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Abstract. We consider a selfinteracting boson field in two space-time dimensions, with
interaction densities of the form: V(¢p(x)): where ¢(x) is a scalar boson field, and V(x)
is a real positive function of exponential type. We define the space cut-off interaction by
V,= j : V(p(x)): dx and prove that H, = H, + V,, where H, is the free energy, is essentially

|x|sr
self adjoint. This permits us to take away the space cut-off and we obtain a quantum
field free of cut-offs.

1. Introduction

Let H,, be the free energy of a scalar boson field ¢(x) of strictly positive
mass m in one space dimension, so that x € R. We consider the operator
H = H, + V, where Vis a space cut-off local interaction formally given by

V= [ V(e(x):dx. (1.1)

EE
Here V(o) is a positive real function of the form
V()= [ e*dv(s), (1.2)

where v is a positive measure on the real line with support in an interval
of form {s:|s|<]/ﬂ—e} with £>0. :V(p(x)): stands for the Wick
ordered function of ¢(x), and we shall return to the definition of this
later. H, is a self adjoint operator on the boson Fock space & which

[ee]
is a direct sum # = ) " where #" is the space of symetric square
n=0
integrable functions of n (momentum) variables. The field ¢(x) is given
in terms of the annihilation-creation operators a* and a on & by

o(x)=(4m)~* [ e [a*(—k) + a(k)] p(k)~* dk (1.3)

* At leave from Mathematical Institute, Oslo University.
** This research partially sponsored by the Air Force Office of Scientific Research
under Contract AF 49(638)1545.



A Class of Quantum Fields 245

where (k) = (k? +m?)%. The annihilation-creation operators satisfy
La(k), a*(k)]=0d(k—K'). (1.4)

We shall also use the notation ¢, (x) and ¢ _(x) for the creation and
annihilation part of ¢(x). So that

@ (x)=(@4n)~* [ e*a*(—k) u(k)~* dk, (1.5)
@_(x)=(4n)"* [ e**a(k) u(k)* dk . (1.6)

Scalar boson interactions in two space time dimensions with V(«) a poly-
nomial have recently been extensively studied by Nelson, Glimm, Jaffé,
Rosen, and Segal (see Refs. [1-4, 10-13]). For V(x)=Aa* Glimm
and Jaffé, in a series of papers [2—4], have carried the study very far
and showed that one has a quantum field theory satisfying most of the
axioms. For V() a semi-bounded polynomial Glimm [1] showed that H
was bounded below and Rosen [11] proved the essential self-adjointness
of H, which is essential for getting rid of the space cut-off. We should
also mention that Glimm, Jaffé and Rosen uses a smooth space cut-off
instead of the sharp cut-off used by this author.

The method used by Glimm, Jaffé and Rosen for proving self-adjoint-
ness is to approximate H by the corresponding Hamiltonian in a box H,
where only modes of frequency smaller than nis taken to interact. By using
function space integration one then obtains uniform estimates for H,
which permit one to prove that H is essentially self-adjoint.

Having proved the essential self-adjointness one gets rid of the space
cut-off by a theorem of Segal [Ref. 13, Theorem 3].

We shall keep notations close to the notations in the papers by Glimm
and Jaffé [2—3] and by Rosen [11], and we shall make use of some of
their results, although our method for proving essential self-adjointness
is essentially different.

Our reason for considering interactions of the form (1.1) is that we
want to give an example of a simple model of a relativistic quantum
field theory which have no obvious perturbation theoretical counterpart.

II. The Interaction V

For any h in #! we introduce the annihilation-creation operator
a*(h), where a* stands for a* or a, by

a*(h) = [ a*(k) h(k) dk .

It is well known that a*(h) are closed operators with domain containing
the domain of (H, + 1), such that a*(h) and a(h) are adjoints which have
the same domain for & fixed. a*(h) a*(g) have domain containing the
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domain of H,, and on the domain of H, we have the commutation relation

La(h), a*(g)]=(h.9g).

