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Abstract. Spherically symmetric space-times which admit a one parameter group of
conformal transformations generated by a vector & such that ¢, +¢£,., = 2g,,, are studied.
It is shown that the metric coefficients of such space-times depend essentially on the single
variable z = r/t where r is a radial coordinate and ¢ is the time. The Einstein field equations
then reduce to ordinary differential equations. The solutions of these equations are analo-
gous to the similarity solutions of the classical theory of hydrodynamics. In case the source
of the field is a perfect fluid whose specific internal energy is a function of temperature
alone, the solution of the field equations is uniquely determined by specifying data on the
time-like hypersurface z =constant and is a similarity solution. The problem of fitting
a similarity solution to another solution of the field equations across a shock described
by the hypersurface z= constant is treated. A particular similarity solution for which
w = 3p obtains is shown to describe a Robertson-Walker space-time. This solution is fitted
to a special static solution of the Einstein field equations which has a singularity at r=0.
The resulting solution of the Einstein field equations is shown to be regular everywhere
except at r=02=1t and the shock. The special Robertson-Walker metric is also fitted to
a particular class of collapsing dust solutions (which are also similarity solutions) across
a shock. The resulting solution is regular everywhere except at r =¢ =0 and on the shock.

1. Introduction

In non-relativistic continuum mechanics there is a classical procedure
for reducing the partial differential equations which characterize a given
problem involving high symmetry to ordinary ones. This consists in
assuming a specific form for the solution in which the dependent vari-
ables are taken to be essentially functions of a single independent variable.
This variable is a dimensionless combination of the independent vari-
ables, namely the space coordinates and the time. Thus in a spherically
symmetric problem where the independent variables are a distance from
the center of symmetry, r, and the time ¢, the dependent variables are
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assumed to be essentially functions of the variable
z=r/ro(t/te)™".

Such solutions are called similarity solutions or progressive waves (cf. [1]).
von Neumann [2] and Taylor [3] have applied this technique to the
determination of the flow behind a strong shock wave created by a point
source from which a finite amount of energy was released, that is, an
explosion. Kopal and his coworkers [4] have given solutions for similar
problems in the non-relativistic theory of self-gravitating fluids.

It is the purpose of this paper to characterize and discuss similarity
solutions to the Einstein field equations for a spherically symmetric
distribution of a self-gravitating perfect fluid. We shall assume that the
fluid is described by a caloric equation of state which may be expressed
by the equation

w+p=c?oG(x),

where w is the rest energy density, p is the pressure, ¢ is the rest mass
density, c is the special relativistic velocity of light and

px=oc?.

It can be shown [5] that x is proportional to the inverse of the tem-
perature. Different fluids are described by different functions G. It will
also be assumed that rest mass is conserved.

We shall also discuss similarity solutions behind shock waves. That
is, we shall assume that we are dealing with two regions of space-time
separated by a hypersurface with a space-like normal vector. Across this
hypersurface which represents the shock front the generalised Rankine-
Hugoniot equations are required to hold. In addition the first and second
fundamental forms of the hypersurface are required to be continuous.
In one region of space-time bounded by this hypersurface, a similarity
solution of the field equations will be assumed to obtain. We shall
examine the nature of the solutions of the field equations that can be
fitted to a similarity solution across a shock front.

We shall use comoving coordinates in both regions of space-time.
In these the metric may be written as

2y 2
PRI S (1.1)

CZ

ds*=e*? dt* — —;
¢

where ¢, p and R are functions of » and ¢, and

dQ?=d0*+sin?0 dy*
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0 and y labelling points on the unit sphere. In this coordinate system the
field equations

become Gl= —xT!'= —x[w+p)u'u,—pdi], (12)
¢ 6?4+ T?(RP +2RRp) —* ¢ TV[2RR,, + RI—2RRp]
=xwR?e?*Vv , ( . )
¢?e?¥+¢" *QRR, + R} —2RR,p) =" (R} +2RR,0)
—_ — KpRZ e¢+w , ( . )

—~ R R R
e¥ “’(R" +wn+w?+~1§—wt—7’<pt—wt%) i

r

R

R R
-c? e“’“‘”(—Rl + P+ @+ -, — 7{—%—%%) =—kpe™?

and
th - Rt§0r - qu)t =0 (16)

with © =87nG/c? Eq. (1.6) is the statement that the coordinate system is
a comoving one, that is
ut=e"?04. 1.7

The Bianchi identities imply that

D
= —-"— 1.8
@, — (1.8)
and
w, 2R,

1.
w++p R (19)

Y= —

When we supplement the field equations by the equation of conservation
of mass, that is the equation

(ou"),,=0 (1.10)
then we also have
__ e 2R (1.11)
P, = . R .

Egs. (1.9) and (1.11) imply that
S,=0 (1.12)

where S is the specific rest entropy and is defined as

i
0dS=d<W+p)——dp (1.13)
0 0

1%
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with 0 the temperature. The latter quantity is defined in terms of p and ¢
as the integrating factor of Eq. (1.13). This equation may be expressed in
terms of the function G(x) introduced above and becomes

x0 1 dL do
where
1 dL dG 1
i3 ';z;-‘("zz?+“;> (114
Hence
x0=c*C (1.15)
where C is a constant and
e"C6=50 = o 1(x) = £ xL(x), (1.16)

c2

with S, a constant of integration.

Eq. (1.15) relates the temperature 6 to x and Eq. (1.16) expresses the
specific entropy as a function of two independent thermodynamic vari-
ables. Eq. (1.12) may now be written as

K(r)

= I 1.17)

where K(r) may be an arbitrary function of its argument. For isentropic
flows it is a constant.

The function p may be expressed in terms of L(x) for it follows from
Eq. (1.11) that

f()e v =cR?

where f(r) is an arbitrary function of its argument r. In view of Eq. (1.17)
we have

_,_ K@OR?
Eq. (1.8) may be written as
Gr ! K, (1.19)

If, instead of postulating a caloric equation of state and assuming
that mass is conserved, we assume that an equation of state of the form

p=pw) (1.20)
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holds, then we may define a function ¢ by the equation

do _ _dw (1.21)
o w+p
Egs. (1.8) and (1.9) may be integrated to give
UL (1.22)
w+p
f()
e¥ = R4 (1.23)

f and g being arbitrary functions of their arguments. Such an equation
of state will exist for isentropic flows (K(r), a constant) and in that case

o=opc?.

The velocity of sound a in a fluid is given by the equation

@2 =c2 P (1.24)
dw

where the right hand side is evaluated for constant entropy. It follows
from the above results that when a caloric equation of state holds we have

aG
@ 71;/ ¢
— = 1.25
c? dL L (1.25)
dx
When the assumption of the existence of a caloric equation of state is
replaced by the assumption that Eq. (1.20) holds, then the velocity of
sound may be evaluated from Egs. (1.24) and (1.20). This is so because
in general we may write the pressure as a function of the energy density
and the entropy. Eq. (1.20) states that we are assuming that for the fluid

obeying this equation, the entropy does not enter into the evaluation
of the pressure.

