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Abstract. The behaviour near to and far from an initial singularity in a broad subclass
of the models studied in previous papers [1-3] is examined. The influence of the matter
on the evolution at these times is discussed. The singularity types for the various models,
which are mostly of cigar or oscillatory nature, are found. It is discovered that among
these models, only those of the same Bianchi type as a Robertson-Walker model can
become "approximately Robertson-Walker" in a sense defined in the paper. Qualitative
conclusions concerning black-body isotropy, the Hubble relation, helium abundance and
horizon structure are given.

1. Introduction

This paper is concerned with the asymptotic behaviour of a class of
homogeneous cosmological models studied in previous papers [1—3].
These are spacetimes which satisfy Einstein's field equations for a perfect
fluid and admit a three-parameter group of motions G3 simply-transitive
on spacelike sections orthogonal to the fluid flow vector ua. The only
spacetimes with three-surfaces of homogeneity orthogonal to ua which
do not admit a simply-transitive three-parameter group of motions are
those of Case I of Kantowski and Sachs [4].

All non-stationary spatially homogeneous cosmological models (in-
cluding those in which the matter rotates or accelerates) have singular-
ities, provided that the cosmological constant A does not have a large
positive value [5]. (These singularities are unambiguously physical sin-
gularities if the energy density of matter μ is everywhere positive, and its
pressure p is not negative, as will be assumed throughout this paper.)
For the models considered here one may deduce the existence of the
singularity from the (0 0) field equation, Raychaudhuri's equation.
Defining
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where1 Θab = Θ(ab)ι θabu
b = 0; θ = θa

a; hab = gab + uaub and 2σ2 := σabσab;
this equation reads

p = Λ, (1.1)

where ' denotes d/dt. The interpretation of the quantities appearing here
is that θ is the expansion of a small congruence of neighbouring world-
lines and σab its shear. With μ > 0, p ̂  0 and A ̂  0, we find that θ' + Θ2β
< 0. Thus if, at time ί, θ > 0, then there must have been a singularity at
some finite time t' < t.

A sufficiently large positive Λ can prevent the occurrence of such a
singularity. There are plausible physical arguments for discounting this
possibility [6, 7] and we consider here only those of our models
possessing an initial singularity. Physically this singularity represents
the big-bang fireball that appears to have occurred in the real universe
[6, 7].

One may discuss the late stages of evolution in our models by a
similar use of the generalised Friedmann equation, which is a first integral
of the field and conservation equations. Denoting the Ricci curvature
scalar of the three-surfaces of homogeneity by R*9 this equation is

%θ2 = σ2+μ + Λ-R*/2. (1.2)

lΐΛ^.0 and θ > 0 the general behaviour is that the universe expands for
all time; a second singularity, in the future, can only occur if R* > 0 and
this can only happen in universes of Bianchi type IX [1]. If A < 0 a second
singularity must occur. Since the present-day universe appears approxi-
mately isotropic and homogeneous (i.e. like a Robertson-Walker uni-
verse), so, at some time in the model, must any realistic model universe.

Thus we are motivated to study the behaviour of our models near
to and far from an initial singularity. This paper will in fact only discuss
a tractable subset of the models, which is nevertheless a broad class, and
consists of all models of Class A and those of Class B in which n = 0. The
classification used here, which is a modification of those of Bianchi [8]
and Behr [9], depends on the eigenvalues nl9 n2, n3 of a symmetric tensor
naβ and the magnitude a of a vector aβ which together represent the
commutators of a basis of generators of the reciprocal group to the group
of motions [1]. The basis is chosen so that aβ = (a, 0, 0): in general naβ

is chosen to be diagonal, but when n : = ri*Ά = Q one makes the more
convenient choice that only q:= n23 = Q. The details of the classification
are repeated for reference in Table 1.

1 The notation and conventions follow [1], Coordinates {t, xv} can be chosen so that
{xv} are comoving, (ί = constant} are the surfaces of homogeneity and t is the proper time
along the world-lines of the matter. Latin indices run from 0 to 3, Greek from 1 to 3. The
signature is + 2 and ua is normalised (uaua = — 1).
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Table 1. Summary of the classification of groups G3 as introduced in [1]. /ι:= a2/n2n3.
Case Bb is divided into Bbί and Bbiί according as aβ is or is not a shear eigenvector. Case Bbiί

can only occur when n2n3 + 9a2 — 0 (see [1])

Class Case Type a n1 n2 π3 Bianchi type

A

B

a
b

a
b

I
II

VΠ0

VIo
VIII
IX
V
IV

vπfc

0
0
0
0
0
0
+
+
+

0
+
0
0
-
+
0
0
0

0
0
+
+
+
+
0
0
+

0 I
0 II
+ VII

VI
+ VIII
+ IX
0 V
+ IV
+ VII

v,, * , + - v,(;»

In Section 2 we set up a modified version of the potential formalism
introduced by Misner for types I [10] and IX [11] and extended by
Hawking to all Class A models [12]. In Section 3 some concepts required
later are introduced and discussed in the context of the simple subclass
in which the three-space curvature R*aβ is isotropic (i.e. the surfaces of
homogeneity are spaces of constant curvature). Sections 4-6 discuss the
evolution in the less simple cases 2 and Section 7 provides a discussion
of the implications of the results of the earlier sections. As far as the
author is aware, the original references have been given wherever the
work of this paper is not original.

2. The Formalism

A number of authors have given (essentially equivalent) Lagrangian
or Hamiltonian forms of the Einstein equations of spatially-homogeneous
universes, with varying degrees of generality [9-12, 14-17]. Although
these can be quantised [11, 17] here we will only be concerned with
"classical" results. The essential virtue of the method, which we apply in
a form introduced by Misner [10,11], is that the introduction of a
potential makes discussion much clearer. The simple forms used here
apply only to Class A and Class B n = 0 spaces. It is not clear whether
it can be applied to general Class B models [12, 16, 45].

