
Commun. math. Phys. 21, 269—283 (1971)
© by Springer-Verlag 1971

An Ising Ferromagnet
with Discontinuous Long-Range Order

FREEMAN J. DYSON
Institute for Advanced Study, Princeton, New Jersey

Received February 16, 1971

Abstract. An infinite one-dimensional Ising ferromagnet M with long-range interactions
is constructed and proved to have the following properties. (1) M has an order-disorder
phase transition at a finite temperature. (2) Any Ising ferromagnet of the same structure
as M, but with interactions tending to zero with distance more rapidly than those of M,
cannot have a phase-transition. (3) The long-range-order parameter (thermal average of
the spin-spin correlation at infinite distance) jumps discontinuously from zero in the
disordered phase to a finite value in the ordered phase. All three properties have been
conjectured by Anderson and Thouless to hold for a particular Ising ferromagnet which is
relevant to the theory of the Kondo effect. Although M is not identical to Anderson's
model, the results proved for M support the validity of the physical arguments of Anderson
and Thouless.

I. Introduction

Anderson and his colleagues [1-4] have discussed the Ising ferro-
magnet with Hamiltonian

J>0, (1.1)

an infinite one-dimensional linear chain of spins whose state is specified
by the dichotomic variables μn= ±1. Using asymptotic estimates which
are probably correct although not rigorous, Anderson concludes that
the system (1.1), which we shall call the "Anderson Model," has an order-
disorder phase transition at a temperature Tc given approximately by

l . * (1.2)

It is known (Dyson [5] Ruelle [6]) that the model (1.1) with α replacing 2
in the exponent has a phase-transition for 1 < α < 2 but not for α > 2 or
α ̂  1. The Anderson model is thus a delicate border-line case, and a
rigorous proof that it has a phase-transition is much to be desired. In
this paper we do not supply such a proof. The best we can do in this
direction is to prove

Theorem 1. The linear Ising ferromagnet with Hamiltonian

J>0, (1.3)
n < m

has a phase-transition.
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But this obviously ephemeral result is not our main concern.
Thouless [7] has shown by an elegant physical argument, again not

rigorous but probably correct, that the phase-transition of the Anderson
model must be of an unusual kind if it exists. Thouless shows that the
long-range-order parameter

2

(1-4)

cannot be a continuous function of temperature at T= Tc. If a transition
occurs, then m2 must jump discontinuously, so that

m 2 ^m 2 >0 forT<T c , (1.5)

m2 = Q forΓ>T c . (1.6)

This discontinuity of m2 we shall call the "Thouless Effect." The numerical
estimates of Anderson and Yuval [4] give

m2 = 0.79, (1.7)

but a rigorous proof of Eq. (1.5) for the Anderson model is still lacking.
The purpose of this paper is to exhibit a one-dimensional Ising

ferromagnet for which a Thouless effect can be rigorously demonstrated.
We consider the "hierarchical model" MN defined in Dyson [5]. This is
a finite chain of 2N spins μ7 = ± 1 with the Hamiltonian

Σ (Spl2,-ιSp,2r), (1.8)
r= 1

£/gr2*. (1.9)

The positive coefficients bp specify the dependence of the interaction
between two spins upon their separation. The hierarchical model is
obtained from an ordinary linear ferromagnet by lumping together
interactions between blocks of 2P spins. Thus the Anderson model (1.1)
corresponds roughly to a hierarchical model with bp = J, and the linear
model (1.3) corresponds to a hierarchical model with bp = J log p. An
infinite hierarchical model M is defined by letting JV-»αo in Eq. (1.8).
For technical reasons the definition of the bp in Eq. (1.8) is not exactly
the same as in Dyson [5]. The definition adopted here simplifies the
analysis without changing anything essential.

The long-range-order parameter of the model M is defined by

(1.10)

(1.11)

)2yH, (1.12)
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the average in Eq. (1.12) being taken in the finite model MN. Both limits
(1.10) and (1.11) exist, since/(p) is a decreasing function of p and/N(p)
is an increasing function of N. To avoid trivial complications, we assume
that the series

00

R= Σ 2 "*^ (! 13)
q = l

converges. Then

m2 = 0 for βR<l, (1.14)

so that there is no long-range order at high temperatures (Dyson [5]).
Our main results for the model M are

Theorem 2. //
Lim(yiogp) = 0, (1.15)
p-> oo

then m2 = 0 for all β and there is no phase-transition.