2. Integrals of Egs. (1.6), (1.4), and (1.13)
If one substitutes from Egs. (1.8) and (1.9) into Eq. (1.6) one obtains
(w+p)R*R,,+ R’R,p, + R?R,w,+2(w+p) RR,R,=0.
We may write the above equations as

(WR?R,), + (pR*R,),=0.
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Hence there exists a function m(r, t) such that

m, = i—f GWR?R,, @.1)
4
m = — C—f GpR?R,. 2.2)

Next turn to Egs. (1.3) and (1.4), which may be written as

2 2
R(1+e-20 R _c-zvpa|| o ¥W pap _ 26m 0 y
c . c c
2 26
R(14+e 2080 _c2vpe) = - KD pap _ 2O oy
c . c c

These two equations may be immediately integrated to give

3 =

2 R?
fm —R<1+e‘2<"c—2‘—e‘2‘”R,2). 2.5)

The function m(r, t) satisfies Egs. (2.1) and (2.2) and hence is determined
up to an additive constant, a constant of integration.

3. The Similarity Requirement
We may choose our units so that
4nG=c=1. (3.1)

This is equivalent to introducing a constant length L,, a constant energy
density w, and a constant mass m, which satisfy

AnGwy L3 =c* (3.2)
and
moc? =4dnwy Ly . (3.3)

In the subsequent discussion we shall measure lengths in units of L,
and suppress this constant. Egs. (2.1) and (2.2) become

m,=wR?R,, (34
m,= —pR?R, (3.5)

respectively, and Eq. (2.5) may be written as
2m=R(1 +e"2?R? —e " 2¥R}?). (3.6)
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Note that Egs. (1.8), (1.9), and (1.11) remain unaltered. Egs. (1.4) and (1.3),
which imply Egs. (3.6), become

e *u,=e ¥I'p,—pR— %, 3.7)
- _ m
e VI=e ®uyp,—wR+ Rz (3.8
respectively, where
u=e “R,, (3.9
I'=e”¥R,. (3.10)

The line element may now be written as
ds?> =e2?dt* —e**dr? — R*dQ*.

We define a spherically symmetric similarity solution of the field equa-
tions as one for which under the transformation

t=at, F=ar, 0=0, F=y (3.11)
where a is a constant
_ = dx° 0Xx' 1 -
guv(r, t) =Yor —6—36-7 o’ = ?guv(r’ t) . (312)

That is, such a solution gives a space-time which admits the transforma-
tion (3.11) as a conformal transformation. We shall also require that the
barred coordinate system be a co-moving one.

These two requirements may be given a general and invariant for-
mulation. We shall define a similarity solution of the field equations as
one for which the resulting space-time admits the conformal Killing
vector field &* satisfying

fu;v"'év;u:zguv' (313)

In case the source of the gravitational field is a perfect fluid, it is a conse-
quence of this condition and the transformation properties of the Ein-
stein tensor that the four-velocity vector u* is conformally invariant.
That is

uhE — B = . (3.14)
In the spherically symmetric case we may write

k=8t + BSL (3.15)
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where we have set r = x! and ¢t = x*. Egs. (3.13) become
aR,+BR,=R,
ap, +fy, +a, =1,
g, + o, +p=1,
— e, +e2?8,=0.

(3.16)

Egs. (3.14) reduce to two equations, one of these is the third one in the
above set and the other is

o, =0. (3.17)
It then follows from the fourth of Egs. (3.16) that
B.=0. (3.18)

If we define new independent variables 7 and t by the equations

, t=

Sz‘*:l

Fo=

YN

and new dependent variables
Pp=y+loga —logT,
®=o¢+logB—logt
the first three of Egs. (3.16) become

FR.+tR;=R
Fip, + 1P =0 (3.19)
Fpr+1tpr=0.
That is, we may write
?=0(2)
P=7(2) (3.20)
R=7R(2)
where
z=7/t. (3.21)

The line element may now be written as
ds?=¢e?? dt? — e*? d7? — 72 % d Q>

and 7 and t are comoving coordinates. Hence Egs. (3.4) to (3.10) hold in
these coordinates. We shall restrict ourselves to this comoving coordinate
system in the sequel and not use the bar to denote it.
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It follows from the above equations and Egs. (3.6), (3.5) and (3.4) that
m=r.(z)

1
p=-3520) (3.22)

1

Eqgs. (3.9) and (3.10) then imply that
u=49U2)
I'=y(z).

It follows from the above expressions for p and w that x defined by

(3.23)

w+p=pxG(x)

is a function of z alone,
x=x(z),

and hence so is the temperature. Then we have
1
=—0
Q 2 (2)

as follows from the definition of ¢ in terms of p and x. We observe that
an equation of state of the form p=p(w) is inconsistent with the last

two of Egs. (3.22) unless
w=ap (3.24)
where o is a constant.

In this case p+w=(@+1)p

and we can define the function G(x) by the relation

xG(x)=oa+1. (3.25)

Thus for a similarity solution only equations of state of the form given
by Eq. (3.24) are possible and these may be characterized by the caloric
equation of state with the function G(x) given by Eq. (3.25).

We note that for a similarity solution the quantities

m M
"R a2
P=pR?> =2 %* (3.26)
W =wR? =W%#?
N =9R?* =Q%#?

all functions of z alone, and
Nx=P. (3.27)
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4. The Ordinary Differential Equations

In this section we shall show that the Einstein field equations reduce
to ordinary differential equations when the space-time is one determined
by a spherically symmetric similarity solution, that is, admits a vector
&* satisfying Eqgs. (3.13). We shall first rewrite the full equations in terms
of the variables M, P, W defined by equations (3.26) and £ = R/r but
shall consider these variables as functions of r and z =r/t rather than
functions of r and t.

We note that for any function f (v, t) we may write

_of L of 1
el m
1 of
f= i

where the partial derivatives on the right hand side of these equations
are taken keeping one of the variables r or z fixed. Hence we have

rfr = f+.f (4.1)
tfi=—
where

3 af
f—rﬁ

. of
f—Z—aZ—.

4.2)

In particular since
R=rA(r, z)
R=R+R+R (4.3)
R=—z%.
Hence Eq. (3.6) may be written as
IM=1+4e"2922G0% — e~ 2R + R + R)? (4.4)
Egs. (3.4) and (3.5) are equivalent to the equations

RAM+P+M)%=0 (4.5)
and

*

M—W—(W—I—P)%:(W—M)%—M. (4.6)
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The integrability condition of these last two equations for determining
M(r, z) is equivalent to Eq. (1.6). It may be written as

R+ R—(R+R+R)p—Rp=Rp— R . @.7)
We shall also make use of the equation obtained by subtracting equation

(1.4) from (1.3). It may be shown to be

2 (W+P)
R 4.8)

=G+ R+ R— DR+ R+ R~ R+ R) 222G — o).

