free to decompose jtf into a direct sum of 3tfυ and the

rest, and if V(t) actually has the property of causing the vectors in j^υ

to decay strongly, it is natural to call the orthogonal complement of
Jtfυ in #f the space of decay products ̂  : 3tf = ̂ V®^D. In any case
we can use 3?D as a notation for the orthogonal complement.

Now there is a construction due to Sz.-Nagy [10] that gives, for any
weakly continuous representation V(t) of a one-parameter, Abelian
semigroup by contractions on a separable Hubert space jj?U9 an extension
to a larger space Jf D jfϋ9 and a unitary group representation U(t) which

5 If V(t) = exp(— iAt\ the infinitesimal generator A is dissipative when it satisfies
ImA < 0. Of course the exponential has to be defined when A is not normal.
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extends the semigroup V(f) in the way described above. This construc-
tion gives the smallest extension possible, up to an isometric iso-
morphism. Any other unitary extension of V(t) contains Sz.-Nagy's
minimal extension in some subspace. Actually, it is only the minimal
extension that is directly relevant for the physical interpretation, because
it is characterized by the property that U(t) ̂  generates the extension
space 2tf. That is, the set of vectors of the form U(t) φ, with φ in j^υ,
spans Jf. Thus, vectors in J^ cannot evolve into vectors with com-
ponents outside the minimal extension space; and Sz.-Nagy's extension
is the only one that has a right to be associated with decay products of
states in Jjfv.

In Section II we use the Sz.-Nagy construction to show that the
spectrum of the infinitesimal generator of any unitary extension U(t)
= exp(— iEt) of a nonunitary, continuous semigroup has all points from
minus to plus infinity in its spectrum. We do that by exhibiting nonzero
vectors ψ in J4?D which are sharply localized in time; that is, there exists
a number B such that <φ, U(t) φ> = 0 for all |ί| > B. That the spectrum
of E is the whole real line is then an easy consequence of the Paley-
Wiener theorem.

Thus our scheme seems to be unphysical; as soon as we discuss the
system as a whole, we find that the energy is unbounded from below.

Nevertheless, Zwanziger's proposal of a group representation for
elementary unstable particles is appealing, and the fact that we find it
difficult to interpret does not mean that we have to abandon it as mean-
ingless. Thus, we have thought it worthwhile in Section III to look at
the Sz.-Nagy extension of Zwanziger's representation. The Sz.-Nagy
theory is not restricted to one-parameter semigroups, but covers a wide
class of several-parameter group structures, and other structures as well.
For Zwanziger's representation, it is quite straightforward to reduce the
extension problem to a one-parameter problem for the proper-time
evolution, and to write down the answer explicitly. The result is a mathe-
matically canonical derivation of the Matthews-Salam wave function
(the Lorentzian distribution mentioned earlier), which describes the
initially undecayed state in the center-of-momentum energy representa-
tion. We call this explicit, unitary extension of Zwanziger's nonunitary
representation the MSZ representation.

The interpretation suggested by the Sz.-Nagy extension theorem
seems to us a step removed, however, from that of Matthews and Salam.
They appear to interpret the Breit-Wigner wave function (cut off below
the physical threshold) as the mass distribution of the unstable particle
considered as a superposition of decay products; i.e., the unstable particle
is just a special vector in the Hubert space of free decay products. A more
orthodox view, and we believe a more natural one, would be that of the
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relativistic version of the Wigner-Weisskopf theory [11, 12], where the
undecayed, unstable particle state would lie orthogonal to the space of
free decay products and would have, neglecting the negative energy
difficulty, an approximately Breit-Wigner distribution in total, inter-
acting mass. The asymptotic states of the unstable particle for large
positive time would then lie in the orthogonal space of free decay pro-
ducts; and they would have the same distribution in free mass as the
undecayed states in total mass, because the wave operator would map
the total mass operator into the continuous part of the free mass
operator6. For the same reason, the decay law of the asymptotic state
according to the free mass operator would be the same as that of the
initially undecayed state according to the total mass operator, and many
of the statements of Matthews and Salam on time evolution would be
recovered, if reworded a bit.7