. . 1 .
A vector in # of the form e“® Q= 3 — a*(h)"Q,, where Q is the
n=0 n:
Fock vacuum will be called an exponential vector and will be denoted
by €. A direct verification shows that e is in fact a vector in &, and for
the inner product of two exponential vectors we have the formula

(", &) =e™9 . 2.1)

Lemma 2.1. Let #, be the real vectorspace consisting of all real
linear combinations of elements in an orthonormal base in #'. Then the
set of all exponential vectors e" with h in #, spans a dense set in F.

Proof. Let {h;} be the orthonormal base characterizing #,. Consider

the exponential vector e/ where g= )’ sjhi,, we then see that the strong
j=1
partial derivative of e/ with respect to s;,...,s, at s; =---=s5,=0 is
a*(h;) ... a*(h;)Q,, which we know spans a dense set in #. On the other
hand the strong partial derivative is obtained as a strong limit of linear
combinations of exponentials of elements in 5. This proves the lemma.
We shall now give the precise meaning to (1.). Namely

V= [ dx[dv(s)e?*® -, 22

x| <r

It is easy to see that (2.2) defines V as a densely defined symmetric form
on &. We get namely by using the commutation relations for a* that

€, Ve)= [ [dv(s)elxte e®o
Ixlsr (2.3)
(" Veh)y= [ V(h,+g,)dxe®?,
|x|=r
where we have used the notation V(x) for the analytic continuation of
V(2), and h,=(4m)~* | e™** h(k) u(k)~* dk. From (2.3) we see that if h,
and g, are uniformly bounded for |x| <r, then ¢" and ¢? is in the domain
of the bilinear form (2.2). To see that V is a densely defined bilinear form
we have only to take an orthonormal basis of functions that goes rapidly
to zero and use Lemma 2.1. That V is symmetric follows from (2.3)
and the fact that V() is real for real o.
Let us now assume that the basis which gives 5, in Lemma 2.1 consists
of function in L,(R) satisfying h(k) = —h(—k), hence for g e H#,,
g.=@mn)"*[e**g(k)u(k)"*dk is purely imaginary and uniformly
bounded and continuous in x.
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Lemma 2.2. V is a positive symmetric operator, which is essentially
self-adjoint on the linear span of exponential vectors e* with h in #,.
Moreover V commutes with the operator €'°9, ¢(g)= [ ¢(x)g(x)dx.

Proof. Let h be in #,. Let us compute Ve" and show that it is in
Fock-space

Veh= [ dx[dv(s)eo*® et esh=Q,.

Hence =
IVe2= | dy[dv(s)]dvie)e™ e 2e T gon
where b | e g
Ky(mx)= 5 ) dk .

K,(m) is a smooth function away from x =0, and
Ko(mx)= — ln% Ix|+7+o0(x) as |x|—0, (2.4)

where y is Euler’s constant and o(x) represents an absolute convergent
power series.
Since h, and h, is purely imaginary we get

Stg e
1Ver2 < [dx [ dy [ dv(s) | dv(e) e 7 et

[x—ylze |x—yl<e
The first integral is obviously bounded and the second integral is
bounded by

St mx
2 [ dx[dv(s)[dv(r)e 2= "
|x|<e
Choose ¢ so small that K,(mx)>0 for |[x|>¢. Such an ¢ exists by (2.4).
But then we get that the integral is bounded by

2r v | e*Kolmd gx
x| <e-
since v has support in an interval of the form {s:|s| >]/2nu}, with & <1.
This integral is finite by (2.4). This proves that V is an operator which
is defined on the linear span of the vectors of the form e". We shall now
see that V is a positive operator. By (2.3)
@ Ve)= [ V(h,+g,)dxe™?.