(RB+R) p— 222" 29(R + R) P —e

Egs. (1.8) and (1.9) may be written as

P 2PR+A) 1 ( % *)_*

- _ _ 49
Pt PIw T PemZ P+ W ¢ “9)

and
- W L 2P R
YT Prw T Pyw 2

(4.10)

It is evident that if o, p, P, W M and # are functions of z alone,
as they must be for a similarity solution, Egs. (4.4) to (4.10) reduce to the
following algebraic or ordinary differential equations:

QM =1+4e"2222%2 — e 2V (R + A)*, (4.11)
AM+ (P +M)%=0, (4.12)
M:W+(W+P)lg—, (4.13)
R+R—(R+R) ) —Rp=0, (4.14)
P
20— g2 0= WL (4.15)
R
P 2P ([ R+ %R

= — 4.16
*="wip T W+P< 7 ) (4.16)

and Eq. (4.10).
In case the material is characterized by a function G(x), that is, if,

W+ P =PxG(x) (4.17)
then Eq. (1.17) holds. That is,

_ K(nr*ax*
T xL(x)
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Since £, P, and x must be functions of z alone, we must have

r2 K(r) = KO
for a similarity solution and hence
= 4.1
L)’ (4.18)
G(X)
= . 4,
W+P=K, T R (4.19)

Eq. (1.18) with f(r)=f,, a constant is then the integral of Eq. (4.10).
That is

_ B#*
L)

-y

(4.20)

B a constant, and Eq. (4.16) becomes

1 4G | 2

N . 421
*="G ax * T %6 “.21)

Egs. (4.14) and (4.15) may now be written as differential equations
for # and x. Thus the former equation may be written as
.. X dL . 2% i R
R+R— ——[R+(A+a) R+ —— | R+ R~ ———| =0, (422
+ de[+(+“)]+.@{+ xG(x)} (4.22)
where a? is the velocity of sound given by Eq.(1.25), and is a function
of x. Eq. (4.15) becomes
#  xdL e?vG(x)

2 2,292 77 T T 2,29—2¢ __ 2 —K
xG) e # LdxZ¢ @1-Ko—715

=0.
(4.23)

The system of Egs.(4.20) through (4.23) together with appropriate
initial conditions, that is appropriate constants of integration, determine
a similarity solution.

Although the system of Egs. (4.20) through (4.23) has six constants
of integration, including the constants B and K, they are not all inde-
pendent in a similarity solution since Egs. (4.11) and (4.13) imply that
we must have

F@)=1+e 20229 —e 2R+ R)* -2 <W+ (W+ P) g) =0 (4.29)
satisfied for all values of z. In particular this equation must hold for the

initial value of z used in the integration of the system consisting of
Egs. (4.20) through (4.23). This implies that the similarity solution
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depends on five parameters, namely the constant K, which determines
the entropy function in the similarity region and the four independent
constants of integration mentioned above. We shall show below that
two of the latter constants are inessential ones in the sense that they
may be given arbitrary values by still another linear coordinate transfor-
mation involving the variable r and ¢ (or z).

Before discussing this point we observe that if Eq. (4.24) is satisfied
for one value of z then Eqgs. (4.10) through (4.16) imply that it is satis-
fied for all values of z. For it may be verified from the latter equations
that

F(z2)=0.

We close this section with a discussion of the number of essential
parameters in a similarity solution. As we have seen for such a solution
the line element is of the form

ds? =e?9dt? — e*Vdr? — r* #%dQ?,
where ¢, p, and % are functions of z=r/t. Under the transformation
t=pt, r=af (4.25)
which we shall call a‘scale transformation, we may write
ds? = e*? dt? — e di? — P2 4 d Q>
where @, P and 2 are functions of the variable

i= ’ z (4.26)
defined by the equations

e?® = ocew(7 z) =qe?®@ 4.27)

Quantities such as ¢,y and £ whose transformation law under a
scale transformation involves the coefficients of this transformation,
explicitly will be said to be scale covariants. The constants of integration
which enter into the expression of two scale covariants may be trans-
formed to any desired values by a scale transformation. We shall therefore
call such constants inessential parameters in the similarity solution. We
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next show that the differential equations describing a similarity solution

may be decomposed into two sets, one involving scale covariants and

one involving scale invariants. The latter quantities are such that their

functional form and value are unaltered by a scale transformation.
Examples of scale invariants are

V=e¥"?z (4.28)
and
H=Ve “ZR (4.29)

It may readily be verified that as a consequence of equations (4.26) and
4.27)

and that
H=Ve "d=Ve "R=H.
If G(z) is any scalar function, then
dG  dG

=i =%

and is a scale invariant. Although Z(z) is not a scale invariant, the
quantities #/%, ¢ and 1 are.
The hypersurface z = constant has the equation

r—zt=0,
and the normal vector oriented into the future with components
— 4 1
n,=z9,—9,.
It may be verified that
utn,
(n,u*)* —n,n*
and represents the normal velocity relative to the fluid of the moving
sphere of radius zt. Similarly, the scale invariant

tanhw=e“’”"’—R—t=— ng. = un,
R R+ R ]/(n#u“)2 —n,n*

represents the normal velocity of the fluid relative to the sphere r=r(t)
obtained by solving the equations

¥

R(r, t) = constant .

In this case
n,=R,0;+R,9,.
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It is a consequence of the remarks made above and Egs. (4.11), (4.12)
and (4.13) that M, P, W, x, and N are scale invariants. Moreover it may
be verified from these equations that

Viw-M
and that
1— 27172
. (=2M)(W+P?V “31)

C(PHMPE—(W MV

Eqgs. (4.10) through (4.16) involve only scale invariant quantities as may
readily be verified. However the constants K, and B entering into
Egs. (4.18), (4.19), and (4.20) are scale dependent. The first of these
equations may be written as

Ko, %* K,

= = —y

L(x) B
But from Eq. (4.20) we have
_ B#*  Be*V H?

e V= =——
L(x) L(x) V?
Hence we may write
V2 K3
N3L(x)? = §g~ =K, 4.32)

a scale invariant constant.
It may be shown that as a consequence of Egs. (4.12) to (4.18)

P=0,(P,x, M)
%=0,(P,x, M) (4.33)
M =a4(P,x, M)
where
—2P | W—M P+ M W+P\?*| a?V?
R B T I TER 72 +( H ) Vg2
G dx
oy = ;G %+21I;—VV+—]I\)4)] (4.34)

Y ix
(W =M)(M+P)
%= W+P
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In these equations W and N may be regarded as functions of P and x,
and V and H are given as functions of P, x and M by means of Egs.
(4.31) and (4.32).

Egs. (4.33) may be written as

dP oy
dM o5
7 (4.35)
dx _ o2
dM o,
and their solutions and Egs. (4.32) may be written as
P =P(K;; M)
x=x(Ki; M) i=1,23, (4.36)
V=V(K;; M)

where K, is the constant appearing in Eq. (4.32) and K, and K; are two
scale invariant constants of integration.
The functions v, ¢ and z are then given by

B
v_ —0
=N
A dM
e’ = VK, exp(j G—) (4.37)
3
z=¢e?"VV.

The constants 4, and B, are scale dependent and may be assigned any
convenient value by a scale transformation. They are then said to be
non-essential parameters but the constants K;, K,, and K5 are called
essential ones since they are scale independent. Any two conditions which
fix A, and B, are said to determine a coordinate normalization for r and t.