Theorem 3. //

bp^J\ogp, J>0, (1.16)

then m2> ~rfor

jSJ>8, (1.17)

and there is a phase-transition with

~J<kTc<R. (1.18)
o

Theorem 4. //
J>0, (1.19)

then there is a Thouless effect at the transition, and Eqs. (1.5), (1.6) hold with

mc^[_kTc/(kTc + J) ]^~. (1.20)

Theorems 2 and 3 show that bp = Jlogp is the borderline case
between models with and without a phase-transition. They supersede
the weaker Theorems 5 and 6 of Dyson [5], which left a gap of undecided
cases on both sides of J log p. Theorem 4 shows that the Thouless effect
exists exactly at the borderline. The intuitive argument of Thouless [7]
indicates that an analogous situation occurs for linear models with
Hamiltonian

tf^-ΣΣ/^-^/W^ (1-21)
n < m

the Anderson model being here the borderline case.
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Namely, Eq. (1.21) should give no transition when

Q, (1.22)

a transition when

f(n)^Jn~2, J>0, Σ/(n)<oo, (1.23)

and a Thouless effect when

jn-29 J>0. (1.24)

It is tempting to make a conjecture generalizing these results to a
much wider class of circumstances.

Conjecture. Suppose an infinite Ising ferromagnet of any kind has a
Hamiltonian depending continuously upon a real parameter α, with a
critical value α0 such that an order-disorder transition occurs for α ̂  α0 but
not for α<α0. Then a Thouless effect will occur at the transition for the
borderline model a = oc0.

It is unlikely that a conjecture of this sort would be valid for all
possible ferromagnets. The problem is to establish a precise definition
of the class of ferromagnets for which it holds, together with a specifica-
tion of the topology in which the Hamiltonian is to be assumed con-
tinuous.

The remainder of this paper is concerned with the proof of Theorems
2, 3, 4. Theorem 1 is an immediate corollary of Theorem 3. In Section III
we digress briefly to prove the analog of Theorem 3 for a classical Heisen-
berg ferromagnet, and to explain why no Thouless effect is to be expected
in a Heisenberg model.

II. Proof of Theorem 3

The proof of Theorem 3 exploits in a straightforward way the hier-
archical structure of the model MN, which consists of two identical
models MN_! with their total spins coupled together. We make use of a
lemma which may be stated in physical terms as follows. Suppose a
finite ferromagnet F is composed from two ferromagnets F1 and F2 by
coupling their total spins together. Let the root-mean-square spin of
Fi and F2 separately be R{ and R2. Let Ff be the two-spin ferromagnet
obtained by coupling two Ising spins of magnitude Ri and R2 with the
same coupling by which F1 and F2 are coupled in F. Then the mean-
square spin of F is at least as large as the mean-square spin of F'.

The lemma can be stated more concisely in probability-theoretic
terms.
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Lemma 1. Let x be a random variable with a probability distribution
which is bounded and symmetrical about zero. Then for any positive real α

[<x exp (αx)>/<exp (αx)>] ̂  x tanh (αx), (2.1)

with
x—IY* 2 yi* ί22ϊA — L\Λ / J \^ ^)

The lemma is proved at the end of this section. We now proceed with the
deduction from it of Theorem 3.

Consider the model MN, with Hamiltonian (1.8), and coefficients bp

satisfying Eq. (1.16). We write

s = S J V _ l t l , ί = S N _ 1 > 2 , (2.3)

with Sp>r defined by Eq. (1.9). Then

HN = Hs + Ht — 21~2N bNst, (2.4)

where Hs, Ht are functions of the μ^ internal to the blocks whose sums
are s, t respectively. Hs is the Hamiltonian of the model MJV-I The
partition-function of MN is then

«si), (2.5)

a = 2l-2NβbN, (2.6)

where Y (s) is the part of the partition-function of the model MN_!
derived from states with

Σμj = s. (2.7)