2 While the final draft of the paper was being written it was discovered that a similar
analysis has been carried out by K. C. Jacobs and L. P. Hughston (private communication),
and also that further papers on particular cases have appeared [13, 43, 44].
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In Class A and n = 0 cases the metric depends on only three time-
dependent functions X, Y, Z [1]. These we parametrise [10] by

= :/ 3 =:exp(-3ί2),

Y = :l2=:exp^-Ω--

Z =: /3 =: exp I — Ω — -

Only those n = 0 cases which fall in Class B are treated separately from
Class A. In these cases the field equations yield a constraint ([1], 6.3 b)

fc& (2.2)

where k := q/a is constant for a given model3. The freedom of rescaling

of the /α is used in Class A to set N^ : = —^— — , N2 : = — ̂ = — , and

to ± 1 or 0 as appropriate (see Table 1), and in Class B n = 0

to set 1/3 jδi — fcj52 to zero, satisfying (2.2). In the latter cases we introduce
β defined by ___

(2.3)

which measures distance along the line in the β-plane to which a given
model is constrained.

We define

1 3 V IX 0 /

where R* is the three-space curvature, R$ = 3/2 e2Ω is its value in type IX
if β = 0, and T is the group type. Vί is considered as a function on the
/?-plane only, although it depends implicitly on t. Explicitly

Class A: V1 = i [JVj2 e4βί + (AΓ 2 ,

-2N1e
β*(N2e

v*β

Class B(w = 0): ^ - -^α0

2(3 + fe2) exp I ^H— } (2.5)

3 When k2 = 1 one has cases of Bianchi type III which in the terminology of Ellis [18]
are locally rotationally symmetric (L.R.S.) and have been investigated by Kantowski and
Sachs [4, cf. 1]. When k2 = 9 one may have the special case Bbii in which αy is not a shear
eigenvector. Taking fc= — 3 one then has σ12 = έ>/Y 2 ZφO where b is constant [1]. Note

incidentally that the term —^—^ in [1] (6.7 b) should read -b2/Y4Z2.
Y £
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where α0 = aX. To treat case Bbii we introduce

(2.6)

which vanishes except in case Bbii3. Finally we define

Essentially V acts as a potential for the ^-motion, while Φ is effectively
Misner's Hamiltonian in the vacuum case4. V, F1; V2 and Φ are non-
negative. Contours of the potential Fare shown in Figs. 1-5, for Class A
cases except those of Type I where V = 0, and Figs. 7-9 for Class B n = 0
cases. Note that only in Type IX may R* take positive as well as negative
values and that then R* = OoV1 = 1. An L.R.S. model3 lies on one of
the lines Θ = 0, Θ = + π/3 where Θ is a polar angle measured from the
/^-axis.

The remaining Einstein equations are simply

4 Ω'2 = Φe6Ω + μ + Λ- δτ

Ixe
2Ω (2.8)

where T is the group type, and, for each of β1 , β2 in Class A, and for β
in Class B n = 0,

2(e-3aβ γ = - e - a - . (19)

By (2.9), or directly from ([1], 3.9) which is due to Raychaudhuri,

Φ' = -4e-4ΩV1(β) (2.10)

where ' denotes d/dΩ. If p = p(μ), which is no restriction if μ does not
take the same value twice, we may introduce the thermodynamic var-
iable w (Taub's σ, see [46]) by

dw dμ

w μ + p

The conservation equations Tab.b = Q then read simply

wβ-3o _ constant. (2.11)

It is possible (cf. forthcoming work by Jacobs and Hughston) to
formally introduce a potential for the Class B (n = 0) cases valid every-
where in the /?-plane. The peculiar features of these cases (as compared
to those of Class A) which will be discovered in subsequent sections may

4 Matter terms may be added when the matter obeys a Lagrangian description: see
e.g. [10, 16, 19, 46].
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Figs. 1-5. Contours of Vί(β) in the various Class A cases. Key: contour of F l 5

—» direction of exponential increase of V^. Certain values and asymptotes of V± are
indicated

Fig. 6. Singularity types when system escapes to infinity obeying (3.2) or (4.3)
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β
Fig. 7. Case Ba (Bianchi type V\ k = 0). The potential V (β) of (2.5)

Fig. 8. Case Bbi: the potential V(β) of (2.7) for k> 0
β

Fig. 9. Case Bbii; fc = — 3: the potential V = Vl + F2£
4Ω for some arbitrary Ω. is V2

then be regarded as due to the constraint (2.2) introducing qualitative
changes in the dynamics by restricting the system to a fixed line in the
/J-plane.

It should be noted that the time ί may easily be eliminated from the
equations in favour of a new independent variable τ (defined e.g. by
τ = Ω or by dτ = e + 3Ω dt). We frequently use τ = Ω. Whether the possi-
bility has deep significance [20] or not, it "regularises" the equation [16].

(2.9) has the interesting interpretation that the evolution of the
extrinsic curvature (second fundamental form) of the three-surfaces of
homogeneity is driven, through Einstein's field equations, by the in-
trinsic curvature in such a way as to increase the latter (i.e. in general
make it less negative, so that the actual magnitude decreases).

There are three main advantages of the formalism introduced above.
First one is able to use the methods of classical Hamiltonian mechanics
(see e.g. [21]). Secondly one can obtain an intuitive picture of the evolu-
tion of the models considered. For example, one expects that a type II
model must come in from large negative βί and rebound out again.
Such expectations are largely fulfilled, as we shall see. Thirdly one may
treat all the cases, or suitably chosen subsets, simultaneously.
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The remainder of the paper is essentially a study of the solutions of
the system of differential equations given by (2.4-2.10) for each type, in
the regions of large and small Ω.

3. The Cases where R*β is Isotropic

Before starting the analysis it is useful to define some terms, descrip-
tive of various possible behaviours near the singularity, which appear to
have been introduced by Thorne [22] and are now in common use. They
relate to the asymptotic behaviour, as we go towards the singularity, of
a fluid element which at some given finite time is spherical. One con-
siders the lengths of this element in the principal shear directions: if all
three tend to zero the singularity is called a "point" singularity5 if two
tend to zero and one to a finite number, it is called a "barrel" singularity;
if two tend to zero and one to infinity, a "cigar" singularity; and if one
tends to zero and two to finite numbers, a "pancake" singularity.

It is in general the behaviour near the singularity that governs the
existence of particle horizons [23]. In our models we shall use the fol-
lowing definitions 6: consider an observer at time t and the set of fluid
elements in {ί = constant} whose past world-lines intersect the observer's
past light cone (i.e. which he can see); if this set has a topologically sphe-
ical boundary, the boundary is called a particle horizon; if the boundary
is cylindrical or toroidal we say the particle horizon has been removed
in one direction; and so on. The occurrence of removal of particle
horizons depends on the rate of evolution of the models and the topology
of the space sections, the latter becoming espectially important in removing
horizons at late stages, as happens, for example, in the well-known
Lemaitre universes.