Once the three constants Ky, K, and K5 are given the similarity solu-
tion is determined. When a coordinate normalisation which determines
A, and B, is given then z is a known function of M by means of Egs.
(4.37). Egs. (4.36) may also be solved for the

K,=K;,M,P,x,V), (4.38)
and from the preceding remarks it is seen that if the quantities M, P, x

and V are given on a hypersurface z = constant then this hypersurface
and the similarity solution to which it belongs are determined.
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One observer with the world line

r=Zot,
0=0,,
X=Xo

with z,, 0,, xo constants a z-observers is always in the hypersurface z = z,,.
When z,>0, the observer moves outward through the fluid toward
higher values of » and when z, <0 be moves inward. When z,=0 his
world line coincides with that of the fluid element at r=0.

The observer with the world-line

R(r,t):RO=
0200,
X=Xo

with R,, 0,, x, constants a R-observers has his velocity relative to the
fluid determined by tanh w. It is evident from Eq. (4.30) that when V' >0
and W > M then tanh w > 0. That is, even though the material is falling
behind the z-observer, when ¢t>0, it can be moving outward relative
to the R-observer.

5. Initial Data for the Field Equations

If a similarity solution is to describe the region of space-time represent-
ing the events behind a moving shock wave, the motion of that wave
must be given by the hypersurface

z2=12z,

with z; a constant and the region in which the similarity solution holds
must be given by

with z, another constant. The values of the metric tensor and other field
variables on this hypersurface, together with the jump conditions, which
will be discussed below, will provide information concerning the quan-
tities that enter into the full Einstein field equations, Egs. (4.4) through
(4.10). It is therefore of interest to examine the nature of the data needed
to ensure the existence and uniqueness of the solution of these equations.
The usual discussion of these questions does not apply since the hyper-
surface involved is a time-like one.

2 Commun. math. Phys, Vol. 21
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We first treat the case in which the fluid is characterized by the
function G(x). In that case Egs. (4.9) and (4.10) become

'+~‘£G~i—_ *+£gi__1._£* (51)
?Tix 6 T ix G) xG K '
and .
.1 dL . 2%
V=TT a 62
respectively. Eq. (4.7) may be written as
.. . 1 dL X .
R+R—— —X[R+ R+ +a®) %]
L dx
% 1 dG K G3)
—2% '@ * __——* K _ .*— ok
+@[( + +%)+92(G I X+ xG(x)K)] R —R
and Eq. (4.8) as,
* 1 dL ZK G *% ok *
(ﬂ+%)——x(V2—a2)=—e2“’IM~ —R—R
L dx L(x) (5.4)
s 4 1 dG K L
2 2__—___—‘*_———.# * *
+(.%’+,%)( Vv 7 G Ix * XG) K +<p>+w(@+92+9?)

+ Vz(‘é_ég):

when V is defined by Eq. (4.28).
If we define

Yi=2,

Y: =2,

Y3 =2,

Y4=x,

Yi=o,

Y=y

then we have

Yi=Y2, (5.5)
Y3=v2, (5.6)

and Eqgs. (5.1) through (5.6) may be written as
Y4 =FA(YE; YB;r;z). (5.7)

The Cauchy-Kowaleski theorem may then be applied to this system
of equations. From it we may deduce that if the initial hypersurface
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z=z, is such that
R+ R) (V> —ad*)+0 (5.8)

then the equations have a unique and analytic solution in the nelghbour-
hood of this hypersurface, determined by the values of Y4 and Y4 on
the hypersurface. These quantities constitute the initial data of the
problem. If they are restricted so that Eq. (4.6) is satisfied we will have
a solution of the Einstein field equations. The latter equation may be
written as

G(Y4; Y4;r;2)=0 (5.9)

since M, W and P may be expressed in terms of the variables Y4 and Y4
Eq. (4.5) follows as a consequence of Egs. (4.6), (4.7), and (4.8) and the
definition of M.

The hypersurfaces for which

VZ—a*=0

are the hydrodynamical characteristic surfaces. They describe the moving
wavefronts of sound waves.
The hypersurfaces for which

R+R=0
are such that

1—2M=(1-V?e 2v 42,

It is evident that if the condition (5.8) holds on and in the neighbour-
hood of an 1n1t1a1 hypersurface z=z,, and if on this hypersurface the
Y4 vanish and Kr? = k, a constant, then a solution of the field equations
is provided by a similarity solution. Because the solution is unique we
may conclude that the only solution of the Einstein field equations which
takes on constant values and for which Kr? = K, a constant on a hyper-
surface z =z, is a similarity solution. For such a solution Egs. (5.7) are
of the form

Y4=F4(Y5;z). (5.10)
Where an equation of state of the form
p=pW)
exists, we may write Egs. (1.22) and (1.23) as

_ 9o

5.11
W+ p ( )

2%
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and
f1(r)
e = g}za . (5.12)
Then by means of Eq. (1.21)
=9 _ 29
»= g p
o= 9 _ aZi
g o
. 5.13
s _ o
v= o R
o i _ 2@ _ fl
v= g e% fl
where
=P _ 2. (5.14)
dw

It may be verified that if Egs. (5.13) are substituted into Eqs. (4.7) and
(4.8), these equations and Egs. (5.5) and (5.6) may be written in the form

YA=FA(Y®; Y®r,z) A,B=1,.., 4 (5.15)
where now
Y'=2,
Y2=2,
Y =2,
Y¢=0.

We may again apply the Cauchy-Kowaleski theorem and obtain an
existence and uniqueness theorem when the condition (5.8) obtains.
A solution of the Einstein field equations is given when the initial data
satisfies Eq. (4.6) which is again an equation of the form of Eq. (5.9).

The initial data may be provided by data for which the Y# vanish
on a hypersurface z =z, and the functions ¢ and y are constant. The
latter requirement serves to determine the functions f; (r) and g(¢) in terms
of the initial values of # and o(r, z). If p is not proportional to w, the
solution determined by such data is not a similarity solution for we have
seen that such equations of state do not allow a similarity solution to hold.
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6. The Conditions across a Spherical Shock

In this section we shall discuss the conditions which relate the metric
tensor and the hydrodynamic variables on the two sides of a singular
hypersurface which represents the motion of a shock wave in the space-
time with the line element given by Eq. (1.1). This hypersurface will be
assumed to separate space-time into two regions. Later we shall take
one of these regions to be that described by the similarity solution dis-
cussed above and the other to be described by a knewn solution of the
Einstein field equations.

In general comoving coordinates, the equation specifying the spheri-
cal shock is given by

r=A(f). 6.1)

If the shock is a hypersurface z = z, in the special comoving coordinates
we introduced in the discussion of the similarity solution, we shall have

Aty =zt 6.2)

where z, is a constant.