[xl=r

Since ]
V(io)= | € dv(s)
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isa positive definite function of o, and since h, and g, are purely imaginary,
we see that for hy,...,h, in #,, [ V(h).+(h),)dx is a positive
|x|=r
definite matrix. That e®=*) is a positive definite matrix follows from the
fact that the inner product in & is positive definite. Hence (e, Ve')
being the component wise product of two positive definite matrices,
is also a positive definite matrix. Hence set v = X C; e, then
(w, V)= CiCj(e", Ve) 20.
ij

This proves that V' is a positive operator.

We see that for g real ¢’*¥) maps exponential vectors into exponential
vectors. To see that ¥ commutes with e’ reduces therefore to the evalua-
tion of (e!?@ ¢, Vel?® ¢t). By (2.2) we get that this is equal to

e®M [ V(0)dx=2rV(0) P
|x|=r

which is independent of g, and this proves that ¥ commutes with ¢,

Let us now introduce the spectral representation of & with respect
to the maximal abelian algebra generated by €*9. & is then represented
as an L,-space with respect to some measure space. We may choose
the measure dQ such that the Fock-vacuum is represented by the func-
tion 1. In this L,(dQ) representation the algebra generated by '@
is the algebra of multiplication operators. We remark that the algebra
generated by /@ is the same as the algebra generated by e!@®+a®
for h in &1, such that h(p)=h(—p). Since |V Q,| <o, we see that V
is represented by multiplication with the function V(Q) which is in L,.
Since e" with h in #,, span a dense set in L, and V is a multiplication
operator it follows that Vis essentially self-adjoint. This proves the lemma.

Lemma 2.3. Hy+ V is a densely defined positive symmetric operator.

Proof. We have seen that V is positive and symmetric. So the only
thing we have to prove is that H, and ' has a common dense domain.
We have seen that e” for h in J#, is in the domain of V. It is easy to see
that if h(p) has compact support then " is also in the domain of H,.
By Lemma 2.1 however e" for h with compact support and & in
spans a dense set in 4. This proves the lemma.

III. The Hamiltonian H=H -V

In this section we shall prove that H =H,+ V is essentially self-
adjoint, on a domain contained in the intersection of the domains of
H, and of V. In order to prove this we shall need the L,(dQ) representa-
tion of & introduced in the last paragraph.
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A bounded operator A on an L,-space is said to have a positive,
ergodic kernel if whenever y and y are non negative L,-functions with
non zero norm, we have that 0 =<(y, Ay) and for some j depending
on y and y, 0 < (i, A7 ).

We shall need the following lemma which is proved by Glimm and
Jaffé [Ref. 3, Lemma 2.3.2].

Lemma 3.1. e '#° has a positive, ergodic kernel on L,(dQ) for all
values of t>0.

Lemma 3.2. e~ ""° is a contraction semigroup on L,(dQ) for 1 <p < co.

Proof. Since H, is a positive operator on L,, e "#° is a contraction

semi group on L,. Let peL, then [e "Hoy|, = [|(e™"H°y)(Q)dQ
< [(e”"™°|y|) (Q) dQ, by the triangle inequality and the fact that e~
has a positive kernel. On the other hand we have

[ Molip) (Q) dQ = (o, e~ 1) = (o, I = 1] -

Since L, is dense in L; we see that e *#° is a contraction semigroup
on L,. Since e "#o is symmetric on L, with a positive kernel, we get by
duality that e *#° js a contraction semigroup on L. The Riesz Thorin
convexity theorem then gives us that e *#° is a contraction semigroup
on L,, 1 <p=oo. This proves the lemma.

In the previous paragraph we proved that V was a positive self-
adjoint operator which commute with operators of the form ¢ *® and
that Q, is in the domain of V. Since the L,(dQ) representation is a spectral
representation of the maximal abelian algebra generated by e'¢®),
we see that in this representation V is represented by a multiplication
operator V(Q), where V(Q) is a positive function in L,(dQ), || V], =V Q|-

Let V,(Q) if V(Q) < k and V,(Q) =k if not. Let ¥V, be the multiplication
operator given by V,(Q), and set H,= H,+ V,. Since V, is positive,
symmetric and bounded we see that H, is positive and self-adjoint with
the same domain as H,.