One would like to require that every observed large-scale property
of the universe (e.g. temperature and isotropy of background radiation,
helium abundance) can be duplicated at a particular time in the model.
However one would need to make a detailed numerical calculation for
every case, like those in Refs. [10, 12, 22, 25-28], in order to determine
whether this was satisfied. Instead we shall frame two weaker criteria we
should like the model to satisfy if it expands indefinitely, which indicate
whether or not it can be like a Robertson-Walker universe. A weak sense
of "becoming approximately Robertson-Walker" is that as /-> oo, σ/0->0.
This would insure that at sufficiently late stages of the evolution there

5 This does not generally mean it should be considered as topologically a point.
Indeed in the models of this paper the world-line of every particle passes through the

singularity at the same cosmic time ίs (which is taken as the time origin) and so the
singularity should be considered as topologically a three-surface.

6 Following Rindler [23] rather than Penrose [24].
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was no observable deviation from isotropy of the Hubble law. A stronger
sense of "becoming approximately Robertson-Walker" is that β tends to

00

some finite value as /->>oo, i.e. J σabdt is finite for ί0 >0. This stronger
to

condition would ensure that the overall distortion since the decoupling
time of the background microwave radiation was finite, and hence there
would be a limit on the anisotropy of the observed temperature of this
radiation. Neither of these conditions is sufficient to ensure that a model
is realistic, nor are they rigorously necessary (in that suitable limits may
hold for σ, β at a given time but not for all later times, cf. [4,22]). However
they clearly offer the best criteria one can provide for rejecting models,
other than detailed numerical calculation.

Models which collapse to a second singularity (or asymptotically
approach some finite /) do not allow use of these definitions, for if one
considers the initial value problem on a surface near the maximum of /
it is clearly possible to find some range of initial data, however restricted,
that would enable one to reproduce the observations to the same accuracy
as Robertson-Walker models. Here the need for numerical calculations
cannot be evaded. Therefore this paper attempts to discuss whether or
not a model collapses again, and only if there is no such collapse whether
or not the criteria of "becoming approximately Robertson-Walker"
outlined above are satisfied.

These definitions having been given, they will be discussed first in the
context of the models in which R*aβ is isotropic. Such models are either
Robertson-Walker models of Bianchi types I, V or IX, or anisotropic
(σ φ 0) models of Bianchi types I and V 7 . As the former have been exten-
sively studied by many authors, we remark here only that the isotropy
implies that there is a point singularity and that the evolution near the
singularity is governed by the matter content. Henceforth this paper
treats only models in which σ φ 0.

Using the results of [1] we have that8

/ i 2Σ - dΐv p

2π

(3.1)

7 Which if L.R.S. also admit groups of types VΠ0 and VΠΛ respectively [1].

2π8 In these equations we could use the alternative parameter βv= αv, which is

equivalent to changing the sign of the exponential in lv and renumbering (cf. [28]).

5 Commun. math. Phys , Vol. 20
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where E ̂  0, 0 ̂  α < — — , Σ > 0. Z1, E, α and /I are constants and

α = 0. In terms of the formalism of Section 2 we find that
β[ e~3Ω, β'2 e~3Ω are constants so the system moves rectilinearly in the
β plane and 3Φ - 4(Σ2 + 10E/4).

First let us consider the case where μ > p ̂  0 for every component of
the fluid9. (We shall not here need to specify the equation of state more
precisely.) Then at small / (i.e. near the singularity) the matter content
is dynamically negligible and

Dynamically these are just the vacuum solutions [29, 30]. A cigar sin-
gularity occurs unless α = π/2. If α = π/2 (which implies the space is
L.R.S.) a pancake singularity occurs, but among the spaces considered
here this is only possible in Bianchi type I. In case Ba (Bianchi type V)
we note that the distinguished axis of the cigar singularity is not that
picked out by the vector aβ (which with the present conventions lies along
the 1 axis). In the formalism of Section 2, when /-»0 (Ω->oo) in these
models, Φ ~ f Z 2 , 4Ω'2~Φe6Ω, and j8i2 + jff'2

2->4. One can show dia-
grammatically (Fig. 6) how the singularity type depends on the direction
of motion in the (βι,β2) plane when these equations for asymptotic
behaviour hold. (Note that the restrictions on the motion implied by the
allowed range of α in Bianchi type I reflect only an initial choice of
numbering of axes.)

The behaviour when9 p = μ is slightly different. At small /, μ — Ml~6,
where M is constant, say, and so

_ J_ / 2Σ s inα v \
6 t 3 { 1+(» + W*>

A pancake singularity is now impossible and if M > 3Σ2 we must have
a point singularity. For 3Z 2^M >0 it is convenient to introduce the

parameter \p = sin"1 (— — — - > — . The possible singularity types
V 2Σ I 6

are then as displayed in Table 2: all those shown can occur in Bianchi
type I, while inspection of the table for α = 0 gives the type V possibilities
(namely a cigar if M <2Σ2, barrel if M = 2Σ2 and point if M>2Σ2).

9 We strictly wish to ensure that μw~2->0 as μ-> oo. This condition is violated if, for
example, p = μ for some component of the fluid. For brevity we denote the alternatives
by μ > p and μ = p in what follows. A sufficient condition for the former is p 5Ξ (1 — ε) μ
where ε > 0. p > μ violates causality.
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Table 2. Singularity types for (3.1) with p = μ

cigar barrel point

ψ = π/2

π/2 > φ ̂  π/3

π/3 >ψ

none

ψ — π/3 < α < 2π/3 — ψ

α < 2π/3 — ψ
and α > π/3 + ψ

α = π/6

α = 2π/3 - ψ
and a = ψ — π/3

a = 2π/3 — ψ
and π/3 + tp

other values

α < ψ — π/3
and α > 2π/3 — ψ

2π/3 — ψ<ct< π/3 + tp

Thus all the singularity types introduced earlier occur for some
Bianchi type I models, cf. [30]. The results given above and in Table 2
agree with the exact solutions for particular equations of state discussed
by Jacobs [28]. In the next sections it is shown that the types of sin-
gularities so far encountered are not an exhaustive set [11,13,17, 31, 32].

