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Abstract. We consider a selfinteracting boson field in two space-time dimensions, with
interaction densities of the form: V(φ(x}}\ where φ(x) is a scalar boson field, and F(α)
is a real positive function of exponential type. We define the space cut-off interaction by
Vr = j : V(φ(x)): dx and prove that Hr = H0 + Vr, where H0 is the free energy, is essentially

\x\^r

self adjoint. This permits us to take away the space cut-off and we obtain a quantum
field free of cut-offs.

I. Introduction

Let H0 be the free energy of a scalar boson field φ(x) of strictly positive
mass m in one space dimension, so that x e R. We consider the operator
H = H0 + 7, where Fis a space cut-off local interaction formally given by

V= j :V(φ(x)):dx. (1.1)
1*1^

Here F(α) is a positive real function of the form

7(α) = Jβ"dv(S), (1.2)

where v is a positive measure on the real line with support in an interval
of form {s: |s| < ]/2π — ?} with ε>0. :V(φ(x)): stands for the Wick
ordered function of φ(x\ and we shall return to the definition of this
later. H0 is a self adjoint operator on the boson Fock space 2F which

00

is a direct sum 2F = Σ ^n where 3Fn is the space of symetric square
n = 0

integrable functions of n (momentum) variables. The field φ(x) is given
in terms of the annihilation-creation operators α* and a on 3F by

φ(x) = (4π)~* j eikx[a*(-k) + α(fc)] μ(kΓ* dk (1.3)
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where μ(k) = (k2 + m2)^. The annihilation-creation operators satisfy

[α(fc), a*(k'J]=δ(k-k'). (1.4)

We shall also use the notation φ + (x) and φ_(x) for the creation and
annihilation part of φ(x). So that

φ+(x) = (4πΓ*ϊeikxa*(-k)μ(kΓ*dk, (1.5)

φ-(x) = (4πΓ*]eikxa(k)μ(k)-*dk. (1.6)

Scalar boson interactions in two space time dimensions with F(α) a poly-
nomial have recently been extensively studied by Nelson, Glimm, Jaffe,
Rosen, and Segal (see Refs. [1-4, 10-13]). For F(α)-/lα4 Glimm
and Jaffe, in a series of papers [2—4], have carried the study very far
and showed that one has a quantum field theory satisfying most of the
axioms. For F(α) a semi-bounded polynomial Glimm [1] showed that H
was bounded below and Rosen [11] proved the essential self-adjoin tness
of H, which is essential for getting rid of the space cut-off. We should
also mention that Glimm, Jaffe and Rosen uses a smooth space cut-off
instead of the sharp cut-off used by this author.

The method used by Glimm, Jaffe and Rosen for proving self-adjoint-
ness is to approximate H by the corresponding Hamiltonian in a box Hn

where only modes of frequency smaller than n is taken to interact. By using
function space integration one then obtains uniform estimates for Hn

which permit one to prove that H is essentially self-adjoint.
Having proved the essential self-adjoin tness one gets rid of the space

cut-off by a theorem of Segal [Ref. 13, Theorem 3].
We shall keep notations close to the notations in the papers by Glimm

and Jaffe [2-3] and by Rosen [11], and we shall make use of some of
their results, although our method for proving essential self-adjoin tness
is essentially different.

Our reason for considering interactions of the form (1.1) is that we
want to give an example of a simple model of a relativistic quantum
field theory which have no obvious perturbation theoretical counterpart.

