
Commun. math. Phys. 21,237-243 (1971)
© by Springer-Verlag 1971

Gauge Invariance and the
Generalized Bondi-Metzner Algebra

MAYER HUMI
Department of Mathematics, University of Toronto, Toronto, Canada

Received January 20, 1971

Abstract. We examine the algebraic meaning of the Electromagnetic gauge invariance
and show that it leads to the new concepts of gauged operators, gauged representations
and hence to infinite dimensional extensions of Lie algebras. In particular we prove that
the generalized Bondi-Metzner algebra can be interpreted as a gauged Lorentz algebra
related to the Electromagnetic gauge.

I. Introduction

It is well known that Quantum Mechanical states are phase invariant.
The reason for this fact is that in Quantum Mechanics the state functions
are not directly measurable quantities but only the absolute value of the
scalar product, |(/, g)\ which is invariant under the replacements

/χ = ei0f, gί = eiψ g (θ,ψ reals).

As a result of this invariance we have to consider in Quantum Mechanics
rays of functions and therefore also operator rays and ray representations
of Lie algebras [1, 2].

However in physics we deal with another important case in which
we use quantities which are not directly measurable. This case is the
vector potential formalism of the Electromagnetic field. As in the quan-
tum case this formalism is not determined uniquely by the measurable
quantities and this enables us to gauge the vector potentials by quantities
of the form

(/ well behaved function).
In this paper we show that the analogy between the phase invariance

of the quantum wave functions and the gauge invariance of the Electro-
magnetic potentials can be pushed further and lead us to consider
naturally, the new concepts of gauged operators, gauged representations
and hence infinite dimensional extensions of Lie algebras.
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The plan of the paper is as follows:
In Section 2 we introduce the new mathematical concepts of the

theory. In Section 3 we specialize to the Electromagnetic case and prove
that one of the possible one-gauged Lorentz algebra is isomorphic to the
generalized Bondi-Metzner algebra [3,4].

We remark here that the generalized Bondi-Metzner algebra was
first found as a formal asymptotic symmetry group of the gravitational
field equations and many attempts were made to understand this result
or to impose further conditions which will reduce it to the Poincare
algebra [4, 5]. Thus, besides the intrinsic interest of this work, it provides
a new interpretation for the Bondi-Metzner algebra and implies a possible
new connection between the Gravitational and Electromagnetic fields.

II. Gauged Representations

To start with we restate the meaning of the Electromagnetic gauge
invariance in the language of differential forms.

To this end we remark that Maxwell's equations in free space can be
written in the form1

dα = 0, d * α = 0 (2.1)
where α is the two-form

α - (E^dx1 + E2dx2 + E3dx3) at + (H^dx3 + H2dx3dx1 + H^dx2)
(2.2)

and the Electromagnetic potential (A, φ) can be written as a one-form

λ = A dx + φdt (2.3)

where the relation between α and λ is

dλ = α . (2.4)

From this last relation it is evident that although it is more convenient
to work with the potential λ a physical (measurable) meaning is asso-
ciated to the exterior derivative dλ only.

To deal with the general case let X be a Riemanian manifold and C
the space of differential forms on X

C=ΣφCp (2.5)

where Cp is the space of p-forms on X. To define the analog of a ray of
functions we consider the direct sum CP®R (i.e. the pairs (λ,c) where
λ e Cp, c e R) and define

1 We employ the usual notations of differential forms theory see [6].
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Definition 1. Let λ e Cp, the gauged ray of /I in CP®R is

2 = {(A + df, c) /e Cp~l , c e £} . (2.6)

Thus the gauged rays in CP®R are the cosets of the vector space

(2.7)

(CP@R and ί/Cp~10K are considered in (2.7) as real vector spaces).
Similarly the gauged rays of C®R = Σ®(CP@R) are the cosets of

To keep the physical background we remark that the consideration
of the gauged rays in CpφR rather than Cp only has no influence on
our motivation. In fact the natural way to define an exterior derivative
d on C 0 R is as follows

d(λ,c) = (dλ,Q) (2.8)

and hence the physical content of the theory (which is related to dλ only)
is preserved.