Turning now to the question of the late stages of evolution one notes
that if A is non-zero it would dominate the /' equation at large /. Thus
if A < 0 there must be a maximum of / followed by collapse to a second
singularity. This second singularity will obey the same analysis as the

first, save that the time direction is reversed and so the integral J —j-

changes sign. This implies that non-L.R.S. models have a second cigar
singularity but with a different preferred axis and that L.R.S. cases that
were initially pancakes (respectively, cigars) finally become cigars (respec-
tively, pancakes).

If A > 0 then, at large /, Γ —]//V3/ so that

where the Kv are constants. Hence the model becomes asymptotically
Robertson-Walker in both senses defined earlier, for, at large /, σ/θ is
0(Γ3) while β is β0 + O(Γ3) where β0 is constant.

If A = 0 the situation is a little more complicated. E > 0 implies that

lv~Ύ~as /~>00'In this case σ//θ is °^"2^ and ^~^° is °^r^: the

models are again approximately Robertson-Walker in both the senses
defined earlier. If E = 0 the behaviour at large / depends on the matter
content. If10 p = μ then μ = MΓ6, M constant, and σ/θ is constant
(cf. [28]). If p<μ then σ/θ-^Q as /->oo. The stronger criterion given
above is certainly satisfied if there is some y < 2 such that μl3y is bounded

10 Strictly we must distinguish between cases where μw~ 2 -+ooasμ->0 ("p<μ") and
where it does not (p — μ) (cf. note 9).
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below by a positive number. Since in the real universe it seems certain
that μ/3 -> constant as / -> oo [6] we may take this condition to be satisfied.

Therefore we conclude that except in certain physically unlikely
special cases all these models are asymptotically Robertson-Walker in
both senses.

4. The General Singularity Behaviour: Matter Dynamically Negligible

In this and the two subsequent sections the cases covered by Section 3
are excluded. Thus we shall discuss only cases in which V^β) and β are
not constant. One may note that

i) in all cases the A term is negligible near the singularity,

for (2.10) proves that Φe4Ω increases with Ω so that Φe6Ω/Λ^oo as
ί2->oo. Moreover as Φ and V± are non-negative (2.10) shows that Φ is
monotone decreasing with Ω. Φ is bounded below, therefore

ii) Φ tends to a finite non-negative limit as £2-»oo.

Defining β' by β'2 := βf + β'f, which is consistent with (2.3) we find
from (2.8) that if -R*/2 + μ + Λ is positive, \β'\^2. In the exceptional
case where R* may be positive (Bianchi type IX) this is still true suffi-
ciently near the singularity, for even the least favourable admissible
matter term (p = 0, μ = Me3Ω, M constant) implies μ — R*/2 + A > 0 for
large Ω. Thus

iii) \β'\ :g 2 sufficiently near the singularity.

For clarity we phrase the discussion of the next two sections in terms
of the validity and consequences of the following three assumptions:

a) the Φ-term dominates (2.8),
b) Vl is small compared with β'2e~2Ω,
c) 6 V / d β l 9 dV/dβ2 are small compared with e~*Ωβϊ, e~3Ωβ2\

When a) is valid (2.8) implies

2Ω =^-l/Φe3 f l (4.1)

and if in particular Φ->C2, where C>0, as Ω->oo one may integrate
(4.1) as

ί3— ί (4.2)

This volume evolution law is the same as for the early stages of the
Bianchi I models discussed above (cf. [30]). It would remain true until
the effects of the differences in (2.9) or (2.10) from the Bianchi I case, or
the dynamical effect of the matter, became important.
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a) may fail to be valid in two ways which it is useful to separate. If
Φ^C 2 >0 as £2-»oo, then the matter term can only be dynamically
important at early times if 9 p — μ. If instead Φ-»0 as Ω—»oo, then there
would be equations of state less extreme (and more physically plausible)
than p = μ such that matter would be dynamically important at early
times. These possibilities are considered in the following section. Here
we shall assume a) is valid and examine the self-consistency of this
assumption, i.e. we examine only models in which near the singularity
the matter has negligible effect on the evolution.

Finally concerning a) we note that it does not assert that the space
is empty. The presence of some matter (although dynamically insignifi-
cant) is necessary to ensure that there is a real physical singularity (see
e.g. [30,33]). However the fact that matter is dynamically negligible
enables us to check our calculations by reference to the known exact
vacuum solutions, which are summarised in [1].

b) implies that Φ is approximately constant and if a) is also true
there is an epoch throughout which(4.2) holds and \β'\ — 2. For the models
we are considering V1 (β) φ 0 and so given Φ and Ω there will be certain
regions of the /?-plane in which b) clearly fails. These are essentially of
two sorts which we may describe as walls and valleys (see Figs. 1—5, 7—9).

c) implies that (/?/, β2) e~3Ω is approximately constant. If a) and b)
and c) are all true for Ω > Ώ0, Ω0 being constant, then for Ω > Ω0

β( =2= constant, β'2 — constant, β'l+β'ϊ—^- (4 3)

The asymptotic behaviour near the singularity if (4.3) holds is like that
of the cases discussed in Section 3 and so can be simply read off from
Fig. 6. c) fails in certain regions of the β plane, for any given Φ and Ω,
and in general these regions are the same as where b) fails. The implica-
tions of b) and c) outlined above indicate clearly that it is the behaviour
in these regions which determines the self-consistency of a) and therefore
we now investigate this behaviour, no further consideration of models
which never enter regions where b) and c) fail being required.

First let us consider the potential walls. In each case it is convenient
to define new coordinates (/Jl5 β\\) by rotation in the (βί9 β2) plane, so that
the potentials at the walls take the form Vί — V0e

mβA- where V0, m are
constants. Such walls occur in the following cases: in the n = Q cases of

Class Έ from (2.5), m being . and β\\=0: in Class A cases with

m = 4 and in the following regions (see Figs. 1—5); in type II at all points,
in types VI0 and VII0 at large \β2\, in types VII and IX at (for example)
small β2 and large positive βl: and in type VI0 with m = 2 when β2 = 0.
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The equations (assuming a) holds) are (4.1) and, by (2.9) and (2.10),

Φ'=- -4V0e
mβ±-4Ω (4.4 a)

(4.4 b)

Thus, up to small correction terms, ]/Φβ\\ and |/Φ(m — β[) are constant.
(There are several vacuum cases in which (4.4) become exact and analytic
solutions have been found: namely in type II [34], type III (n = 0) [4]
and types VI0 (n = 0) and VIΛ (n = 0) [1].)