The interpretation of various quantities that occur in the discussion
given below is attained from the use of another coordinate system in the
spherical space-time, namely Schwarzschild coordinates in which the
line-element given by Eq. (1.1) has the form

ds?’=¢e¢"dT?—e*dR?>—R?>dQ?. (6.3)
The R, T coordinates are related to the comoving onesr, ¢ by the equations

dR =e~*? (e? sinhw dt + e¥ coshw dr)

. . (6.4)
dT =e " (e coshw dt + e¥ sinhw dr)
where
tanhow =¢e¥~? R, (6.5)
R, ’
A a—29 D2 a—20 P2 2m
€ =c "’R,—e (pRt=1—‘T (66)

and v is such that the right hand side of the second of Egs. (6.4) is a
perfect differential.

In the Schwarzschild coordinates we have the four-velocity vector
given by
. a x*ﬂ o a x*ﬂ

b= =
Ul =u 0x° © ot
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that is, U?=U3=0 and
U*=e v?coshw,

U' =e *?sinhw.

That is, w is related to the proper velocity associated with an element
of the fluid as measured in the Schwarzschild coordinate system. In this
coordinate system the hypersurface described by Eq. (6.2) would be given
by

R=7(T)

and its unit normal will have the components N, where N, = N; =0 and

N,=e¢"?sinhC; N;= —e*?coshC
where
tanhC =e*27v2 7. 6.7)

That is, C determines the proper velocity of the shock front in this
coordinate system.
Then
U*N,=sinh(C—w)=u"n, (6.8)

where n,, is the unit normal to the shock front in the comoving coordinate
system. That is n, =n; =0 and

n,=e?sinh(C—w); n;=—e¥cosh(C—w)

with
tanh(C —w)=¢e%¥"% 4,. (6.9)

The quantity C — w measures the velocity of the shock front relative to
the flow.
We shall use the notation

fo=lim f(Z(D-eT),
f+=£ijr(§f(9‘(T)+8, T),
and
Lfl1=7/-—f+,

where f'is any function of R and T. Similarly, in the comoving coordinate
system we shall define corresponding quantities, for example

f-=1lim f(A@)=&,1).
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Thus f_ and f, are the values of the function f on the two sides of the
shock and [ f] denotes the jump in f across the shock. The quantities f,
and f_ depend on the point of the shock at which they are evaluated
and will in general vary as this point is changed. They may be considered
as functions of R (or ) and T (or t).

It may be shown that it is no restriction to assume that

C,=C_. (6.10)

It then follows from Eq. (6.7) and the requirement that the induced metric
on the hypersurface R =7 (T) be continuous that v(R, T) and A(R, T)
be continuous across the shock. Thus m(R, T) defined by Eq. (6.6) is
continuous across the shock. In the comoving coordinate system the
condition that the induced metric be continuous implies that

R.=R_,
(€29 —e?v A2, =(e*? —e*v A2)_ .
Egs. (6.9) and (6.10) then imply that
e ?*cosh(C—w,)=e ? cosh(C—w_) (6.12)

(6.11)

and
e ¥+sinh(C—w,)=e ¢ sinh(C—w_). (6.13)

That is, in the comoving coordinate system the metric is discontinuous
since @ and y are discontinuous, but the discontinuities in these qualities
are governed by Egs. (6.12) and (6.13) and as we shall see they may also
be expressed in terms of the discontinuity of the hydrodynamic variables.

We have seen, in the discussion of the conditions that obtain across
the shock in the Schwarzschild coordinate system, that the function
m is continuous. It is of interest that this fact may be derived from the
continuity of R(r,t) and Egs. (6.5), (6.9), (6.12), and (6.13). We have by
differentiating Eqs. (6.11) that

R R_
R*’(A‘+ R:) ZR"(A* R_i)‘

On using Egs. (6.5) and (6.9) we may write this as
[R,e?"¥(tanh(C — w) + tanhw)] =0.
It then follows from Egs. (6.12) that
[RZe™2¥—RZe™2?]=0.

In view of the definition of m and the continuity of R it follows that m
is continuous.
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The jump in the hydrodynamic variables is described by the Rankine-
Hugoniot equations which may be written as

[eU*N,]=0,
[(w+p) U*U* —pg"*) N,]=0

in the Schwarzschild coordinate system where U* and N, are given as
above. If we define

U=U"N,=u"n,=sinh(C - w)
we may write these equations as
0+ Uy;=0_U_
Uiwi+p)+pe=Ul(w_+p )+p- (6.14)
Ulwi +p)?=U2(w_+p ) =(p.—p_) (Ui(w, +p.)+U2(w_+p.)).
Egs. (6.14) may be written as

s (p——pa)(vatpo)
- w_+p)Ww_—wy+p,—p)

2 _ (p-—ps)(W_+ps) s
+ (W++p+)(W_—W++p+_p_) ( )

o2 Ui  (w_+p)w_+p_)

03 U T (weHp)wo+py)

It then follows that
2

2.~ _ 200 — 1)) — p29—20 42
Vv L 02 tanh*(C—w)=e A
satisfies
2 p-—p)w_+p,)
= s 6.16
F T ) (o) (©10)
(p-—ps)wi+p_)
V2= . (6.17)
w_—wy)w_+p,)
Hence
Vi-V_ (P—-P+)(W—"W+)V
tanh(w_ —w,)= — = =A4 (6.18)
R i 7 2 TS TR Sl
and
tanhe_ = AT @b, 6.19)

14+ Atanhow, °
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Egs. (6.12) and (6.13) may be written as

-0 We+pi)o- 1/ W-+p)(Ws+ps) (6.20)
W_+p_)os Wi t+p)w_+p-) '
and
e!&——w+:_QL= l/(w+ +p-)(wy+py) 6.21)
0- W-+p)w-+p-)
respectively.

The continuity of the function m(r, t) across the shock implies that

[m(A(), ] =0

for all values of ¢, 0, x labelling a point on the shock hypersurface. That
is we must have

[mrAt+ mz] =0
or in view of the field equations and the continuity of R(r, t)
[WR,A4,—pR,]=0. (6.22)

It may be verified that this equation is satisfied as a consequence of the
equations given above.

It follows from the continuity of m and R across the shock that
Egs. (6.16), (6.17), and (6.21) may be written as

_ (PL—P)(W,+P)

V:= , (6.23
(W_—W,) (W_+P,) :

(P-—P,)(W_+P,)
Vi= , 6.24
W W) W+ P) 629
= 29)

NZ ~ (W_+P_)(W_+P,)

respectively, and we also have

M_=M,. (6.26)

If the shock is a hypersurface z=z,,a constant, which separates
two similarity solutions each described by a function G(x) where G, (x)
may differ from G_(x), the above equations relate the scale invariants
P,M,x and V on both sides of the shock. Since the values of these
quantities on a hypersurface z=constant determine the hypersurface
and a similarity solution we see that a similarity solution on one side
of a shock, and the position of the shock (the value of z;) determine
the similarity solution on the other side of the shock consistent with
this value of z;. The constants K; appearing in Egs. (4.36) for the similarity
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solution behind the shock may then be determined in terms of those
appearing in the similarity solution ahead of the shock by using Egs.
(6.23) to (6.26).