Let P(X) be the following set of operators in HomR(C)

1. L linear graded of degree zero!

2. dL = Ld J '
P(X)=\LEHomR(C)

From now on we consider only such operators in Hom^C). It is easy
to verify the following

Lemma 1. a) P(X) is a subalgebra in Hom^(C).
b) P(X) is a Lie subalgebra in the Lie algebra ofHomR(C).

We remark that if φ is a smooth map φ X ^X then φ*eP(X)
(where φ* is the induced map on C).

We define now the p-gauged operator (L, df), L e P(X)fe Cp~1

as
(L,d/)(λ,c) = (Lλ + cd/,0). (2.9)

Lemma 2. (L, df) e HomR(Cp®R). The set of p-gauged operators in
RomR(Cp@R) (designated by 0(CPΦR)) with the operations

(L1? d/i) + (L2, df2) = (L, + L29

(L1? dfj (L2, df2) = (L, L29 dL, f2)

form a closed subalgebra of HomR(Cp 0 R) and a sub-Lie algebra of the
Lie algebra of Hom^(Cp0.R).

Proof. By direct verification.



240 M.Humi:

We are now ready to define the concept of a gauged ray of operators.

Definition 2. Let L e P(X\ the p-gauged ray of L in HomR(Cp®R) is

εσ^} (2.11)

As can be easily verified the action of (L,df) on CP@R induce a well
defined action on Mp i.e. (L.df)λeLλ. Moreover if (L,df) is any
representative of L and λ any representative of λ then the image (L, df)λ
in Mp is independent of the choice of the representatives and is always
in Lλ thus we may write

L-λ = Lλ (2.12)

(and this action is linear in Mp\ It is also easy to check that

L1+L2 = LJJJ3,L1-L2 = IaL2 (2.13)

and so we have proved the following .

Lemma 3. For any L e P(X\ L e HomR(Mp). Moreover the set of
p-gauged ray operators (designated by O(MP)) forms a closed subalgebra
in HomR(Mp) and a sub Lie algebra of the Lie algebra of HomR(Mp).

We may therefore make the following definition:

Definition 3. A p-gauged representation of a Lie algebra G is a homo-
morphism of G into the Lie algebra of 0(MP) i.e. a map A-*L(A\ AeG,
such that

(2.14)

We now prove the following.

Theorem 1. Let LR(G) be a p-gauged representation of G in O(MP) then
there exist an (infinite dimensional) extension GofG and a representation
LR(G) in 0(CP®R) such that the following diagram is commutative

(2.15)

LR(G)—*—>L*(G)

where π is the natural projection of O(CP®R) on O(MP) and h, H are the
representation homomorphίsms.

Proof The proof follows the same steps of [2] for the quantum case.
In each gauged ray LΛG4)> A e G we choose a canonical representative
in 0(CP®R) in the form (LR(A)9 0). This is a well defined set of represen-
tatives since [(LR(A), 0), (LR(B)9 0)'] = (LR([AB'])9 O). Hence the Lie
bracket of any representatives of the gauged rays in O(CP®R) can be
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written in the form

[(Z/Vi), d/i), (L*(A2\ d/2)] = (Z*([Λ1? Λ2]), dLVι)/2

-dLR(A2)fi + d ξ ( A l 9 A 2 9 f l 9 f 2 ) )

where ξ is a properly chosen factor i.e. the bracket operation is a Lie
algebra bracket (we discuss the meaning of this condition in the next
section).

We now define an extension G of G as

G={(A,df);AeG,feC"-1} (2.17)

then G is a Lie algebra if we define the Lie bracket as follows

l(Alt d/i), (A2, dfj\ = ([Λ, A2l dLR(A,)f2 - dLV2)/ι „ * β,(2.1o)
+ dξ(A1,A2,f1,f2))

It is clear now that π : G-> G defined as π(^4, d/) = A is a projection
of G onto G and

is a representation LΛ(G) of G in 0(CPQ>R) which coincide with LΛ(G) on
Mp. This proves our statement.