We have already admitted that we cannot say such a scheme works
unless we understand how the MSZ representation, with its negative
energies and exponential decay law, can be a natural, first approximation
to the "true" dynamical situation. This entails a dilution of any kinematic
aspect in the MSZ concept of an unstable particle, but that fact of life
is well recognized in the literature. In the simple, exactly soluble version
of the Wigner-Weisskopf model, [11, 12, 14-17] where the interaction
has nonvanishing matrix elements only between the undecayed, discrete
energy state and continuum energy states of the free decay products
(weak coupling approximation), it is well understood in what sense the
exponential decay is a first approximation, arising from the presence of
a pole on the second sheet of the appropriate matrix element of the
resolvent of the full Hamiltonian. By making the exponential decay
approximation to the weak coupling model, one would recover Zwanzi-
ger's representation in the subspace fflυ. The Sz.-Nagy extension of that
approximation would then have no obvious relevance to the weak-
coupling mass operator from which one started, nor indeed to the
original Hubert space.

That is perhaps the correct attitude, and we lean towards it ourselves,
but in Section IV we speculate on another possibility that assigns a basic
role to the MSZ representation. We propose a more complicated Wigner-
Weisskopf model, where the interaction part only of the time evolution
is given by the Sz.-Nagy extension of Zwanziger's representation. In
other words, maybe the MSZ representation can be understood as the

6 Coester [13] has emphasized that the relativistic theory of wave operators in the
center of mass closely parallels the non-relativistic theory, for a physically nontrivial class
of models.

7 Unless the above is possibly the interpretation they intend. Their discussion is not
very detailed on this point.
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strong-coupling approximation to a relativistic, "two-level" theory, one
level being the undecayed, unstable state and the other the continuum
of free decay products. The negative energy problem is thereby avoided,
because there is no physical reason why the spectrum of the interaction
mass should not go to minus infinity.

It is of course not intuitive nonsense to think that the exponential
decay law, in the case of strongly decaying elementary particles, might
be a strong-coupling approximation; but we want to emphasize that this
hypothesis applied to the MSZ theory is highly speculative, and perhaps
even impossible. In Section IV we discuss the mathematical formulation
of such a theory, and we point out that it is nontrivial to prove the
existence of a total mass operator that is selfadjoint and positive. At least
we have been unable to do so up to now.

We do remark that if such a total mass operator exists, its kinetic
part cannot dominate its interaction part in the Kato sense [18]. In
particular, the kinetic part always has vectors in its domain that are not
in the domain of the interaction part, so that if the total mass can be
defined at all in the Kato sense (which of course is not the only possibility),
it has to be the interaction part which dominates the kinetic part. Thus
we use the speculative language: if the theory is defined at all, it may be
an intrinsically strong coupling theory8. From this one can see why the
positivity condition might be delicate; the spectrum of the interaction
part must still be perturbed strongly enough to remove the negative
energies.

In any case, the physical content of the Wigner-Weisskopf model is
stable against a wide range of modifications that affect the dynamical
details but not those features that make us willing to say it describes an
unstable system, and we think it reasonable to expect that a physically
meaningful interpretation of Zwanziger's representation and its extension
should fit into that framework.

II. Trouble with a Semigroup Law

We aim to prove the following theorem:

Theorem. Let V(t) be a weakly continuous, one-parameter semigroup of
contractions on a separable Hilbert space ^v, satisfying V(t) V(t'}
= V(t + ί') for ί, t' ̂  0, and 7(0) = /. Let V(t) be nonuriitary for all t > 0.
Let U(t) be any extension of V(t) to a weakly continuous, unitary represen-
tation of the one-dimensional translation group on a larger Hilbert space
tf D 3ev, such that V(i) = pr U(t) for t ̂  0.

Then the spectrum of the infinitesimal generator E of U(t) = exp(— iEt)
is the whole real line.

This mathematical statement is not a priori related to the shortness of the lifetime.
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We have already indicated that it is sufficient to prove this theorem
for Sz.-Nagy's minimal construction. His construction is minimal in the
sense that 3? is spanned by vectors of the form U(t) φ where φeJ^v.HQ
showed that all such minimal extensions are isomorphic and isometric.
Since any unitary extension contains an invariant subspace of that form,
on which the restriction of U(t) is clearly unitary, the theorem is reduced
to the case of Sz.-Nagy's construction.

Now let us review his construction9, because we have to use its
detailed properties.