Y(s) is positive and is an even function of s. The definition (1.12) gives

We apply Lemma 1 to Eq. (2.8) with

x = st, (2.9)

and the probability distribution

P (χ) — (ΣΣ ^(s) γ(^}/(Σ Y(s)}2 (2.10)
\st-x // \ s /

The lemma gives

1 ~ 2 N x tanh(αx), (2.11)
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with

x = (Σs 2Y(s))/(Σ y(s))=<s2>w_1 . (2.12)

By Eq. (1.12),

x = 22N~2fN_1(N-ί). (2.13)

Since also

/„(#-!) £/*_!(#-!), (2.14)

Eq. (2.11) implies

(-/f &„/„_!<#- I))]-1. (2-15)

Now we use the hypothesis that bN and β satisfy Eqs. (1.16), (1.17). Let

μN = (N/(N + 1))/N(JV) <fN(N) . (2.16)

Then Eqs. (1.16) and (2.15) give

(μw/Aiw_1)£(l-Λr2Γ1(l+ΛΓ'"'*-r1 (2.17)

By the definition (1.12),

/Ί = τ/ι(l)^i (2.18)

If Aίfί - 1 = i f°r anY value of N, then Eq. (1.17) and (2.17) give

/^iα-AΓ'Γ'α + ΛΓ 2)- 1^*. (2.19)

Therefore Eq. (2.18) implies μN~^ | for all IV ϊ; 1. But then

for all ΛΓ ̂  p ̂  1, and Eqs. (1.10) and (1.11) imply

m2 ̂  i . (2.21)

This completes the proof of Theorem 3.
To deduce Theorem 1 from Theorem 3, it is only necessary to observe

that the interactions in the linear model (1.3) are everywhere stronger
than those of the hierarchical model with bp = ̂ J log p. The model (1.3)
therefore has long-range order at least for

jSJ>24, (2.23)

by virtue of Griffiths [8].
Proof of Lemma ί. The function

φ (α) = «x exp (αx)>/<exp (αx)» (2.24)
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is continuous and differentiable for all real α. Therefore

(δφ/δα) = «x2 exp αx>/<exp (αx)» — φ2

= «x2 cosh αx>/<cosh αx» - φ2 (2.25)

^<*2>-φ2,

since x2 is a monotone function of (cosh ax). If we write

φ(α) = xtanh(αx), (2.26)

then Eq. (2.2) gives

(dip/da) = (x)2 -ιp2 = <x2> - ιp2 , (2.27)

and therefore

(S<p/Sα) + φ2 ̂  (3φ/3α) + ψ2 . (2.28)

Suppose if possible that φ<ψ for some positive α t . Then Eq. (2.28)
gives

(d/dx)(φ-φ)>0, α-oq. (2.29)

But

φ = φ = 0 , α = 0 . (2.30)

Therefore the differentiable function (φ — ψ) must have a negative
minimum for some α2 in the range 0 < α2 < α x . But then Eq. (2.28) would
be violated at α = α2. Hence φ^ip for all positive α, and the lemma is
proved.

III. Digression on the Classical Heisenberg Model

Consider a classical Heisenberg version of the hierarchical model
MN. The Hamiltonian is still given by Eq. (1.8), (1.9), but each μj is now a
unit vector free to vary over the surface of a sphere in 3-dimensional
Euclidean space. The product (Sp,2r-iSp,2r) m Eq. (1.8) means the
scalar product of the two vectors. The long-range-order parameter m2

of the infinite model M is defined by Eqs. (1.10)-(1.12) as before, with
(Spίf)

2 meaning the square of the length of Sptf.
The proof of Theorem 3 can be repeated almost word-for-word for

the classical Heisenberg case. The scalar product (s - f) appears instead
of si in Eqs. (2.4), (2.5), (2.8). Instead of Lemma 1 we use

Lemma 2. Under the same hypotheses as in Lemma 1,

[<exp (αx)>/<x~ ί exp (αx)>] ̂  x coth αx . (3.1)
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Lemma 2 has the same physical meaning for the classical Heisenberg
ferromagnet as Lemma 1 has for the Ising ferromagnet. Remarkably,
the proof of Lemma 1 also applies without change to Lemma 2. When
the average over the directions of the vectors s and t is taken in Eqs.
(2.5) and (2.8), the resulting ratio is of the form of the left side of Eq. (3.1).
Lemma 2 then gives instead of Eq. (2.11)