Theorem 3.1. Let H be the Friedrichs extension of H. Then e
converge strongly to e " as k tends to infinity, and the convergence is
uniform in t for t on compact subsets.

Proof. We have obviously that
0<H,<H.<H

for k <k'. Moreover for i and y in D(H?) we have that (v, H, )~ (v, H 2)-
Using then the theorem on convergence from below of symmetric semi-
bounded forms (Theorem 3.13, Ch. VIII, Ref. [9]) we get that (z — H,) ™"
converge strongly to (z— H) ™! for Rez <0. The semigroup convergence
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theorem (Theorem 2.16, Ch. IX, Ref. [9]) then gives us that e ~tHx converge
strongly to e~ uniformly in ¢t on compacts. This proves the theorem.

—tH ;

Lemma 3.3. ¢ "7 has a positive kernel on L,(dQ),and e”** is a contrac-

tion semigroup on L,(dQ), for 1 <p < co.

Proof. That e ~*# has a positive kernel means that for y and y positive
and in L,, (p,e " y)=0. By Theorem 3.1 it is enough to prove that
(1, e""*Hey) > 0 for all k. Since ¥, is bounded we get by the Trotter-Kato
product formula

e tHk = lim e—H0 e-Vk . eTtH0 eTth, (3.1)

n—ao
—_—
that e~ has a positive kernel. Because ¢ ”  maps positive functions
—t

into positive function, and by Lemma 3.1 e¢* o also maps positive
functions into positive functions. Hence e "y is the strong limit of
positive functions, and therefore e *#*y >0. This proves the first part
of the lemma.

To prove the second part we see from (3.1) that e " is a contraction

—~t —t
on L(dQ), since both ¢" " and eTVk are contractions on L. (dQ).
Let p be in L_(dQ). By Theorem 3.1, y =e~*Hy is then the L,-limit of
xx = e~ "y, Therefore there exist a subsequence g, such that y, converge
to x almost everywhere. Since e *#x is a contraction on L, we have
that ||kl = |9l w0, SO that |x,(Q) = ||yl ., almost everywhere, therefore
l2llw = ¥l - This proves the lemma.

Theorem 3.2. H=H,+ V is essentially self-adjoint on the domain
(z—H)™* L, CD(Hy)nD(V), hence H is the closure of H.

Proof. Since e™ '™ is a contraction semigroup on L, we see that
(z—H)'L,CL, for Rez<0.

Since L, is dense in L, we see that (z — H)™' L isa core for H. Since
Visin L, we have z—H)"* L CL, CD(V). To prove the theorem it
is therefore enough to prove that (z—H) 1L, is contained in D(H,),
because as we have seen H is essentially self-adjomt on (z—H)™'L
Since Vj is a bounded function (z— Hy)™" L, C D(H,). Let p € L, and
sety, = (z — H,) "' ¢. By Theorem 3.1 y, convergein L, to = (z — H ™o
To prove that y is in D(H,)), using that H,, is closed it is enough to prove
that Hyy, converge in L,. We have seen that e "#* is a contraction
semigroup on L. This gives us that the norm of z—H,) ™ *: L — L,
is uniformly bounded in k, so that ||,/ < C independent of k.

¢ =(z—H)y,=(z—Hy)w— Vi ¥,
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so that it is enough to prove that V, y, converge in L,.
Vo=V ==V + V(v —v).

Since weL,, |(Vi—=WVywl,211Vi—=Vi,llvl, which tends to zero
since Vis in L,.

1V (=)l = 1V = V) (e = )l + Vi = )l
S2CINV =Vl +Hwe—wll» -

By choosing [ so large that |V — V||, <(4C) !¢ and then choosing k
so large that ||y, — |, <) 'e we see that |V(y,— )| <e This
proves that H,y, converge strongly to H,y, and therefore that
(z—H)™' L, is in D(H,). This proves the theorem.