Egs. (6.20) and (6.21), as they stand, relate ¢ _ to ¢, and yp_ to y,
across the shock when the same coordinates r and t are used on both
sides. Suppose now that the coordinates on one side are scaled according
to (4.25) but those on the other are left unchanged. We would then have

t_=t+=ﬂf+, ro=r,=of, .
In view of (4.27) it follows that
t_ o _ r_ _ —
A_g‘l’— (P+=e¢— <P+;A_ellf~ w+:ew— \P+'
ty ry

Therefore when r_ =7, and ¢t_ =+t because different scales are used on
both sides of the shock, Egs. (6.20) and (6.21) may be written as

t_— Q- —Q+ G+(X+) — (W__+P+)(W++P+) (6.27)
Ly G_(x-) (W, +P_)(W_+Py)
and
T v - Ne 6.28
" e N (6.28)

Thus if 4,_,B,_, Ay+ and B, are chosen conveniently on each side
of the shock, Egs.(4.37) determine z,y and ¢ on both sides and
(6.27) and (6.28) relate r_ to v, and ¢_ to t,.

7. Solutions Compatible with Similarity Solutions

The jump conditions across a shock, namely the generalised Rankine-
Hugoniot equations given by Egs. (6.15) through (6.19) and the conditions
on the metric tensor given by Egs. (6.20) and (6.21) together with the
continuity of the functions m(r, t) and R(r, t) may be regarded as either
determining the variables behind the shock in terms of those ahead of
it or vice versa. If a solution ahead of the shock is such that the variables
so determined are the values that these variables take on in a similarity
solution, then the solution ahead of the shock is said to be compatible
with a similarity solution.

If the medium ahead of the shock is characterized by a function
G, (x) and if it is compatible with a similarity solution, then it must be a
similarity solution. We begin the proof of this statement by observing
that due to the fact that R is continuous across the shock we may replace
the variables p, w and ¢ in Egs.(6.15) through (6.21) by the variables
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P, W and N respectively. Since the variables P_, W_,N_,o_,yp_, % _
are to describe a similarity solution, they are constant, that is independent
of r on the shock as is V_.

If we define

P_ p-
ﬁ=—W—= )
+ Wy
P
w= = fvj =a(x,), (7.1)
w_ w_
V—?_“—p—_—)’(x—)

then Eq.(6.21) implies that f=f(x,,x_) and given x, and x_ both
o and f are known.

Eq.(6.17) with V_ constant then determines the constant x, and
hence W,, P, and N_.. Egs. (6.18), (6.20), and (6.21) enable us to determine
A, ¢, and . as constants. @+ vanishes since R, =R _(r, z;) =rZ&_(z,).
Hence if the region behind the shock is described by a similarity solution,
then the Y of Eq.(5.7) vanish. Further it follows from the constancy
of P, and x, that K(r)r?> =k, a constant. Hence the unique solution
of equations (5.7) subject to the initial conditions derived from the
jump relations is given by a similarity solution. It is of course assumed
that the shock is such that

(R+R*)(V?—a*)+0.

If the solution ahead of the shock is not characterized by a function
G (x), but one of the quantities o, 8, ¢, or . is constant along the
shock with a similarity solution behind it, then each of them isindependent
of r. This statement is an immediate consequence of Egs. (6.15) through
(6.21).

8. Strong Shocks

In this section we shall assume that the medium behind the shock is
characterized by the function

G(x) = ; (8.1)

and discuss the jump conditions and the similarity differential equations
that obtain in this case. Eq.(8.1) is equivalent to the statement that

w=23p (8.2)
behind the shock and that
W_=3P_ (8.3)
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on the shock. Eq. (8.2) is the equation of state of a photon gas and that of
a relativisitic gas at high temperature (cf. [5]). It is therefore reasonable
to expect it to hold in the region immediately behind a very strong
shock. We shall however in this section assume that it holds throughout
the region of space-time described by a similarity solution.

It follows from Eq. (8.1) and Egs. (1.14) and (1.25) that

Lx)=x3 (84)
and that
1
a*= T =a%. (8.3)

For such a medium Egs. (6.16) through (6.21) become
£ _ N2 _ ABBB+a)

& TN T U+piTa)” (8
I
S Bl &
020--20+ 654;3)3{;)— d), 8.11)
gv--2ve - LEAUYS) i g)ﬁ(iz‘;) (8.12)

respectively, where we have made use of the fact that there is a similarity
solution in the — region. Thus the quantities with the subscript — are
evaluated from the similarity solution at z = z,.

It then follows from Egs. (8.5) and (8.8) that
L —6(—p)(B—Bs)

Vi-agt=V%—-—

37 (BB-1)09B+w

2B =1—a+)/(L-af - %o,
2B, =1—a—)/(1—a?)— $a<2p,.

where
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1- s
When a=1/3 or o =3, we have §, =f, = Toc. From the definition of

o (cf. Egs. (7.1)) it is reasonable to restrict « so that

IIA
ol

o
for this is equivalent to the condition that

w, —3p, 20.
Hence f; and §, are real.
We have from Eqgs. (8.5) and (8.7) that

I+l —a—2pP) <
Gp-nHa+p =
The last inequality arises from the requirement that the velocity of the

shock relative to the material ahead of it be less than the velocity of light
in this material. Hence we must restrict f§ so that

0.

Vi—1l=

1l—a—2p
- <0.
3p—1 =
We observe that w
3p—1=—-120
Wi

when w_ =w, as will be the case for most materials.
If we now require that

B> P (8.13)
we will have
V:—-a% <0
and
V2—-1<0.

We shall assume the inequality (8.13) in the subsequent discussion.

The equations which describe the similarity solution in the region
behind the shock when Eq. (8.1) holds are readily obtained from the
discussion of Section 4. We have

Ko R?
P= ‘;4
4K o9
W+P=—2"— (8.14)
2
e V= B;f

e’=Alzx,
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where A and B are constants each of which may be taken to be one by
using a scale transformation. When this is done Egs. (4.22) and (4.23)
become

R+R+ |— ——|(3 4%)=0 15
+ +(2% x)( R+ 4R) (8.15)
and

1 4 4 %# x 4 4\ A2

5 R +2x Z ;(3zx —RA*)=4x°K, (8.16)
respectively.

The last two equations have a first integral given by

2K, % 4% . R .
> (3+%>=1+%@2—7(@+@)2. (8.17)

This equation is obtained by evaluating and equating the two expressions
given for M in Egs. (4.11) and (4.13).

We shall discuss in detail in a subsequent paper the solutions of Egs.
(8.15), (8.16), and (8.17) which satisfy certain regularity conditions. In the
remainder of this paper we shall discuss a particular solution of these
equations and two compatible solutions of the field equations to which
it may be fitted. The particular solution we shall treat is given by the

functions
~ X=x,z 1?2

P (8.18)

where the constants x, and £, must be determined by the relations

x% = 8K0
RS = 4x§ = 2048 K3 = 56 K3 (8.19)
§=2118,

For this solution we have
R=rR(z)=r'"?t'2 R,

e?’=x
°, (8.20)
V= 20 412,172

R
Hence the line element is given by

t RY

2_ 2 3.2
ds*=xg dt )

2
[d% +4r dﬂz] .
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We may write this as

ds* =dt* — S2(t) [dF?* + 72 dQ*] (8.21)
where
t=xot
i Ho (8.22)

S(t)=t"2.