II. The Interaction V

For any /z in J^1 we introduce the annihilation-creation operator
αtf(/ί), where a* stands for α* or α, by

It is well known that a*(h) are closed operators with domain containing
the domain oϊ(HQ + 1)*, such that a*(h) and a(h) are adjoints which have
the same domain for h fixed. a*(h}a*(g) have domain containing the
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domain of H09 and on the domain of H0 we have the commutation relation

A vector in & of the form ea*(h)Ω0 = £ — -a*(h)nΩ0, where Ω0 is the
n = 0 n-

Fock vacuum will be called an exponential vector and will be denoted
by eh. A direct verification shows that eh is in fact a vector in ̂  , and for
the inner product of two exponential vectors we have the formula

(e*9e«) = e(h β). (2.1)

Lemma 2.1. Let <tf?0 be the real vector space consisting of all real
linear combinations of elements in an orthonormal base in ̂ . Then the
set of all exponential vectors eh with h in 34?0 spans a dense set in 3F.

Proof. Let {ΛJ be the orthonormal base characterizing J^0. Consider
n

the exponential vector e9 where g = £ Sjhij9 we then see that the strong
.7 = 1

partial derivative of eβ with respect to sί9 ...,sn at sί = - =sn = Q is
a* (hi) . . . α*(ftίn)Ω0, which we know spans a dense set in 3F . On the other
hand the strong partial derivative is obtained as a strong limit of linear
combinations of exponentials of elements in J^0. This proves the lemma.

We shall now give the precise meaning to (1.). Namely

V= J dx$dv(s)esφ+(χϊesφ-M. (2.2)
|*| Sr

It is easy to see that (2.2) defines V as a densely defined symmetric form
on 3F. We get namely by using the commutation relations for α* that

(eh,Ved)= J \dv(s)es(Jiχ+^e(h^
_ (2.3)

where we have used the notation F(α) for the analytic continuation of
F(α), and ΛJC = (4π)"*f eίkx h(k) μ(k)-> dk. From (2.3) we see that if hx

and ^fx are uniformly bounded for |x| ^ r, then βft and e* is in the domain
of the bilinear form (2.2). To see that V is a densely defined bilinear form
we have only to take an orthonormal basis of functions that goes rapidly
to zero and use Lemma 2.1. That V is symmetric follows from (2.3)
and the fact that F(α) is real for real α.

Let us now assume that the basis which gives ̂  in Lemma 2. 1 consists
of function in L^R) satisfying h(k) = —h( — k\ hence for g e J»f0,
gx = (4π)~* ^ elkx g(k) μ(k)~^ dk is purely imaginary and uniformly
bounded and continuous in x.
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Lemma 2.2. V is a positive symmetric operator, which is essentially
self -adjoint on the linear span of exponential vectors eh with h in £?$.
Moreover V commutes with the operator eiφ(9\ φ(g) = J φ(x) g(x) dx.

Proof. Let h be in Jί?0. Let us compute Veh and show that it is in
Fock-space

Veh= J
\x\^

Hence

\\Veh\\2= J
\y\£r

where
J oo eίkx

K0(m) is a smooth function away from x = 0, and

as |x|-»0, (2.4)

where y is Euler's constant and o(x) represents an absolute convergent
power series.

Since hx and hy is purely imaginary we get

= ί + f
\χ-y\^ε \χ-y\<ε

The first integral is obviously bounded and the second integral is
bounded by

2r J dx$dv(s)$dv(t)e^K°(mX\
\x\<ε

Choose ε so small that K0(mx) > 0 for \x\ > ε. Such an ε exists by (2.4).
But then we get that the integral is bounded by

2r| |v | | 2 j e«K»(mx^dx,
\x\<ε-

since v has support in an interval of the form {5 : |s| > ]/2πα}, with α < 1.
This integral is finite by (2.4). This proves that V is an operator which
is defined on the linear span of the vectors of the form eh. We shall now
see that V is a positive operator. By (2.3)

(e\Ve<>}= J
\*\ί

Since
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is a positive definite function of α, and since hx and gx are purely imaginary,
we see that for hly...,hn in J f0, § V((hi)x + (hj)x)dx is a positive

|*| ίr

definite matrix. That e(hlthj) is a positive definite matrix follows from the
fact that the inner product in ̂  is positive definite. Hence (ehί, Vehj)
being the component wise product of two positive definite matrices,
is also a positive definite matrix. Hence set ψ = Σ Q ehi, then