First, we define V(-t) = V(t)* for t > 0.
Consider the vector space of all functions of s with values in ^fv,

where — oo < s < oo, and where the operations of vector addition and
scalar multiplication are defined in the obvious way. In this space,
Sz.-Nagy identifies two linear submanifolds, F and G. The manifold G
consists of those functions g(s) that vanish for all but a finite number of
values of 5. The manifold F consists of those functions of the form

f(s)=ΣV(u-s)g(u), (2)
u

where g € G and the sum is over the values of u for which g(u) Φ 0.
It is the manifold F that is going to correspond to the extension

space J^. We make F into a pre-Hilbert space by introducing the bilinear
form [/',/] = Σ </'(«)» 0(s)> = Σ <0'(«),/(«)>

(3)
'(»)> V(s-u)g(sy>.

This form is unchanged if the same / and /' are represented by different
functions g and g'. It satisfies all the axioms for a scalar product on
a Hubert space, including positivity. In particular, [/, /] = 0 if and only
if the function /(s) is zero for all s. The extension space 3? is the com-
pletion of the manifold F in the norm induced by the above scalar product.

The space J^v is embedded in 3£ by the sequence of linear maps :

where (50>s is a Kronecker δ. The embedding is isometric: [/φ,/φ] = <</>, <p>.
The projection of any element of ffl represented by a function /(s)

in F onto ^fv turns out to be /(O), represented by

(4)

9 The relevant theorem is Theorem IV of [10]. Our summary follows §§ 6 and 9 of
that work.
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The unitary extension U(t) is defined by

u- s) g(u)

; (5)

It is clear from the definition that U(t) leaves the manifold F invariant
and that it is a representation of the translation group. It is not hard to
show that it is unitary in the scalar product (3), and that it is weakly
continuous if V(t) is.

That V(t) = EuU(t)Eu follows from the calculation:

\ EvU(t) Evn (s) = V(- s)

For later use, we need the matrix element

U', U(t)f] = Σ <9p V(* + t~Ψ βi> > (6)
i,j

where we have introduced the notation

g. = g(st), g'j = gf(sfj) for the nonvanishing values of g and g' .

Our proof of the theorem goes by two lemmas.

Lemma 1. There are nonvanishing vectors ip in ̂ D = (I — Ev) 2tf which
are localized in time in the sense that

<φ,E7(f)v>> = 0

for \t\ large enough.

Proof. Consider those vectors in #P represented by a finite sum

where gt e J^v and where all st have the same sign (zero is allowed). Let
F+ be the linear submanifold of F where all sf jgO; and let F_ be that
where all st ̂  0.

We claim that the matrix element of U(t\ projected onto 3?D,
between any two vectors in F+ or between any two vectors in F_ ,

=[/',(/ -E
vanishes for |ί| ̂  max [sup js,-! , sup|sj|].

i j

Let's look at F+ the argument is the same for F_ . Substituting the
formula
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into (6), we get for M(ί):

+ <g'pV(-s'j)V(+t)V(si)giy}.

We have used the fact that V(s)* = V(—s). Next, we look at a fixed value
of i and j in the sum, and we distinguish two cases:

(i) Choose —^5^0,50 we can use the semigroup property to write
V(st + 1- s'j) = V(- s'j) V(st + t) and V(- s'j + t)=V(-s'j)V(+t). The four
terms add to zero by inspection.

(ii) Choose ί ̂  s}^ 0, so we can write V(si + 1 - s)) = V( - s'j+t) F(sf)
and V(Si + t)=V(+t) V(st). Again we get zero.

Clearly, the sum over ί and j vanishes if we take \t\ not less than the
largest of the st and sj.

All that remains is to verify that some of these vectors have a non-
vanishing projection into J^D. Consider the vector

f(s)=V(-s)φ + V(-s + a)φ,

with φe^v. It belongs to F+ or F_, respectively, if α is positive or
negative. Then

and a short calculation gives

[/, (/ - Eυ) n = <<P, U ~ V(a)* V(aJ]

Thus, if there is any positive number a for which V(a) is not unitary,
either F(α)* V(a) φ / or V(- α)* V(-a)= V(a) V(a)* φ /; and there must
be some vector φ such that the matrix element above does not vanish.
That proves Lemma 1, if we put ψ = (I — Ev)f. Q

Lemma 2. Let U(t) = exp(— iEt) be a weakly continuous, one parameter,
unitary group on a Hίlbert space ffl . Let <φ, U(t) ψy = Q for \t\^.B> 0.
Then either ψ = 0 or the spectrum of E is the whole real line.