Eq. (8.21) describes a Robertson-Walker space time with zero cur-
vature for the space ¢ = constant and the scale function given by Eq.
(8.22). For this space time we have

1 K, R? 52
M=P=—W= ;?Oz=az (8.23)
0
and
1 1

For ¢t > 0 this Robertson-Walker space time is non-singular for all r and ¢
and in particular in the region

0=sz=sz

if the point =0, t =0 is excluded.
It follows from Egs. (8.18) to (8.20) that

Vi=2M (8.25)
and
Ky6?
8
These two equations and the first of Egs. (8.23) are of the form of Egs.

(4.36). It is thus evident that there is only one essential parameter in
this solution.

XXM = —K,. (8.26)

9. Compatible Static Solutions

A solution of the Einstein field Egs. (1.3) to (1.6), such that in the
normalized comoving coordinate system introduced in Section 3, it obeys
the additional restrictions

R,=w,=p,=0 9.1)
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is a static solution. We will now show that all static solutions com-
patible with a similarity solution are similarity solutions.

Eq. (9.1) implies that R is a function of r alone. For a compatible
solution, it follows from the continuity of R across the shock hyper-
surface, the hypersurface

z=1z, 9.2)
we may then conclude that for a compatible static solution
R=rR, =r%(z,). (9.3)

Since M is continuous and constant on the shock we must have for the

static solution
m=M1R=}’M1ﬂl (9.4)

along the shock. Since m is a function of r (cf. Egs. (3.5) and (9.1)) this
equation determines m throughout the static region.
Egs. (3.6) and (9.1) enable us to conclude that

e~V =(1—2M,)/%?.

Thus 1 is a constant throughout the static region and in particular on
the shock. Thus it follows from the concluding remark of section 7
that o, f, and ¢, are constants on the shock. Therefore

P, M

Wes=ag = —g—!?;—z =w(r). (9.5)
The last of Egs. (9.5) follow from Egs. (9.3) and (3.4). We also have
aM
Py=0W, = erz =p(r), (9.6)
and thus
p(r)=aw(r)

with o a constant. This equation may be interpreted as either the equation
of state for the source of the static field or as determining the constant
value of x, the inverse temperature, for a medium characterized by the
function G(x) by the equation

w+p a+l

xG(x)= » o

Eq. (1.8) may be written as

— Dy _ 20
w+p  (4+ou)r’

Pr=
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Hence
e? = g(t) 1 te 9.7)
and Egs. (3.7) reads

2(1—2M,) = M,(1 +a)?.
That is, in the static medium

P(r)=aM,=1-3M,£]/(4M,—1) M, — 1) =aW(r)

Since e~ 2% and M, must be positive we must have
0=<2M,=1.
The constant « will take on real values only if
0<4M,=1. 9.8)

The value of & determines the velocity of sound in the static medium if it
satisfies the equation of state given above. In that case we must have

a=1
and
P=aM,=1-3M,—)/(4M,—1)2M, —1). 9.9)
If we impose the condition that
a= L
=3
then we find that we must have
0=<14M,<3. (9.10)

It follows from Eq. (9.7) and the requirement that ¢ is a constant
that

e?=Cz", 9.11)
where C is a constant and
20
= . 9.12
" 1+o ( )

Thus for every M, in the range given by the inequalities (9.8) or (9.10)
we may determine a physically acceptable value of « by means of Eq. (9.9).
Then the compatible static solution of the Einstein field equations is
given by the line element

2

R
ds*=C222"dt* — ——— - dr? = R0 (9.13)
- 1

3 Commun math. Phys, Vol 21
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and is a similarity solution. Further, every compatible solution is a
similarity solution with three parameters %,, C and M,. The first two
of these may be removed by the scale transformation

Ct,
Rir

~)
Il

~»
Il

and thus there is only one essential parameter.

It will be shown in a subsequent paper that there is a two essential
parameter family of similarity solutions satisfying the equation of state
w=3p which are regular in the region

0<z=z.

These parameters may be chosen so that the solution they determine
may be fitted to the static similarity solution given above across a
shock wave. That is, the ¢, ., M., P,, W, determined above may be
used to determine the corresponding quantities behind the shock.
These in turn may be used as initial conditions for determining a solution
of Egs. (8.14) to (8.17). The solution so determined can be shown to be
regular in the region given above.

The similarity solution discussed in Section 8, which describes a
Robertson-Walker metric, may be fitted to a compatible static solution
for a particular value of the essential parameter M;. That is, we may
construct a solution of the field equations such that for the region
behind the shock, the region

0§Z§Zl,

we have the Robertson-Walker metric and for the region ahead of the

shock, the region
z>z,

we have the static solution given above. The solution so constructed
will be nonsingular everywhere except at »r =02=t and the hypersurface
z=1z,, the shock. As before we shall use subscript —(+) to denote the
value of a quantity from the region behind (ahead of) the shock at z=z,.
It remains to be shown that Egs. (8.6) to (8.8) and Egs. (8.11) and (8.12)
may be satisfied.
We recall that for the Robertson-Walker solution we have
| 2 K, 1
P = M_ = = — .
N 2 x2 3 v
The continuity of M implies that

M,=M_=M,.
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For the static solution we have Eq.(9.9) which must hold for P, and
W,=M,.

When the above equations are used, Egs. (8.8) become an equation for
M,, namely the equation

M, - P, (Ml)
3M, + P, (M,)
where P, (M,) is given by the right hand side of Eq.(9.9). That is, we
must have

2M, = =V2, (9.14)

M,(2M, — 1) 8M? + 6M, —1)=0. (9.15)

The value of M, satisfying this equation and consistent with the
inequalities (9.10) is
/173
= 9.16
5 916

Hence

_YTi-3
VT2

and we may use Eq. (8.7) to calculate

(Ml _‘P+(M1)) (3M1 +P+(M1))
4M?

V2= =0.685

since it follows from Egs. (9.16) that
P, =0.0173.

If the scale is chosen so that Egs. (8.20) and (9.13) hold, we may
calculate z; from the relation

M_=M, = l/—3

64

The continuity of R requires that

V2
and Eqgs. (8.11) enables one to relate x, and C

Xo _ BM;+P,) (M +P,)
Czr 8M?

where n is given by Eq.9.12. Eq.(8.12) is satisfied as a consequence
of Eq. (9.15) and the above equations.

3%
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Not all similarity solutions may be fitted to the static solution across
a shock. If the medium in the static region is characterized by a function
G, (x) where x is the reciprocal temperature, we may determine this
quantity in the static region in terms of the parameter M, for in that
region
w M,

xG+(x)=~1;—+1= P(M,) +1.