^^SCcothία^-ία*)-1]. (3.2)

From this it is simple to deduce

/ivW^v-i^-lMW1- (3-3)

So we have proved

Theorem 5. The classical Heisenberg hierarchical model has a phase-
transition if

00

B = Σ b-l<κ. (3.4)
p = l

It has long-range order so long as

β>B. (3.5)

This theorem can probably be proved in essentially the same way
for the quantum Heisenberg model. It is considerably stronger than
Theorem 7 of Dyson [5]. It also seems likely that for sequences bp which
are positive and increasing with p the condition (3.4) is necessary for a
phase transition in Heisenberg hierarchical models. If so, we see here a
qualitative difference in behavior between Ising and Heisenberg ferro-
magnets. In the Ising case, there exists a borderline model bp = J log p
which is the "weakest" ferromagnet for which a transition occurs, and
this borderline model shows a Thouless effect. In the Heisenberg case,
there exists no borderline model since there is no "most slowly con-
verging" series (3.4). Thus we do not expect to find a Thouless effect in
any one-dimensional Heisenberg hierarchical ferromagnet. The argument
of Thouless [8] would also not lead one to expect a Thouless effect in a
linear Heisenberg ferromagnet.

IV. Proof of Theorems 2 and 4

The basic idea of the proofs of Theorems 2 and 4 is the same as that
which we used for Theorem 3. We seek to establish an inequality giving
an upper bound for the mean-square sum of 2P + l spins in terms of the
mean-square sum of 2P spins. According to Eq. (1.2) this means that we
require an upper bound for fN(p+ 1) in terms of/N(p). In the case of
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Theorem 3 it was sufficient to deal only with fN (N) and fN _ ^ (N - 1),
since the monotonicity properties oϊfN(p) imply

m2^ ίim/N(JV).
N-> oo

However, an upper bound for m2 cannot be obtained from the fN (N)
alone. For Theorems 2 and 4 we are compelled to keep N and p as
independent parameters in order to pass to the limit according to Eqs.
(1.10), (1.11). We have to work with a block of 2P + 1 spins deep inside a
model MN with N > p, and the details of the analysis thereby become
much more complicated.

The tool which replaces Lemma 1 in the proof of Theorems 2 and 4
is the inequality (4.17) with (4.18) below. Eq. (4.17) has a physical interpre-
tation similar to that of Lemma 1. The essential difference is that ξNp

given by Eq. (4.18) is no longer a mean-square spin but involves the
mean-fourth-powers of the total spins according to Eq. (4.20).

We begin the proofs of Theorems 2 and 4 together. Once Eq. (4.17) is
reached, Theorem 2 can be disposed of easily. After proving Theorem 2,
we shall first discuss the physical motivation for the additional steps
which are required to prove Theorem 4, and then continue with the
details.

Consider a finite hierarchical Ising model MN with Hamiltonian
(1.8). Choose an integer p<JV, and let s, t be sums of neighbouring
blocks of 2P spins,

s = S>,2r-ι> t = Spt2r, (4.1)

s + f = Sp+1, r. (4.2)

We write then

u. (4.3)

Here H s, Ht are the parts of the Hamiltonian referring to spins internal
to s and ί, and Hu is the part referring to spins external to (s + 1). Also

l9 (4.4)

and
u=ΣujVj (4 5)j

is a sum over the spins external to (s + f) with positive coefficients HJ.
Further,

\u\£Σuj£Up = Σ 2~qbq. (4.6)
q = p + 2

20 Commun. math. Phys., Vol. 21
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The partition-function of MN can be written

ZN = Σ Σ Σ γ (*) Γ W W(u) exp [/JB^sί + βu (s + ί)] , (4.7)

where Y(s) and FΓ(w) are positive and even functions of s and u. Summing
over the possible combinations of signs of s, £, u gives

Z(s, t, u) = Y(s) Y(t) W(u) [coshβBpst coshβus coshβut (4.8)

+ smhβBpSt sinhβus sinhβwί] .