Having proved that H is the closure of H=H,+ V, we shall from
now on simply write H for H.

IV. Existence and Uniqueness of the Vacuum of H

By a vacuum Q of H we shall understand an eigenvector 2 whoose
eigenvalue is a lower bound for the spectrum of H, and in this section
we shall prove that H has a unique vacuum Q. The technique of Glimm
and Jaffé [3] for proving the existence of Q will not work due to the fact
that Vis only in L,(dQ). Using the positivity of ¥ however one may prove
a norm approximation lemma (Lemma 4.2), which enables one to extend
the technique of Glimm and Jaffé to positive V in L,(dQ).

Lemma 4.1. Let 1 <p and r <oo. Then there exists a T such that for
T <t e "o is a contraction from L,(dQ) to L,(dQ). If p is bounded away
from 1 and r is bounded then T does not depend on p or r.

Proof. For the case of finitely many degrees of freedom this lemma was
proved by Glimm (Ref. [1], Lemma 5.1). The extension to infinitely
many degrees of freedom is strait forward and is also given in Ref. [12],
Theorem III.18.

Lemma 4.2, Let V, and V, be two nonnegative functions in L,(dQ),
and let H, and H, be the unique self-adjoint extentions of Hy,+ V, and
Hy,+V,. Then there is a positive real T independent of V, and V, such
that fort=T

||e_tH‘ _ e—zH2” < [1 _ e—tllVl—Vzlh]% .

Proof. Let X be the compact space that carries the measure dQ,
and let Y, be the product of X with itself n + 1-times. On Y, we introduce
the measure du,, where dy, is characterized by the relation

[ Fo(Qo) -+ Fu(@) dit, =(Qo, e 7™ Fy e T F,Q)  (@41)

18 Commun. math. Phys., Vol. 21
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t
for Fy - F, in L,(dQ). It follows from the fact that e " *° has a positive
kernel, that the relation above defines a unique measure dy, on Y,.
Let now ¢ and y be in L,(dQ), then by the Trotter-Kato product

formula (3.1) o o
. _ [ ~n ‘Z V1(Qi) -7 X Vz(Qi)J

(prle™ ™1 —e™™)y)= lim [du, 5(Q) w(@)]e =1 —e
By Holders inequality we get 4.2)

“Lives -bs Vz(Q.-)}
dup i=1 1 — i=1
[ dn5(Qo) w(Q,) le e ,, n )
~Lrxwven  -L oz
=10Qo) w@lajz-le =t —e = "

By the definition of du,
13(Q0) w(QII5 = (R0, lolF e ™" Jipl? Qo)

7 -
=<e 200" Qy, e 2 °Iw|”90>

= He_%HO l‘P|onH2 : He_%ﬂo |‘P|p90Hz .

From Lemma 4.1 we get that for any g > 1 thereis a T'such thatfort = T

— iy,
le™ 2% o1 o, <11 01?1, = 012,
and with p=4/3 and g =6/4 we see that
13(Q0) w@I*" <10l vl (44)

Using that V; and V, are positive we get

n

-L s vie)  -% T Q)

1

=1-[dp,e =
By Jensens inequality this is bounded by

— L fdpn T V@)V
1—e i=1 =1—¢ tln-r2llst

This together with (4.4), (4.3) and (4.2) proves the lemma.
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Theorem 4.1. H has a unique vacuum Q, and let o be its eigenvalue.
Then for any ¢ >0 H has a finite spectrum in [®, ® +m — ¢].