The effective potential walls, represented by the value of Vle~4Ω,
move outward, as Ω increases, at a speed /Call — 4/m. From (4.4 a) it is
clear that β( must reduce below 4/m in a finite time, for otherwise Φ
becomes negative. The upper limit allowed for this time decreases with
Ω. If the approximations are valid indefinitely Vίe~4Ω decreases to zero,
so b) will eventually hold (as will c).

The actual behaviour implied by these considerations depends on
the value of m. In general in the Class A cases m = 4 while \β'\ < 2. After
the bounce β( < 1 and if b) eventually holds this shows that the eventual
state is one in which the system is either moving away from the wall, or
towards it at an angle to the normal greater than π/3. By calculation
from the constants given above one can in fact construct a bounce
law for the initial (i) and final (ί) angles between the motion and the
normal [11,17]. These values are of course only asymptotically achieved
at times when Vle~4Ω->0. Similarly one finds that (for m = 4)

showing that a lower limit for Φf is Φ,/9.
In types II, VI 0 and VII 0 we now have all the information we require

about bounces off walls. In type II there is just one bounce. In types VI0

and VII0 the walls at large |j82| are inclined to each other at an angle of
π/3 so that only a finite number of bounces occur before either the system
escapes or it enters the valley region at small \β2 and large negative β^.
Thus if the valley reverses the motion the system eventually escapes to
infinity. In the special type VI0 case with β2 = 0 a wall with m = 2 operates
and, remembering that in this case β[ < 2, reverses the motion. In all
these cases Φ is only reduced by a non-zero factor by collisions with the
walls, so that a) can be self-consistent. Moreover the results given here
are consistent with the vacuum solutions for type II [34] and the special
(n = 0) case of type VI0 in which β2 = Q [1].

In types VIII and IX there may be infinitely many collisions with the
walls, and if so Φ-»0 as Ω^ oo. Misner has given an lower limit for this
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decrease, based on calculations using a square-well potential with the
same bounce characteristics as the real potential and having walls which

4
move at speed j8^all= — = 1. For large Ω it is Φ>KΩ~2 where K is

constant [11, 17]. This limit, which may clearly be carried over to the
type VIII case, shows that collisons with walls could only affect the self-
consistency of a) if there is a very extreme equation of state.

In the n = 0 cases of Class B, \m\ < 2. As Φ is positive and monotone-
decreasing the constant ]/Φ(β[ — m) shows that either β( <moΐ2^β[>m
or β[ = m for all Ω. If initially m > β[ > 0 then a) and b) do not both hold,
but the motion may reverse so that β[~ —2. If β[ > m initially then since
Φ decreases β( must increase. In the marginal case β[ — m, where small
corrections are important, there is a possibility that Φ->0 in such a way
that a plausible matter content becomes dominant (or is at all times
dominant); see next section. We may understand the perhaps unexpected
behaviour of these cases by comparing them with the Class A cases
whose jβjL motion is not reversed by collison with the wall. The essential
difference arises from the constraint (2.2), cf. remarks in Section 2.

These results for the Class B n = Q cases agree with the vacuum
solutions for type III (L.R.S.) [4] and for type VIΛ models of Case Bbi,
the latter being (cf. [1])

t= [ X ( p ) d p \ ^2(i/)
0 (A &\

Y2 = (smh2a0u)1+k(tanha0u)Q '

Z2 - (sinh 2a0u)1 ~k(tanh α0u)Q

where β = ± J/3 + k2.
In the Bbii case (where k = — 3) V2 must be considered as a potential

wall of a different kind from those above. Since Φ ̂  V2 > 0 we find there
is an absolute upper limit to β (cf. Fig. 9). For large Ω, Vl is negligible
near this limit so that b) holds while c) fails. (2.9) then implies a rapid
reversal of the β motion. At very early times one would expect that
β' ~ 2 just after this bounce and so a further reversal by the Vί wall would
not occur. However if when colliding with the V2 wall, β1 < m the possi-
bility arises of more than one oscillation of β. It appears that potentials
like V2 may appear in those more complicated cases which this paper
ignores, although a proper discussion requires more than a 2-dimensional
β space, cf. [12, 16].

Having considered the effects of potential walls we come now to the
valleys. These occur in types VI0, VΠ0, VIII and IX at large negative β1

and small \β2\ (and in two further regions in type IX, see Fig. 5). There
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the potentials have effectively the following forms for motion in which
/ ? 2 Φ O :

Type VI0

V1^^e~2^(ί + 3β2

2). (4.7)

Types VΠ0, VIII, IX

Vί^4β2

2e-2β*. (4.8)

Clearly if (4.8) reverses the β1 motion, so will (4.7). We wish to consider
motions in which initially β\ ~ — 2 and β'2 Φ 0. We write β1 ~ — β0 — 2Ω
where β0 is slowly varying. In first approximation β2 executes simple
harmonic motion with frequency ω = 4eβo/]/Φ and energy

?2

2), (4.9)

by (2.9). There is actually an exact solution of (2.9) when (4.8) holds, due
to Chitre [17], in which the amplitude of the β2 motion increases, so
that (4.8) ceases to be valid, and the motion is no longer "down the
valley". Alternatively this conclusion may be reached by consideration
of the adiabatic invariant K = E/ω [11] and the secular changes of Φ,
and β0 that can be deduced from it (Misner, unpublished). These con-
siderations lead to the conclusion that the valley does in fact reverse the
βί motion11. A full proof would require some study of those regions
where b) and c) fail but neither (4.4) nor (4.8) are valid approximations.
However, it seems highly unlikely that this would provide any new effects.