We write as in Dyson [5], using Eq. (1.12),

cN(p + 1) = 2fN(p + 1) -fN(p) = 2~ 2* <5ί>N . (4.9)

Here, by virtue of Eq. (4.7) and (4.8),

<sί>N = (ZNΓ ' Σ Σ Σ Y(s) Y(t) W(u) st exp ίβBpst + βu(s + ί)]

= (ZNΓ * Σ Σ Σ Z (s, t, u) st T(s, t, u) , (4.10)
S ί M

with

= tanh/?yt + tanh/?M5tanh/?uί u

v ' ' '

Both Z and si Tare even functions of s, ί, w, and so we may take s, ί, w all
positive in estimating (4.10).

Since log tanh x is a concave function of log x, we have

tanhx tanhj; ̂  tanh2 (xy)* < tanh (xy)} . (4. 12)

Therefore for positive s, ί,

T(s, ί, u) ̂  tanh [j?βpsί + β Up(st)^ . (4.13)

Then Eq. (4.10) implies

<5ί>N ̂  <*tanh (βBpx + β Upx-)y , (4.14)

where x=|sί| is a random variable with the probability distribution

9u). (4.15)

Now we use the fact that

ί) (4.16)
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is a concave function of x for positive x. Therefore

<xtanh (βBpx + βUpx-)y ^ <x> tanh (βBpξNp + βUpξ$J , (4.17)

with

(4.18)

The averages in Eq. (4.17) and (4.18) are taken with the probability-
distribution (4.15). Thus

<x> = φί|>N ̂  i <52 + t2yN = 22 */w(p) , (4.19)

<*2> = <s2ί2>N, (4.20)

and
|) = 22'. (4.21)

Putting together Eqs. (4.9), (4.14), (4.17) and (4.19), we deduce

f«(P+ 1) ̂  i/»(p) [1 + tanh (/fB,ξw, + 0 £/,&,)]

=/w(p) [1 + exp (- 2β (BpζNp + Upξ*Np))Tl (4.22)

Since fN(0)= 1, this implies

' +ί/^y)]-1. (4.23)

We can now rapidly proceed to prove Theorem 2. Suppose that Eq.
(1.15) holds. Then for any fixed β and all p^pQ, with p0 depending on β,
we have from Eq. (4.4) and (4.6),

(4.24)

(4.25)

Then Eq. (4.23) with (4.21) implies

fN(p) g Yf [1 + q- *] - 1 = [p0/p] . (4.26)
β = Pθ

From Eq. (1.10), (1.11) we have m2 = 0, and Theorem 2 is proved.
The proof of Theorem 4 is also based on Eq. (4.23), but the argument

is much more delicate. To explain the strategy of the proof, we first
suppose that instead of Eq. (4.18) we had

ξNp = <x). (false!) (4.27)

For sufficiently large N and p we shall have roughly

fN(p)~m2. (4.28)
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If we could use Eq. (4.27), then by Eqs. (1.19), (4.4), (4.6) and (4.19), we
would find

BqξNq+υqξlq~±J(m2 + m}\ogq, (4.29)

for large N and q. Hence Eq. (4.23) would become, in the limit N, p-» oo,

m2^ f[ [l + <r"J<m2 + m):Γ1 (4.30)
q = po

Eq. (4.30) is exactly what is required to produce a Thouless effect. At
any temperature for which w2 > 0, the product on the right must converge
away from zero, and therefore

l . (4.31)

This means that Eqs. (1.5), (1.6) must hold with

mc>(/cTc/2J), (4.32)

and so Theorem 4 would be proved.
Why cannot this simple argument be right? The trouble is that it

should apply equally well when β is allowed to vary as N and p tend to
infinity. Since fN(p) is a continuous function of β for any finite N and p,
we can certainly choose a sequence βNp, depending on N and p, such that

Np = βc, (4.33)
p -* oo N -* oo

LimLim/N(p) = μ2 (4.34)
p -> oo N -» oo

where μ is any number in the range 0 < μ < mc. The argument would
then give the result