Proof. This lemma is widely known among both physicists and
mathematicians. It is a variant of the converse of the Paley-Wiener
theorem. For completeness we give the proof.

Let E = § λ dE(λ) be the spectral decomposition of the self adjoint
operator E. Then
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is the Fourier transform of a bounded measure. If it vanishes outside
a bounded region in £, the measure is entire analytic. It either vanishes
everywhere, in which case ψ = 0, or its support is the whole line from plus
to minus infinity, in which case all those points are in the continuous
spectrum of E. 0

III. Unitary Extension of Zwanziger's Representation

We find the particular construction of Sz.-Nagy used in Section II
a bit awkward for looking at specific examples, such as Zwanziger's
representation. Although Sz.-Nagy has other versions of the construction
that might be more suitable, we proceed instead by guessing the answer
on "physical" grounds, and verifying that it is correct.

Thus, let 3^v be the space of four-velocity wave functions corre-
sponding to Zwanziger's nonunitary representation for complex mass
Γ = m — iy and real spin S, as described in Section I. We are looking for
an embedding of tffυ into a larger space Jf, and a minimal, unitary
extension to Jf of the representation

V(b,A)=T(b)U(A) (7)

of the Poincare group, where A e SL(2, C) corresponds to a homogeneous
Lorentz transformation, represented by the unitary operator U(A). The
homogeneous transformations do not get extended, being already
unitary; and to get a relativistic extension of the translations, we extend
the semigroup of nonnegative, proper time evolution operators, by the
prescription below.

We can write the action of the translations in the form

[T(b)φ-](u) = eiΓ^φ(u), (8)

where τu = u-b, and we can emphasize the evolution in the center of
momentum frame as follows. Let C be the one-dimensional Hubert space
of complex numbers with the usual scalar product. We can trivially write

(9)

and we define the action of the proper time evolution on C by

z, (10)

for z e C. Suppose we have a minimal extension of the nonunitary semi-
group V(τ) for τ ̂  0 from C to a space J^M D C and a unitary representa-
tion exp(— i Mτ). Then we can define

jr = jf M ®jf ϋ 9 (ii)
23 Commun. math. Phys., Vol 21
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and U(b, A) = exp(i Mi/ b) U(A\ by which we mean the action

U(b, A) [ρ® φ(ιι)] - [expi MM - ft ρ]® [17(4) φ] (11) , (12)

where ρ e J^M. This is clearly a unitary, continuous extension of V(b, A\
satisfying the multiplication law for the Poincare group.

Because we expect an unstable particle to correspond to a particular
mass distribution, we can guess that the extension space JfM is naturally
identified with L2(IR1, dM), the elements of which are square integrable
functions ρ(M) on — oo <M< oo.10 And we can guess that the unitary
extension of V(τ) is

(13)

Now we have to find the one-dimensional subspace corresponding to
[F(τ),<C], and check whether we indeed have a minimal extension.

Let the one-dimensional subspace to be identified with C be spanned
by a fixed, unit vector ρv e J^M. The projection operator on this subspace
is Iρ^ x Qυ\, and the equation V(τ) = pr U(τ) for τ ̂  0 is equivalent to

<Qu,V(t)Qϋ> = e-iΓτ= ] dM\Qu(M)\2e-iMτ (14)
— oo

= F(τ).

The right-hand side satisfies F(— τ) = F(τ), and thus Iρ^l2 is the Fourier
transform of

F(τ) - θ(τ) e~ίΓτ + θ(-τ) e'iΓτ . (15)

In other words,

the familiar Lorentzian shape. These formulas were already written down
by Matthews and Salam, from a less abstract viewpoint.

We can choose

and the span of this vector fixes the subspace <C in J>fM. The extension
[C/(τ), 34?M~] of [F(τ),(C] defined in this way is minimal, because ρ^ does
not vanish anywhere; and we can generate any measurable function by
multiplying ρv with trigonometric polynomials formed from e~ίMτ and
taking linear combinations (infinite sums, if necessary).

If we had made a different choice of phase for ρv, multiplying by
expiφ(M), where φ is any real, measurable function, we would have

10 As usual, the choice of the measure dM is free up to measure equivalence.
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induced a unitary transformation of J^M by the map ρ-+ρ expfφ and
got a unitary-equivalent, minimal extension.