The reflection by the valley does not entirely satisfy the obvious
analogy of an electron in a magnetic bottle, because the energy is not
conserved. To obtain an estimate of the rate of decrease of Φ we
rewrite (2.10) as

(Φe2Ω)' = 2(β'2e~bΩ - V, (β) e~4Ω) e2Ω . (4.10)

Now while (4.8) holds, <β'2e~6Ωy^^Vl(β)e~4Ωy, where < > denotes
time-average. Also </?i2e~6β> >0, so (4.10) implies that Φe2Ω increases.
We see that a faster rate of decrease of Φ can occur than in collisons with
the walls, and consideration of the diagrams (Figs. 2-5) shows that one
would expect the fastest rate of decrease of Φ to occur in the valleys.
Thus we conclude that a) is self-consistent if μ^ 3 p. It should also be
noted that the system may spend considerable periods in the valley
regions while undergoing the reversal just discussed, with implications
that will be discussed in Section 7.

Finally we must consider the cases that enter a valley region with
β2=Q. These are L.R.S. spaces, except for the type VI 0 case we have

11 This is borne out by selected numerical calculations due to Okerson [17] and
Matzner et al. [43].
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already discussed. The type VΠ0 L.R.S. case admits a type I group [1]
and its possible asymptotic behaviours are the same (for here β2 = 0=> Vγ

= 0). In the remaining cases, L.R.S. spaces of types VIII and IX, the system
can escape to infinity so as to produce a pancake singularity. (In type IX
this follows because a) asserts that Φe4Ω > 1). This conclusion agrees with
the behaviour of the known vacuum solutions [34, 35] and the numerical
models of Behr [15].

We may combine the above results to reach the following conclusions
concerning the behaviour of those models where a) holds, (these results
being expressed in terms of the conventions of [1] and Table 1 regarding
coordinates and structure constants). Note a) fails in Robertson-Walker
universes (see Section 3).

Class A. In general the models have cigar singularities or are oscilla-
tory; L.R.S. cases may have point or pancake singularities.
Type I : The motion of the system is rectilinear in the β-plane. The system

escapes to infinity. The general case has a cigar singularity but some
L.R.S. cases have pancake singularities (see Fig. 6).

Type II: The motion of the system is eventually at an angle of more than
π/3 to the ingoing normal to the wall, after a collision with the wall.
In general a cigar singularity with the 2 or 3 axis distinguished. The
L.R.S. case has a pancake singularity with the 1 axis distinguished.

Type VIQ: After possibly a few bounces on the walls and reversal by the
"valley" of the β1 motion, the system escapes to infinity in the
β-plane, in such a way (Fig. 6) as to give a cigar singularity on the
1 axis.

Type VII0: If L.R.S., then the model is type I (q.v.); if non-L.R.S. the
behaviour is as for type VI0.

Type VIII: If L.R.S., escapes along the β1 axis and has a pancake sin-
gularity. Non-L.R.S. cases oscillate in the potential well, striking
the walls and being reversed by the valley in general infinitely often
(cf. [13]). Long periods may be spent in the valley.

Type IX: The motion again has in general an oscillatory character,
spending much time in the valleys of the potential [11, 31]. The
L.R.S. cases bounce a few times along the axis and then escape to
infinity, yielding a pancake solution [15].

It may be noted that in types VIII and IX it is the possibility of
motion down the valley that prevents us drawing the conclusion that
(Ω — |j8|)-> oo, which if true would imply a point singularity.

Also we see that in type IX the bounces at early epochs occur at
negative R*. This means that a model with compact three-surfaces of
homogeneity (i.e. of type IX, cf. [1, 2]) will not in general have positive
spatial curvature at all times. In cosmology "closed" meaning "having
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compact spatial three-surfaces of homogeneity", has been taken as syn-
onymous with "having spatial three-surfaces of homogeneity of positive
curvature". The latter two phrases are clearly inequivalent. (Also the
space sections are always closed in the four dimensional topology.) The
usage is misleading.

Class B with n = 0. In general these cases have cigar singularities.

Ba: type V : Cigar along 2 or 3 axis. The potential, being constant, has
no effect.

Bbi: type III (L.R.S.) : Motion only reversed by the potential if initially
1 > β' > 0. Cigar or pancake singularities can occur, and the exact
solutions show this [4].

Bbi: type VIh: lϊk = q/a < — 1 cigar along the 1 or 3 axis; if — 1 < k < +1
cigar along the 2 or 3 axis; if k> 1 cigar along the 1 or 2 axis. In all
cases the only motions that are reversed are those with β' initially
between zero and 2fc/]/3 + /c2.

Bbii: type VIh: k = — 3. Motion has β bounded above. There is an extra
time dependent function /(x°) in the metric, but this does not affect
the singularity type which is a cigar with the 2 axis distinguished.

In all this we have assumed a) valid. Our calculations show that this
is self-consistent in most cases. The possible exceptions are: in any model
if 9 p = μ\ in types VIII and IX, if μ < 3p; in certain Case Bb models. We
have now to investigate what happens if a) fails.

5. Special Cases: Matter Dynamically Important

We shall examine what happens when the "anisotropy energy" Φe6Ω

is not the dominant term in (2.8). Near the singularity this would mean
that μ dominated, see remarks in Sections 1 and 4. There has been some
controversy over the physically possible, and the appropriate, equations
of state at high density [36]. One can argue that, although causality allows
μ = p, realistically one should impose the condition μ^3p. It is clear
that matter with the extreme equation of state p = μ will in general cause
a) to fail. Matter with μ ̂  3p need not do so in general. In this section
we shall thus refer to the two representative cases p = μ (μ = M e6Ω) and
μ = 3p (μ = Me4Ω), where M is a constant.

If p = μ the approximation to (2.8) at large Ω is

. (5.1)

We then find
i

(5 2)
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4M>9Φ, (5.3)

|JB ' |<1 . (5.4)

In a collision with a wall (4.4 a) still holds, so that if (4.3, 4 a) are valid
one finds that the β± motion need not be reversed. The equations that
replace (4.4 b) show

a n d Φ + - (5.5)

to be constant. The bounce law (4.5) holds when m = 4, if we replace
/ / 4M\*

β± by β'± \ U + >jff> an<^ Φ by Φ

collision with a wall is possible if

4M\* 4M
β± by β'± \ U + >jff> an<^ Φ by Φ H -- — - . Thus a reversal of motion in

Φ / L~ m

or, in Class B (n = 0) cases, when Q<β'±<m. The final angle between
the trajectory and the ingoing normal to the wall will not now have to
be more than π/3, but greater than some new critical angle less than π/3.