Remarks, 1. The theorem shows that any gauged representation of G
is "equivalent" to a representation of an infinite dimensional extension G
of G. It follows therefore that the classification of the gauged representa-
tions of G is equivalent to the classification of the possible £'s and the
representations of their associated G.

2. Let {/α} be a basis of C and denote the induced basis of Cp~1 by
F = { f λ } . Let Ai be a basis of G then it is obvious that (At, df) is a basis
of G.

If we now define

(2.19)

then G has the following commutation relations (assuming ξ = ξ(Ai9 A2))

(2.20)

To conclude this section we note that the analogy between the Quantum-
Mechanical phase invariance and the gauge invariance of the Electro-
magnetic potentials is complete. In both cases this extra invariance leads
to a natural generalization of the concept of Lie algebra representations
and hence to extensions of the original Lie algebras.
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III. The Generalized Bondi-Metzner Algebra

In this section we specialize to an example which will illustrate the
general theory related to the choice of the factors ξ and have at the same
time an independent physical interest. This example is the one gauged
representations of the Lorentz algebra which are related to the Electro-
magnetic gauge invariance.

To accomplish this purpose we choose the differential manifold X to
be the two dimensional complex sphere [4] and a representation R of
the algebra on C(X) induced by the action of the Lorentz group on X.
The analysis of the preceeding section shows that in order to cope with
the Electromagnetic gauge invariance we must consider one-gauged
representations of the Lorentz algebra or stated differently we must con-
sider representations on the one gauged rays (L,df\ feC°(X). The
functions /e C°(X) can be expanded into a series of spherical harmonics
and therefore the one gauged rays in Mί(X) can be written in the form

L={(L,xltmdYl9J} (3.1)

where we used the convention that repeated indices are to be summed.
By Theorem 1 the classification of the one-gauged representations is

equivalent to the classification of the factors ξ(Ai9 Aj)2 for which

KL^^dY^KL^β.^dY,^)-]

= (CljL*, d(βl9mLiYlm - «M»£/ Yί. J + dξ(Yltm Li9 Lj))

is a Lie bracket (we dropped the superscript R on the L/s). This require-
ment imply immediately that ξ is a bilinear antisymmetric form. However
we must satisfy also the Jacobi identity which leads then to the equation

jξ(Y,,m, Lk, Q + ξ(Ylm, Lk, [Z,, L,.]) (3.3)

+ ξ(Yl,m, Lb [L,, LJ) + ξ(Ylrm, Lj, [Lk, LJ)} = 0

introducing the notation

ξ(Yl,m,Lί,Lj) = β\fYltm

T γ — τ)i γ \ /
^i xl,m ~~ ulm,l'm' Il'm'

Eq. (3.3) can be rewritten in the form

r pl,m r\k j_ ol,m r\i , pl,m τ\j
IPij υi,m,l',m' + Pj.fc υi,m,l',m' + Pki Dl,m,l',m'

_ι_ cn Rl'>m' -\- Γn Rl'>™'\cn Rl'>m'~\ f\Ύ — Π
-r^ijPkn -1-^jkPin -T-^kiPjn J « ll'm' ~ U

In principle ξ = ξ(Aί,A2,fί,f2) but we shall consider only the special case ξ = ξ(Al9A2).
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Thus to classify the possible ξ's we must solve in general an infinite set of
equations and we shall not attempt to tackle this problem here. A special
solution of this system can be easily found however by setting β1;™ = 0.

For this choice of ξ the structure of the one gauged algebra will be
(in the notations of Eq. (2.20))

[!,,!,] = C^Zfc, (3.6a)

[n*,?ί<,»'] = 0, (3.6b)

[Zi,FrMα = βU.ιw?r.«' (3-6c)

(when β φ 0 (3.6 a) will be replaced by

[Zί,Ij] = αj.Zk + j3ΐfF ; ;m (3.6aO)

which can be easily seen to be isomorphic to the generalized Bondi-
Metzner algebra [4].

Thus we proved the following theorem:

Theorem 2. The Bondi-Metzner algebra is one of the possible algebras
whose representations are equivalent to the one-gauged representations of
Lorentz algebra. The consideration of these gauged representations is
necessary in view of the gauge invariance of the Electromagnetic potentials.
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