Egs. (6.25) may be written as

x2  PY2(W,+P,)(W,+P_)
X2 P2W_+P)(W.+P,)’ ©-17)

In this equation P, and W, are known as functions of the parameter
M,. However from the continuity of M across the shock we may regard
them as a function of M_. Hence we may regard this equation as de-
termining x, as a function of P_,x_ and M_. This function of these
variables must satisfy the equation

M_

SRR (9.18)

X1 Gi(xy)=

where P,(M_) is given by the right hand side of Eq.(9.9) with M_
replacing M.
Eq. (6.23) may be written as

2 (P =P .(M)(M_+P.)

=W MW +P,0M) ©-19)

Since V_ is determined as a function of P_, x_ and M _ from the equations
characterizing a similarity solution, Eq. (9.19) imposes another condition
on the similarity solutions that may be fitted to a static one.

A similarity solution may be fitted to the static solution discussed
in this section and characterized by a function G(x) if and only if the
similarity solution behind the shock contains a hypersurface z=z, on
which Egs. (9.18) and (9.19) are satisfied.

10. Similarity Solutions for Dust

If the source of the gravitational field is a fluid in which p =0, this
medium is said to be incoherent matter or dust. For such matter, solutions
of the Einstein field equations are well known and depend on the speci-
fication of the mass function m(r, t) which in this case is a function of r
alone. The matter may be considered as obeying a caloric equation of
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state with any function G(x) which is such that it equals unity when
the temperature vanishes, that is, when x the reciprocal temperature
becomes infinite. In that case we have

w=ogc
or
W=N. (10.1)

If a dust solution is to be compatible with a similarity solution, it
too must be a similarity solution as follows from the discussion of
Section 7. It is the purpose of this section to determine the subclass
of dust solutions of the Einstein field equations which are similarity
solutions and to fit one of them which represents collapsing dust to the
explicit similarity solution, given in Section 8, across a shock hyper-

surface with the equation
z=1z,.

The determination of dust similarity solutions is carried out in the
same manner as is the determination of a general dust solution. However,
we need only deal with ordinary differential equations, Egs.(4.10)
through (4.16). Since P =0, we have from Eq. (4.16) that

e?=D (10.2)
and from (4.10) that
C C
Ve = —
e N (10.3)

where C and D are constants, which can be given any convenient values
by a scale transformed.
Eq. (4.12) may also be integrated immediately and we obtain

AM =AC, (10.4)

where A4 is a constant and C is the constant introduced above. This
equation is equivalent to the statement that
m(r,t)=ACr.

Thus the similarity dust solutions are that special class of the general
dust solutions for which the mass function is linear and homogeneous.
Egs. (4.13) and (4.11) become

M=N(1+%)=W(1+%>=W<l~%) (10.5)

and

C? MZ
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respectively. If we recall that

C C
V=ev"%z DNZ DWZ
and that
R R
tanhw=e¥ ¢ —t = —zV—~
anhw=e¢ R, z TG
we may write the above equation as
W2 A?
IM=1+A*V*[1— —] —1|=1— —5—. 10.7
+ ( ( M) ) cosh?w (107

The second form of this equation relates the velocity of the hypersurface
R = constant with respect to the fluid to the constant 4 and the function M.
The solution to the ordinary differential Eq. (10.6) is given by

D 1 1
where
[ —1 2 1 2 ._1< 1—A)
—— 4+ ——sin ,
YMA—-4%) | 1-4> M (1-4%} 2
A<1
2 3
X(M)= J{—M“f, A=1 (10.9)
1 2 1 2 . _1( A2—1>
+ — — ———sinh —,
YMA2-1) || 42-1 M (A% -1} 2M
A>1.
The solutions for which
A=1,B>0 B—D———AX(M)—B—l——B—L (10.10)
=" ’ Cz B wv NV
are non-singular for ¢ large and negative but for
D
zZ= ﬁ =2z, (1011)
that is where
BVN=1 (10.12)

there is a singularity at which M becomes infinite and hence R=r#Z =0
as follows from Eq. (10.4).
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Let us now consider the problem of fitting a similarity dust solution
across a shock which is a similarity hypersurface to another region of
material characterized by a function G. The fitting conditions in the
form (6.23) to (6.26) allow us to express M, P,,x, and V, in terms of
M_,P_,x_ and V_ where + refers to the dust region. Because
x,(M_, P_,x_, V_) vanishes there is a relation which the quantities on
the minus side of the shock have to satisfy in order for this solution to
be fittable to a dust solution. Because P, vanishes and N, = W, (6.23)
and (6.25) may be solved for W, and when the resulting expressions
are equated we find
% =(x_G(x_)—1)>—x%. (10.13)
There are two arbitrary essential constants in the dust solution and
therefore Eq.(10.13) is the necessary and sufficient condition for a
solution of the fitting equations to exist when the material on the + side
is dust. Eq. (10.13) is the dust fitting compatability condition.

We now turn to the problem of fitting the explicit similarity solution
discussed in section 8 to the collapsing dust one given above. We make
use of the fitting conditions in the form (6.23) to (6.26). Let the shock
occur at some value of M, M, say, which by continuity of M satisfies

M=M,=M_.

The fitting compatability condition (10.13), with the aid of (8.25) and
(8.26), becomes

1
K, =9M,— 5 (10.14)
Eq. (6.23) becomes
(18M,—1)
W, =M,——F—"—~ .
* *(6M,+1) (10.15)
and with the aid of this Eq. (6.24) is expressible as
. (6M+1)?
V2= oM (10.16)
The condition that ¥} be less than unity may thus be written
1 1
— <M< —. .
T <M, < 5 (10.17)
Eq. (10.7) may now be solved for 4 and yields
1
A? (10.18)

T 4(18M,— 1)
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while (10.10) gives B as
B4 2(6M,+1)

183 -1 +AX(M,), (10.19)

where (10.18) must be used for 4. The inequality (10.17) guarantees that
the two solutions determined through (10.14), (10.18), and (10.19), with
a separating shock occuring at some M, on the indicated interval, are
physically acceptable. Thus M, generates a one-parameter family of
space-times such that in each case the collapsing dust solution described
above is terminated by a strong shock at M = M,. Behind this shock is a
region described by the Robertson-Walker solution obtained in section 8.
Thus by introducing the shock hypersurface we obtain a solution of the
Einstein field equations which is non-singular except at r=0,t=0 and
on the shock hypersurface. The collapse of the dust is stopped by the
shock which “converts” the dust into a medium for which w=23p.
Such a medium could be considered to be a photon gas. At r=0,t>0,
that is, z=0, the space time is regular but the temperature, pressure
and energy density vanish. Hence it may be physically unrealistic to
say that the medium behind the shock obeys the equation of state
p=3w for all M in the range

0<M<M,

if it is to be regarded as composed of material particles. In a subsequent
paper we shall examine the situation that arises when a similarity dust
solution given above is struck by a shock wave behind which the medium
is characterized by the function G(x) given by Synge [5] for a relativistic
gas of material particles. The dust case is of course covered by this
function G when the temperature vanishes and therefore the same kind
of material is on both sides of the shock. We propose to determine
whether there is a similarity solution behind the shock which is regular
exceptat r=0,t=0.
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