Since the equation of state p = μ is physically implausible we shall
not pursue the full details of the possibilities arising from it. We remark
that (5.4) implies a point singularity in all cases, and that the condition
(5.3) which led to it is precisely the generalisation of the condition
M > 3Σ2 for the cases of Section 3. When (5.3) does not hold at early
times, as it may not in some models, the possible singularities will be as
discussed in Section 4, with the addition of the barrel case (cf. Table 2).

If Φ+->0 as Ω-χx), and 9 p<μ then a) must hold. So if p<μ and
a) fails, Φ-+0. Thus β'2 e~6Ω->0 and this requires that for every Ω0 such
that /ΓΦO, there is some Ω>Ω0 at which the potential term in (2.9)
opposes the velocity in the β plane. Therefore it is clear for example
that if in type II /Γ < 0 a) eventually holds.

If the right-hand side of (2.9) is not significant then (βί\β2}e~3Ω

— constant (i.e. c) holds) and so a) would eventually hold provided μ ̂  3 p.
Now the regions in which the right-hand side of (2.9) are significant move
outwards in the β-plane at speeds β'c of order 1. If Φe6Ω is small compared
with μ, then \β'\ « 1 and so the system cannot enter, or if in, cannot
remain in, regions where b) and/or c) fail. Therefore the system would
evolve so that a) eventually held. The conclusion is that it is not in
general self-consistent for a) to be false at all times. The problem we are
left with is determining what happens when a) is also not self-consistent.

Since we are now assuming9 p<μ, the relevant cases are Bianchi
types VIII and IX, and n = 0 cases of the subclass Bb. In the two Class A
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cases the rate of decrease of Φ when a) holds is such that Φe2Ω increases,
so that matter with equation of state such that μ ̂  3p would be negligible
at all sufficiently early times. For intermediate equations of state
μ>p>μ/3 one would expect that there will in general be alternating
epochs in which μ and Φe6Ω are the dominant terms in (2.8); clearly there
will also be at least some equations of state with p < μ for which the
matter is never negligible dynamically.

In the Class B cases the exceptional cases occur when, during the
period in which Φ dominates, β' = m (see Section 4). There is an exact
solution due to Kantowski [4] which demonstrates that in this case one
can in fact have a point singularity. It is an L.R.S. model of Bianchi

type III (n = ty filled with disordered radiation p= —μ in which

Z=a\l-

X = a

(5.6)

At large ί, β' = 1 = m and Φ dominates in (2.8). As ί2-» oo (t-»a + ί0)
Φ becomes negligible compared with the matter content. To show that
models of the same kind as (5.6) occur in the other Class B n = 0 cases
could only be proved by giving explicitly the exact solutions, but it
seems highly likely.

6. Behaviour Far from the Singularity

To discuss the behaviour far from the initial singularity it is helpful
to introduce the variables

χ=-β; ιp = Φe4Ω = β'2e2χ+

The governing equations are (2.9) and

e-4χ)=-¥σ2e2x, (6.1)

*-$ϊxe-2x9 (6.2)

where T is the group type. We wish to consider the behaviour when
χ-> oo (for models other than those of Section 3). The energy density μ
obeys Me~6χ^μ^Me~3χ where M is an initial value (assuming
O^p^μ). Since it seems that in the present-day real universe μ~Me~3χ

[6] we shall assume this in what follows (suitable amendment of the
argument and conclusions could be made for other cases).
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(6.1) shows that ψ is monotone decreasing with χ and since it is non-
negative, it therefore tends to a finite limit as χ->ao. The existence of
this limit does not however enable us to conclude from (6.1) that
σ2e2χ-+Q as χ—»oo.

Clearly if A Φ 0 the A term will dominate (6.2) at large χ. If A > 0 the
universe will expand indefinitely except in certain cases of Bianchi type IX.
At large χ, χ'2^=A/3 and as (β'eχ)2 is bounded above by the initial value

of ψ, say ψQ, we find that \β'/χ\ is bounded above by / — ψQe~χ. This
V A

tends to zero as χ-> oo, and thus σ/θ-»0. Moreover if the approximation
for χ is valid for χ > χ0

T
ίβ'dt

Xo

(6.3)

(6.3) shows that β tends to some finite value. The models with A>0
become approximately Robert son-Walker in both the senses defined in
Section 3, except for certain cases of Bianchi type IX which collapse to
a second singularity.

The Bianchi IX models may collapse to a second singularity because
R* can be positive. The critical value Ac of A required to prevent this in
an anisotropic model is not larger than the value required for the cor-
responding Robertson-Walker model (i.e. the well-known Ac of Lemaitre
models), since the terms appearing in (6.2) in the anisotropic case which
vanish in the Robertson-Walker case are strictly non-negative. Moreover,
there may be borderline cases in which χ asymptotically approaches
a fixed χ0 from below (as in certain Robertson-Walker cases [6]).

If A < 0 the universe must reach a maximum of χ (i.e. of /) and then
collapse to a second singularity. The behaviour near this singularity
obeys the analysis of Sections 4 and 5. If only one kind of behaviour is
admissible for a certain type of model, the initial and final singularities
must both exhibit this behaviour, but if more than one kind of behaviour
is possible the two singularities may, and in certain cases must, be dif-
ferent. The details, which we omit, can easily be deduced from the work
of Sections 3-5.

The case A = 0 is more complicated, since it is not immediately clear
which term in (6.2) will be dominant (unlike the cases of Section 3 where
V1 was constant, and so ψ became dominant at large χ if V1 Φ 0). Let us
suppose that ψ dominantes (so that ψeχ is large at large χ) and consider
first the Class A cases other than type IX. When ψ dominates the argu-
ments of Section 4, time-reversed, apply. Thus ψe2χ is on average de-
creasing with time even in the type VIII case, and hence ψeχ^>0. Our

12 Except in Bianchi types VIII and IX, the arguments and qualitative conclusions
of this section are easily generalised from the dust case to the radiation case.
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assumption is not self-consistent. This proves that ψejχ^0 for all7< 1
and in particular φ->0. Now φ->0 implies J^->0 and so in types II, VI0

and VIII |jβ|->oo. Moreover, that ψejχ-+ΰ for j < 1 gives a finite lower
limit in these cases for the time average of dβ/dχ. Hence there is no time
χ0 such that ψ is negligible in (6.2) for all χ>χ 0

 For these Bianchi
types (II, VI0, VIII) we conclude that matter and anίsotropy are both
dynamically important at late stages in these models, and that these models
do not become asymptotically Robertson-Walker in either of the senses
defined earlier. In Bianchi type VII0 it is not clear what happens since
F-»0 if the model asymptotically lies on the β^ axis. In this case the
system approximates to a Bianchi I L.R.S. model and both the criteria
of becoming asymptotically Robertson-Walker could be satisfied.