Proof. To prove that H has finite spectrum in [w,w+m—eg] it is
enough to prove that e™'# has a finite spectrum in the interval
[e@tm=e) o7t for a t = T. By Lemma 4.2 e ~*¥ converge in norm to
e for t > T. Using now that norm limits of compact operators are
compact, it is enough to prove that the restriction of e *H* to
[e~"@tm=2) ¢~ is a compact operator, or that H, has a finite spectrum
in [w, w+m—¢] for k large. Since however H, = H, + V, where V, is
a bounded function, one may here use the method of Glimm and Jaffé [3]
to prove that H, has a finite spectrum in [w,, w, + m — ¢] where w, is the
lower bound on H,. Due to the normconvergence of e "* we have that
wy, converge to w, and this then gives us that H has a finite spectrum in
[w, w+m—¢]. This gives also the existence of Q. That Q is unique is
proved by showing e™'¥ has a positive ergodic kernel. The proof that
e ' has a positive ergodic kernel is just a trivial modification of the
proof given by Glimm and Jaffé that in the case of the space cut-off
:@*: interaction e”'# has a positive ergodic kernel. We shall therefore
not produce the proof but rather refer the reader to Glimm and Jaffé
(Ref. [3], §2.3).

V. Removal of the Space Cut-Off

In a series of papers [2—4] Glimm and Jaffé have shown for the
:@*: model in two dimensions that one may also remove the space cut-off.
And they show that the theory with all cut-off's removed satisfy most
of the axioms of the Haag-Kastler scheme [5], and several of the Wight-
man axioms [14]. But their methods are mostly not restricted to :¢@*:.
As a consequence most of their work carries over to the general class of
models we are stydying.

First we obtain a dynamics, independent of the cut-off, for bounded
functions of the free fields localized in a bounded region of space. More
precisely, lgt R, , be the von Neumann algebra of operators generated
by the spectral projections of all the fields ¢(f) and =(f) with supp
fCla,b], where = is the canonical conjugate field to ¢,

n(x)=i(4n) "= | e**[a*(k) — a(— k)] p(k)* dk . (5.1
The time translate of 4 in R, , is then given by

o, (A)=e'tHr 4o~ 1tHr (5.2)

18*
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with H, the closure of Hy + V,, V,= [ :V(¢(x)): dx. Due to the essential
x| =r
self-adjointness of H,, we then get by a theorem of Segal [13, Theorem 3]
that a,(A) is independent for r for r = max {[a|, [b|} + [t|. This then removes
the spatial cut-off as far as the dynamics of local algebras is concerned,
and the resulting theory is local.
Following Glimm and Jaffé [3] the space cut-off may be completely
removed from the theory with the aid of the vacuum vectors Q,. For this
however we need the following lemma.

Lemma 5.1.
(Q,, HyQ,) <2r|]v|

where v is the measure describing the interaction.

Proof. Since V, is positive we have
(Qrb HO Qr) g (Qrﬂ HrQr) é (Qoa HI‘QO)
= (907 VrQo) = 27‘ ”V” s

where we use that Q, is the vacuum for H,. This proves the lemma.

From this lemma we get that the free energy densities of the vacuums
Q, are uniformly bounded, and therefore also that the particle number
densities also are uniformly bounded. As shown by Glimm and Jaffé,
this is enough, after a slight modification of @, by averaging over space,
to ensure that a subsequence of the vacuums converge weakly as states
on the local C*-algebra .«/ of bounded functions of the local fields. In
this way one obtain a state ¢ on ./ which is invariant under translation
as well in space as in time. The physical Hilbert space %, is then the
representation space for the representation of .&/ induced by g. Since
¢ is invariant under «, the equation

U*(t) Aren U(t) = (at(A))ren

defines a unitary group U(t). A,., is the representation of 4 in Z,.
1t follows also that the representation given by g is locally Fock and that
the infinitesimal generator H,., of U(t) is positive. That &, is locally
Fock enables one to define the physical fields and to establish local
properties of the physical theory by working in Fock space. For more
details about the consequences of Lemma 5.1 we refer the reader to
Glimm and Jaffé [3, 4].

It is a pleasure for me to thank B. Simon for many discussions and valuable comments
on the subject of this paper. I am also grateful to A. S. Wightman for arranging my stay
at Joseph Henry Laboratories, Princeton University, and for his helpfulness during my
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