This proves that V is a positive operator.
We see that for g real eiφ(9) maps exponential vectors into exponential

vectors. To see that Fcommutes with eίφ(9} reduces therefore to the evalua-
tion of(eiφ(β> e\ Veiφ(0) eh). By (2.2) we get that this is equal to

which is independent of g, and this proves that F commutes with eiφ(9\
Let us now introduce the spectral representation of J^ with respect

to the maximal abelian algebra generated by eιφ(g\ 2F is then represented
as an L2-space with respect to some measure space. We may choose
the measure dQ such that the Fock-vacuum is represented by the func-
tion 1. In this L2(dQ) representation the algebra generated by eίφ(9}

is the algebra of multiplication operators. We remark that the algebra
generated by eιφ(g) is the same_as the algebra generated by e

l(α*(h)+α&»
for h in J^1, such that h(p) = h( — p). Since ||F£20|| <oo, we see that F
is represented by multiplication with the function F(β) which is in L2.
Since eh with h in J^0, span a dense set in L2 and F is a multiplication
operator it follows that Fis essentially self-adjoint. This proves the lemma.

Lemma 2.3. H0 + F is α densely defined positive symmetric operator.

Proof. We have seen that F is positive and symmetric. So the only
thing we have to prove is that H0 and F has a common dense domain.
We have seen that eh for h in J-f0 is in the domain of F. It is easy to see
that if h(p) has compact support then eh is also in the domain of HQ.
By Lemma 2.1 however eh for h with compact support and h in Jf0

spans a dense set in 2F. This proves the lemma.

III. TheHamiltonian/7=#0+F

In this section we shall prove that H = H0 + F is essentially self-
adjoint, on a domain contained in the intersection of the domains of
H0 and of F. In order to prove this we shall need the L2(dQ) representa-
tion of 3F introduced in the last paragraph.



A Class of Quantum Fields 249

A bounded operator A on an L2-space is said to have a positive,
ergodic kernel if whenever ψ and χ are non negative L2 -functions with
non zero norm, we have that Org(tp, Aχ) and for some j depending
on ψ and χ, 0 < (ψ9 Ajχ).

We shall need the following lemma which is proved by Glimm and
Jaffe [Ref. 3, Lemma 2.3.2].

Lemma 3.1. e~tH° has a positive, ergodic kernel on L2(dQ) for all
values of t > 0.

Lemma 3.2. e~tH° is a contraction semigroup on Lp(dQ) for 1 ̂  p ^ oo.

Proof. Since H0 is a positive operator on L2, e~tH° is a contraction
semi group on L2. Let ψeL2 then | |e~ ί H°v>llι = f \(e~tH°ψ)(Q)\ dQ
<; $(e~tH°\ψ\)(Q)dQ, by the triangle inequality and the fact that e~tH°
has a positive kernel. On the other hand we have

Since L2 is dense in Lx we see that e~tH° is a contraction semigroup
on L l t Since e~ί//0 is symmetric on L2 with a positive kernel, we get by
duality that e~tH° is a contraction semigroup on L^. The Riesz Thorin
convexity theorem then gives us that e~tH° is a contraction semigroup
on Lp9 1 ̂ p rg oo. This proves the lemma.

In the previous paragraph we proved that V was a positive self-
adjoint operator which commute with operators of the form eiφ(h) and
that Ω0 is in the domain of V. Since the L2(dQ) representation is a spectral
representation of the maximal abelian algebra generated by eiφ(h\
we see that in this representation V is represented by a multiplication
operator V(Q\ where V(Q) is a positive function in L2(dQ\ \\V\\2 = \\VΩ\\.