μ2^ Π [1 + q-P'W + tΓ1, (4.35)
q = po

which is certainly false when μ is small but positive.
We see from this discussion that the true ξNp given by Eq. (4.18)

must be considerably larger than <x> in the immediate neighbourhood
of the phase-transition. Just at the transition the fluctuations of long-
range order are very great, and so <x2> can be much larger than <x>2.
Our strategy in proving Theorem 4 must be designed to make these
fluctuations harmless. The key to the proof is the fact that the large
fluctuations occur only over a range of temperature which tends to zero
as N, p-> oo. The strategy is therefore to integrate Eq. (4.23) over a finite
range of temperatures, holding the range of integration fixed while
passing to the limit N, p-> oo. The technical complications of the proof
come mainly from the need to transform Eq. (4.23) into an inequality
which can be integrated explicitly with respect to β.
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The proof of Theorem 4 is now resumed. To linearize Eq. (4.23),
we use the fact that log [1 + exp (— x)] is a convex function of x. Thus
Eq. (4.23) implies

1, (4.36)

with

Σ(BqξNq+Uqftq). (4.37)
4 = 0

If we write

W^P-^Σ B^Nq, (4.38)
q = 0

z = p-ίPΣ(Uq)
2(BqΓ

1, (4.39)
q = 0

then Eq. (4.37) with Cauchy's inequality gives

(4.40)

Eqs. (4.36) and (4.40) imply respectively

y>log[-l-(p/log/N(p))], (4.41)

and

(4.42)

Eq. (4.38) and (4.42) give the desired linear inequality involving the ξNq.
We now return to Eq. (4.18), (4.20). From the form of the partition

function (4.7) it follows that

styN, (4.43)

where

(4.44)

means a differentiation with respect to βBp as it appears in Eq. (4.7),
leaving all other interaction constants fixed. Now

(d/dβ) (styN = BPD (styN + R , (4.45)

where R is a sum of derivatives of <sί>N with respect to the other interac-
tion constants. According to the inequalities of Griffiths [8], R is non-
negative. Eqs. (4.18), (4.19), (4.20), (4.43) and (4.45) then give

ξNp ^ <sί>* + B- i (8/dβ) log <sί>N . (4.46)
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Eq. (4.38) with (4.9) then implies

w ̂  p- 1 "X {22*BqcN(q + 1) + (d/dβ) log cN(q + 1)} . (4.47)
q = 0

We integrate Eqs. (4.42) and (4.47) with respect to β over the interval

βί<β<β2 = βί + a. (4.48)

The correlation-functions fN(p) and cN(q+l) are monotone non-
decreasing functions of β. The integration therefore gives

"

^ + 2£2z)]2 , (4.49)
/h

with

j^logί-l-p/Dog/tfίp)],,}. (4.50)

Since Eq. (1.19) is assumed to hold, Theorem 3 ensures that there
is a phase-transition at some critical βc with

(4.51)

and

m2>0 for £>β. (4.52)

Let βl and J?2 be chosen arbitrarily subject to

βc<β1<β2 (4-53)

Holding β{ and ^2 fixed, we let first N->oo, then p->oo in Eqs. (4.49),
(4.50). In this limit

>0, (4.54)

>0, (4.55)

mj = [_m%., j-1,2, (4.56)

and the convergence of the logarithms in Eqs. (4.49), (4.50) is bounded so
long as Eq. (4.53) holds. From Eqs. (4.4), (4.6), (4.39) with (1.19) we have

±J, (4.57)

(2" ίV(log ?))->*./, (4.58)

iJ, (4.59)
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as p->oo. In the limit, only the terms proportional to (αlogp) survive
in Eqs. (4.49), (4.50). We thus obtain

m2

2^ll+β2JT2' (4.60)

Although all reference to β1 has now disappeared, it was essential in
proving Eq. (4.60) that the quantities log%(p) and log/N(p) remain
bounded as p-»oo when β — β^.

Since β2 can take any value greater than βc, while w2 is a non-
decreasing function of /?2, Eq. (4.60) implies

m^Cl+βJΓ 1 for β>βc. (4.61)

We have thus proved Eq. (1.5) with mc satisfying (1.20), and this completes
the proof of Theorem 4.
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