The extension space for {V(b,A\^'υ}, according to Eq. (1) and

(18)

and fflv is identified with the subspace of functions of the form
(M —Γ)-1 φ(u)λ. By the same reasoning as above, it is clear that the
functions of the form exp(fMw b) (M - Γ)~l φ(u)λ span Jf and thus the
extension \V(b,A\^~\ is also minimal.

Just as the theorem in Section II says, the spectrum of the mass
operator M on J«f, M being simply multiplication by M, contains all
values from plus to minus infinity. The unitary representation U(b, A) is
a multiplicity-free, direct integral of irreducible representations of the
Poincare group for fixed spin S and all masses - oo < M < oo. There is,
of course, a doubling in the sense that the representations [M, S] and
[—M, 5] are antiunitary equivalent to each other.

At first glance, it is tempting to try to give a physical interpretation
of the space J4fv, i.e., the wave functions in J^ having a Breit-Wigner mass
distribution, by cutting off the mass below the threshold M0 = Σ mj of
the n decay products in whatever channel, and embedding the space
jj?+ = Θ(M — MO) Jtf in the angular momentum S sector of the tensor
product space of n free particles. That is mathematically straightforward
to do. If n = 2, there is a finite multiplicity of ways (channels) to do that,
while if n ̂  3, the multiplicity of ways is countably infinite, according to
the number of representations of the Poincare group having spin S that
appear in the decomposition of a tensor product.

Matthews and Salam proposed a view like that. Leaving aside the
question whether the wave function ought to be cut off in a more
sophisticated way, we could argue that this provides a concept of an
elementary, unstable particle which in its ideal world has a distinguished
mass distribution from plus to minus infinity, but which in the real world
has open to it only decay channels with physical masses. We could say
that the real world distorts our view of the elementary, unstable particle
so that it does not obey an exponential decay law (which is close to the
accepted view), but that its wave function has a "memory" of its ideal
structure because it is analytic in the mass (up to a phase) and has a
unique analytic continuation to negative masses giving the group theo-
retical distribution.

We find that interpretation uncomfortable, if the natural interpreta-
tion of the Sz.-Nagy extension from which we "derived" it, is not to be
lost. If we say that the entire sector of the w-particle space in which the
cutoff extension is embedded is the space of decay products, any con-
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nection between the physical time evolution and that of the ideal Sz.-
Nagy extension is obscured. If, on the other hand, we say that only that
part of the rc-particle channel orthogonal to the cut-off 2tfv is the space
of decay products, as in the ideal Sz.-Nagy extension, we are still faced
with the problem of specifying the physical time evolution. If it is to be
simply that of the cut-off Sz.-Nagy extension, mathematically identified
via the embedding with that of n free particles, we have to reconcile two
interpretations of the same space: one, that of the unstable particle with
decay products; the other, that of n free particles.

Perhaps such a line of thought can be sustained, but we prefer to
follow the ideas of the Wigner-Weisskopf theory sketched in the
Introduction.

IV. A Possible Model

Let us discuss the possibility that the MSZ representation can be
understood as describing the "interaction part" of the time evolution, so
that the exponential decay law is realized in the approximation that all
kinetic terms in the invariant Hamiltonian or mass operator are neg-
lected. There is no reason in principle why the interaction should not
have a spectrum from plus to minus infinity, so that objection to the
MSZ representation could then be removed.

Thus, we reinterpret the variable M in the wave functions of vectors
in the unitary extension space to mean center of momentum interaction
energy, and we change its name to V9 replacing the notation L2(1R1, dM)
by L2(IR1, dV\ and reserving M for the continuous spectrum of the free
mass operator.

To specific the model, we apply the Wigner-Weisskopf theory, more
or less in the form developed by Hohler [11], restricting ourselves
always to the center of mass. Our Hubert space has the same structure
as before, $f — $fυ® 2fΏ, and we have a realization in which the inter-
action is diagonal, 34? = L2(]R1,dV). In this realization, the one-dimen-
sional space 2tfυ is identified, as before, with the span of the Breit-Wigner
wave function ρv(V).