Let Vk(Q) if V(Q) < k and Vk(Q) = k if not. Let Vk be the multiplication
operator given by Vk(Q), and set Hk = H0+Vk. Since Vk is positive,
symmetric and bounded we see that Hk is positive and self-adjoint with
the same domain as HQ.

Theorem 3.1. Let H be the Friedrichs extension of H. Then e~tHk

converge strongly to e~tH as k tends to infinity, and the convergence is
uniform in t for t on compact subsets.

Proof. We have obviously that

for k ̂  k'. Moreover for ψ and χ in D(H*) we have that (ψ9 Hkχ)->(ψ9 Hχ).
Using then the theorem on convergence from below of symmetric semi-
bounded forms (Theorem 3.13, Ch. VIII, Ref. [9]) we get that (z-ίy1

converge strongly to (z — H)'1 for Rez<0. The semigroup convergence
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theorem (Theorem 2.16, Ch. IX, Ref. [9]) then gives us that e~tHk converge
strongly to e~tH uniformly in t on compacts. This proves the theorem.

Lemma 3.3. e^tH has a positive kernel on L2(dQ\ ande~tH is a contrac-
tion semigroup on Lp(dQ\ for 1 5^p^ oo.

Proof. That e~^ has a positive kernel means that for ψ and χ positive
and in L2, (ψ, e~tf*χ)^Q. By Theorem 3.1 it is enough to prove that
(φ, e~tHkχ) ^0 for all k. Since Vk is bounded we get by the Trotter-Kato
product formula

e-'H«= lim e o e k . . . e ° e \ (3.1)
«->oo

that e~tHk has a positive kernel. Because e n maps positive functions
— ί

into positive function, and by Lemma 3.1 e " ° also maps positive
functions into positive functions. Hence e~tHkχ is the strong limit of
positive functions, and therefore e~tHkχ^Q. This proves the first part
of the lemma.

To prove the second part we see from (3.1) that e~tHk is a contraction

on L^(dQ\ since both e n and e n are contractions on
Let ψ be in L^dQ). By Theorem 3.1, χ = e~tHψ is then the L2-limit of
Xk = e~tHkX- Therefore there exist a subsequence χn such that χn converge
to χ almost everywhere. Since e~tHk is a contraction on L^ we have
that telL ^ IML, so that \χn(Q)\ ^ \\ip\\ ̂  almost everywhere, therefore
Woo ^ IMoo τhis Proves the lemma.

Theorem 3.2. H = H0 + V is essentially self -adjoint on the domain
(z - HΓ1 £00 C D(H0)nD(V), hence H is the closure of H.

Proof. Since e~tH is a contraction semigroup on L^ we see that
(z-HΓ^L^QL^ for Rez<0.

Since L^ is dense in L% we see that (z — H)'1 L^ is a core for H. Since
V is in L2 we have (z — H)~l L^ Q L^ g D(V). To prove the theorem it
is therefore enough to prove that (z — H)~1Lao is contained in D(H0\
because as we have seen H is essentially self-adjoint on (z — H)'1 L^.
Since Vk is a bounded function (z — H^~l L^ £D(H0). Let φeL^ and
set ψk = (z — Hk) ~ 1 φ. By Theorem 3. 1 ψk converge in L2 to ψ = (z — H) ~ 1 φ.
To prove that ψ is in D(H0), using that H0 is closed it is enough to prove
that HQιpk converge in L2. We have seen that e~tHk is a contraction
semigroup on L^. This gives us that the norm of (z — H^~l :L^-^L^
is uniformly bounded in fc, so that \\ψk\\ < C independent of k.

φ = (z- Hk) ψk = (z- H0) ψk -Vkψk,
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so that it is enough to prove that Vkψk converge in L2.

Since ψeL^ \\(Vk-V)ψ\\2£\\Vk-V\\2 \\ψ\\ m which tends to zero
since V is in L2.