Now we make a second identification of the components ^fv and
34?D. The space J4?v is interpreted as the only discrete eigenspace of the
free mass operator, corresponding to the undecayed, unstable, elementary
particle. We emphasize that by the identification Jήfv = <C. The space 3ti?D

is interpreted as that of the free, center of mass wave functions of the
decay products, belonging to the continuum of the free mass operator.
We can realize it in a representation where the free mass is diagonal by
the identification

Jj?D = L2 [R
1, Θ(M - MO) dM] = L2(M0, oo), MO > 0, (19)
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where M0 is the threshold of the free decay products. This gives a
realization

2tf = C0L2(M0, oo) (20)

in which the free mass operator M0 has the form

m>M 0, (21)

with the action
M0z = mz, zeC;

(M0/) (M) = (M£/) (M) - M/(M) , /e L2(M0, oo) .

As we described in Section III, only the space J-fD = L2(M0, oo) is to be
embedded in an angular momentum S sector of a space of n free particles.

Now we have two realizations of ̂  corresponding to the diagonaliza-
tion of the interaction and of the free mass, respectively. We determine
the dynamics when we give the correspondence between the two represen-
tations. The mapping between the two representation of j^ is trivial, so
we need only choose an isometry between the two representations of
JίfD. All such isometries are parametrized by picking O.N. bases in each
realization and putting them in one-to-one correspondence. Thus, let
φi9 ί= 1,2, ...,beon O.N. basis in L2(M0, oo); and let \pt be an O.N. basis
in the subspace of L2(1R1, dV) orthogonal to ρ^. Let U be the isometric
map

U : [CΘ£2(M0, αoQ-^ORSdF)

defined by
Uz = zρϋ9 ze<C,

(23)

Then on Jf = C®L2(M0, °o ), we can write the total mass in the form

M- MO + U'1 V U = MO + V . (24)

The freedom in the interaction operator V is exactly the freedom of
unitary transformations that commute with the projection operator Eυ

fOr tfγj.

To specify the model further, and hopefully make it a physically
reasonable description of an unstable particle, we have to look for a class
of C7's that guarantees several things:

(i) M ought to be defined as a positive, self-adjoint operator.
(ii) The wave operators should exist, and the asymptotic state cor-

responding to the initially undecayed state ρv,

ρp = lim eiM°τ e~™τ ρv = I7(oo, 0) ρυ ,-*
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ought to lie entirely in J^. The asymptotic states of vectors in 2ffΌ should
remain in J"fD. In a theory with time inversion invariance, the same
should be true of the incoming states. The wave operators l/(oo, 0) and
17 ( — oo,0) should be partial isometrics from jf onto JfD, so that the
S matrix

is unitary on j^D.
(in) The positive time decay amplitude (ρv, e~iMτ ρvy ought to be

approximately exponential.
(iv) The appropriate, retarded Green's function ought to have an

unstable particle pole on the second sheet. This property is well-known
to be related to the approximate validity of the exponential decay law.

The last two requirements, (iii) and (iv), are not matters of principle,
but rather features that experience indicates to be desirable.

Unfortunately, we have not been able to show as yet whether the
well-defined mathematical problem posed by these conditions, especially
positivity and self-adjointhess, has any solutions. If it does, then we
clearly have a Wigner-Weisskopf theory with a particular class of inter-
actions suggested, although indirectly, by the representation theory of
the Poincare group.

Even if self-adjoin tness and positivity can be solved, the rest of the
program is complicated by the fact that V has nonvanishing matrix
elements within J ,̂ and not just between j^Ό and 2tfD and within J .̂
The exact solution of the weak-coupling approximation, where the matrix
elements of the interaction within 2tfD are neglected, is well-known,
whenever it is well-defined, from either the Wigner-Weisskopf or the
Lee model [11, 12, 14-17]. In fact, we are going to conclude from the
remark just below that the weak-coupling approximation is not mathe-
matically defined in our case.

That fact is related to the basic question: how can V be chosen to
make M self-adjoint? Although it is not the only possibility, it is natural
to wonder whether M might be made self-adjoint by virtue of the Kato
condition. Kato showed [18] that the sum of two self-adjoint operators
A + B is in turn self-adjoint if A is bounded relative to B (or vice versa);
i.e., if the domain of B is contained in the domain of A and if

\\Aφ\\£a\\φ\\+b\\Bφ\\

whenever φ is in the domain of A, for some fixed a and b with 0 ̂  b< 1.
It is straightforward to see that whatever be the unitary transforma-

tion U in the definition of M,it is impossible to have V bounded relative
to M0, because the domain of M0 is the direct sum of J^ and the domain
of
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whereas the subspace J1^ is not in the domain of V, because

is not square integrable.
On the other hand, we have not been able to settle the possibility

that ¥ could be chosen to have its domain inside that of M0, and to
bound M0 in the Kato sense. We would call such a theory a strong
coupling theory. We think that such a possibility has a certain appeal
as a quasikinematic description for elementary unstable particles, for not
only would the unstable particle representation of the Poincare group
play a role, it would dominate.