By choosing / so large that \\V — Vl\\2^(4Q~~iε and then choosing k
so large that \\ψk-ψ\\2 ^(2/)~1ε we see that \\V(ψk-ψ)\\^ε. This
proves that H0ψk converge strongly to H0ψ, and therefore that
(z-H}~1 L^ is in D(HQ). This proves the theorem.

Having proved that H is the closure of H = H0 + V, we shall from
now on simply write H for H.

IV. Existence and Uniqueness of the Vacuum of H

By a vacuum Ω of H we shall understand an eigenvector Ω whoose
eigenvalue is a lower bound for the spectrum of H, and in this section
we shall prove that H has a unique vacuum Ω. The technique of Glimm
and Jaffe [3] for proving the existence of Ω will not work due to the fact
that Fis only in L2(dQ). Using the positivity of Fhowever one may prove
a norm approximation lemma (Lemma 4.2), which enables one to extend
the technique of Glimm and Jaffe to positive Fin L^dQ).

Lemma 4.1. Let 1 <p and r < oo. Then there exists a T such that for
T^t e~tH° is a contraction from Lp(dQ) to Lr(dQ). If p is bounded away
from 1 and r is bounded then T does not depend on p or r.

Proof. For the case of finitely many degrees of freedom this lemma was
proved by Glimm (Ref. [1], Lemma 5.1). The extension to infinitely
many degrees of freedom is strait forward and is also given in Ref. [12],
Theorem III. 18.

Lemma 4.2. Let Vl and V2 be two nonnegative functions in L2(dQ),
and let H± and H2 be the unique self -adjoint extentions of H0 + V1 and
H0 + V2. Then there is a positive real T independent of V1 and V2 such
that for t ̂  T

| | e - iHi__ e -fH 2 | | <[-]_ _^-ί! |Fι-F 2 | | ι j i ι

Proof. Let X be the compact space that carries the measure dQ,
and let Yn be the product of X with itself n + 1-times. On Yn we introduce
the measure dμn, where dμn is characterized by the relation

ί F0(Qo) - FniQJ dμn=Ω0, e'"H° F0 - e~»H°FnΩ0 (4.1)
18 Commun. math. Phys., Vol. 21
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for FQ - Fn in L2(dQ). It follows from the fact that e n ° has a positive
kernel, that the relation above defines a unique measure dμn on Yn.

Let now φ and ψ be in L2(dQ\ then by the Trotter-Kato product
formula (3.1) Γ n

(φί(e-tHί-e-tH2)ψ)=lim^dμnφ(Q0)ψ(Qn)[e " ' - ' ' ' -e " i = 1

By H01ders inequality we get

-ji Σ V ( Q t ) -ji Σ

-£ Σκ l ( Q l )
e i = ί — e

By the definition of dμn

II Φ(β0) vKQJ 5 = («o, Mp ̂ "ίHo lψlp QO)

(4.2)

(4.3)

2 ||e 2 °Mpθo
From Lemma 4.1 we get that for any f̂ > 1 there is a Tsuch that for t ̂  T

and with p = 4/3 and <j = 6/4 we see that

(4.4)

Using that Kt and F2 are positive we get

-w Σ V2(Qi) -ji Σ -π Σ V2(Ql)
_e

l-e

By Jensens inequality this is bounded by

-jildμn Σ \Vί(Ql)-V2(Qi)\

-ji Σ |Kι((2ι)-F2(Q,)|

This together with (4.4), (4.3) and (4.2) proves the lemma.
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Theorem 4.1. H has a unique vacuum Ω, and let ω be its eigenvalue.
Then for any ε > 0 H has a finite spectrum in [ω, ω + m — ε].