In any case, however IM might be defined, we can see from this dis-
cussion that the weak coupling approximation is not defined as an
operator theory in our perhaps nonexistent model. It corresponds to
the decomposition

¥ = E
V
VE

V
 + E

V
VE

D
 + E

D
WE

V
 + E

D
VE

D
 ,

with the last term thrown out. What is left cannot be a self-adjoint
operator, because the fact that ρv is not in ^(¥) means that ED^fEv is
not an operator, although its matrix elements between Jj?D and j^v do
exist for the dense manifold of wave functions in ̂ D having sufficiently
rapid decrease at infinity in the V representation. Another way to see
that is to verify that while EVVED is defined as an unbounded operator
on the dense domain just mentioned, its adjoint is zero, according to the
mathematical definition.

Appendix :

Trouble with an Exponential Decay Law

The theorem proved here relaxes the condition that the evolution of
the unstable state obey a semigroup law, but imposes a more detailed
law of decay. It is well-known [9], and we just give a modern proof for
completeness.

Theorem. Let V(t) = EuU(t)Eu, where U(t) is a strongly continuous,
one parameter, unitary group on a Hilbert space Jf D J f^.

(i) // ||F(ί)φ|| ^C exp(-yί) for some y > 0 and all ί>0, and for
some nonυanishίng φ in J^, then the spectrum of the infinitesimal generator
of U(t) is the whole real line.

(ii) The same conclusion holds if we have exponential decrease only in
the weak sense that there are two vectors ψ and φ in J^v with <φ, φ> Φ 0
and |<φ, V(t) φ>| ̂  C exp(- yt) for some y > 0 and all t > 0.
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Proof. We can reduce the first case to the second. In the first case, if
we insert a complete set of vectors in ̂  we get

II v(t) φ\\2 = Σ <φ, v(ty Ψiy<Ψl, v(t) Ψy .

Each term in the sum is nonnegative, and hence has at least as good an
exponential bound as the sum. If φ Φ 0, there must be some value of the
index i for which (\pt, φ) Φ 0. Put \pi = ψ, and we are in case (ii).

Now M (ί) = <t/>, V(t) φy = <φ, U(t) φ>, because φ and ψ are in j^Ό. Let

-iλtM(t)=$dλJl(λ)e

where Jί(λ] represents the bounded measure associated with the spectral
decomposition of the generator E :

Since the matrix element M(ί) is a uniformly bounded, continuous func-
tion, the decomposition

is well defined in the sense of tempered distributions; and if we set

Mt(X)=-^ ] dtθ(±t)M(t)eίλt,

we get

It is clear from the definition that for real λ the tempered distribution
M+(λ) is the boundary value of a function analytic in the upper half
plane, while M _ (λ) is the boundary value of an analytic function in the
lower half plane.

Suppose some nonempty, open set G of real values λ is not in the
spectrum of E. Then G is excluded from the support of Jί(λ\ and

M+(λ) = -M_(λ)

for λ 6 G. It follows from the edge-of-the-wedge theorem for distribution
boundary values [19] that M+ and — M_ are different pieces of one
function analytic in the whole λ plane, except possibly for that part of
the real axis in the spectrum of E; and we see that Jί(λ) is just the dis-
continuity of this analytic function, as is well known.

So far, we haven't used anything except the fact that U(t) is unitary
and continuous. If we have a decreasing exponential bound on M(ί) for
positive ί, it follows that M+(λ) is analytic in the half plane lmλ> — 7,
which includes the real axis; and hence the function we just defined via
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analytic continuation and the edge-of-the-wedge theorem is an entire
function. We conclude that any open set & not contained in the spectrum
of E must be empty, for otherwise the discontinuity is zero and Jί(λ) is
zero, contradicting our hypothesis that <ιp, φ> = j dλ Jί(X) is nonzero.

Hence we find that the spectrum of E is the whole line. Q
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