Proof. To prove that H has finite spectrum in [ω, ω 4- m — ε] it is
enough to prove that e~tH has a finite spectrum in the interval
[>~ί(ω+m~ε), e'tω~\, for a ί ̂  Γ. By Lemma 4.2 e~ίHk converge in norm to
£-ί# for t ^> jϊ usjng now that norm limits of compact operators are
compact, it is enough to prove that the restriction of e~tHk to
[£~ί(ω+m~ε), e~tω~\ is a compact operator, or that Hk has a finite spectrum
in [ω, ω + m — ε] for k large. Since however Hk = H0 + Vk where Fk is
a bounded function, one may here use the method of Glimm and Jaffe [3]
to prove that Hk has a finite spectrum in [ωfe, ωk + m — ε] where ωk is the
lower bound on Hk. Due to the normconvergence of e~tHk we have that
ωk converge to ω, and this then gives us that H has a finite spectrum in
[ω, ω4-m —ε]. This gives also the existence of Ω. That Ω is unique is
proved by showing e~tH has a positive ergodic kernel. The proof that
e~tH has a positive ergodic kernel is just a trivial modification of the
proof given by Glimm and Jaffe that in the case of the space cut-off
:φ4: interaction e~tH has a positive ergodic kernel. We shall therefore
not produce the proof but rather refer the reader to Glimm and Jaffe
(Ref. [3], §2.3).

V. Removal of the Space Cut-Off

In a series of papers [2-4] Glimm and Jaffe have shown for the
: φ4: model in two dimensions that one may also remove the space cut-off.
And they show that the theory with all cut-offs removed satisfy most
of the axioms of the Haag-Kastler scheme [5], and several of the Wight-
man axioms [14]. But their methods are mostly not restricted to :φ4:.
As a consequence most of their work carries over to the general class of
models we are stydying.

First we obtain a dynamics, independent of the cut-off, for bounded
functions of the free fields localized in a bounded region of space. More
precisely, Iςt Ra b be the von Neumann algebra of operators generated
by the spectral projections of all the fields φ(f) and π(/) with supp
/C [α, b], where π is the canonical conjugate field to φ,

π(x) = ί(4πΓ* J eikx\_a*(k) - a(~k)~\ μ(k)^ dk . (5.1)

The time translate of A in Rab is then given by

^(A) = eίtH^Ae~itH^ (5.2)
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with Hr the closure of H0 + Fr, Vr = J : V(φ(x))\ dx. Due to the essential
l* l*r

self-adjointness of #r, we then get by a theorem of Segal [13, Theorem 3]
that oί~(A) is independent for r for r ̂  max {|α|, \b\} + |ί|. This then removes
the spatial cut-off as far as the dynamics of local algebras is concerned,
and the resulting theory is local.

Following Glimm and Jaffe [3] the space cut-off may be completely
removed from the theory with the aid of the vacuum vectors Ωr. For this
however we need the following lemma.

Lemma 5.1.

where v is the measure describing the interaction.

Proof. Since Vr is positive we have

(Ωr, HO Ωr) g (Ωr, HrΩr) £ (Ω0, HPΩ0)

where we use that Ωr is the vacuum for Hr. This proves the lemma.
From this lemma we get that the free energy densities of the vacuums

Ωr are uniformly bounded, and therefore also that the particle number
densities also are uniformly bounded. As shown by Glimm and Jaffe,
this is enough, after a slight modification of Ωr by averaging over space,
to ensure that a subsequence of the vacuums converge weakly as states
on the local C*-algebra j/ of bounded functions of the local fields. In
this way one obtain a state Q on s4 which is invariant under translation
as well in space as in time. The physical Hubert space ^en is then the
representation space for the representation of #0 induced by ρ. Since
Q is invariant under α, the equation

defines a unitary group U(t). Aren is the representation of A in J^en.
It follows also that the representation given by ρ is locally Fock and that
the infinitesimal generator Hren of U(t) is positive. That J^ren is locally
Fock enables one to define the physical fields and to establish local
properties of the physical theory by working in Fock space. For more
details about the consequences of Lemma 5.1 we refer the reader to
Glimm and Jaffe [3,4].
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stay there, during which this paper was written.
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