In the Bianchi IX case a similar argument shows that (ψ — 1) e*->0
if (ψ — 1) e~2χ is the dominant term in (6.2). Thus as ψ~* 1 there arises
a stage at which matter is dynamically important. If eventually ψ < 1 we
can see that (ψ — 1) e~2* < 0 would dominate (6.2) at large χ and so that
the model must reach a maximum of χ and then collapse to a second
singularity (which would be like the first in general behaviour). Although
there are strong arguments for thinking that this happens, cf. [43], the
present author has not found a rigorous proof.

In the Class B (n = 0) models the time reversal of the arguments of
/ A R \

Section 4 shows that J/Φ — h m I is constant if ψ dominates (6.2).

Since then Φ = ψe4χ-+ao the approximation is only self-consistent if

— m. In this case we find that asymptotically Veχ ~O (e(ί ~™2}χ) so
dχ

that Veχ-+0ifm2>l. Thus there can be a self consistent solution of this
kind only when m2 :g 1 (i.e. \q\ ̂  |α|). Such solutions do in fact occur, for
the L.R.S. type III (n = 0) models of Kantowski and Sachs [4] contain
several exact solutions of this kind. Among these are all their general
dust and radiation solutions with A = 0, including (5.6). These certainly
do not satisfy either of the criteria of "becoming Robertson-Walker".

ι n

When in Class B (n = 0) ——H> — m as χ -» oo the assumption that ψ

dominates (6.2) cannot be self-consistent at all times and we may again
conclude that \β\ -> oo as χ -> oo and that anisotropy and matter terms
are both dynamically important at some late stages.

We may summarise the results obtained for models in which A = 0
by remarking that among those considered the only group types in which
models can become approximately Robertson-Walker are those which
admit exactly Robertson-Walker models13.

13 This may be the underlying reason that Carswell could find no realistic L.R.S.
model of a Bianchi type other than I, [25].
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7. Discussion

The results of the previous sections have a number of implications
for the models, considered as possible universes. We discuss these first,
and then review the more general question of the validity of the models.

Briefly, the results are that the commonest type of singularity be-
haviour is the cigar singularity, while the two most complicated Bianchi
types studied show oscillatory behaviour. Special cases can have pancake,
point or barrel singularities (Sections 3-5). In Section 6 it is shown that
those models with A = 0 and realistic matter content which do not
collapse to a second singularity (i.e. those not of type IX) cannot become
asymptotically Robertson-Walker unless they belong to a Bianchi type
to which a Robertson-Walker model also belongs.

The singularity behaviour affects the horizon structure. One motive
for interest in this is that if cosmological models exist in which there are
no particle horizons, then one may be able to account for the observed
degree of homogeneity in the universe by physical processes rather than
a priori symmetries [6,10]. Lack of horizons is also a help in accounting
for present-day isotropy using dissipative processes in a homogeneous
model [10,11].

The topology of the covering spaces of the three-surfaces of homo-
geneity in our models is #3, except for type IX where the space-sections
are compact and the covering space is S3 [2]. Of course identifications
may be made in many cases without destroying the global isometry group,
and in rather more cases without destroying local isometries.

Let us consider the Bianchi I models. In general there is a particle
horizon. Hawking [37] pointed out that when there is a pancake sin-
gularity there is no horizon on the axis of symmetry (pancake cases must
be L.R.S.). The metric is

ds2 = -dt2 + t2(dx1)2 + (dx2)2 + (dx3)2

near the singularity. For an observer at the origin at time ί, the furthest
visible points are at

!=i77-l

where πx π2 π3 are constants (cf. [3]). Thus the observer can see everything
in an infinite circular cylinder whose base, has radius ί. (This slightly
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extends Hawking's statement.) Since the behaviour of geodesies along the
principal axes in Class A models depends on the length scales in the same
way as in Bianchi type I, we see that only pancake-like behaviour during
the evolution will remove horizons, and that then either such behaviour
must persist for infinite time or the universe must be of finite extent in
the direction of the distinguished axis of the pancake. One expects that
qualitatively similar conclusions apply to the Class B cases, and this is
borne out by the analytic formulae available for the only case with n = 0
where a pancake is possible, i.e. Bianchi type III (cf. [3, 38]).

Thus to remove particle horizons completely we need a model in
which pancake-like epochs occur and in which each of the three principal
axes in turn is the distinguished axis. The only possible case is that of
type IX14. (Note that the horizon may also be removed for one axis only
in types I, VΠ0, VIII and III.) To prove that all horizons are removed
in a general type IX universe we need an ergodic theorem applicable
under the conditions of type IX evolution. (Standard ergodic theorems
in mechanics assume constant energy, while here we have a time-
dependent energy.) It seems plausible that such a theorem exists, but the
present author is unable to offer a proof. If the motion is not ergodic
then it is possible the horizon may only be removed for one or two axes
(leaving respectively a tube or slab of matter visible). To understand the
importance of this we can calculate the amount of matter visible by com-
parison with a Bianchi I universe with identifications made at unit
coordinate intervals so that the spatial sections have T3 topology. If in
this case the horizon is removed for one (respectively two) direction(s)
the amount of matter visible at the time ί when the horizon is removed
is πμt3 (respectively πμt2). Thus in terms of baryon number, whose
density φ behaves as φ = M/l3 this amount is πMt2 (respectively πMt)
and is therefore insignificantly small at early times.

It is of interest to note that the removal of horizons at early stages
is related to the topology of the space sections just as it is when con-
sidering the removal of horizons at late stages in a Lemaitre (A > 0)
universe.

The second significance of the singularity behaviour is its effect on
the helium production in the big bang. Hawking and Tayler [39] pointed
out that in the Bianchi I models anisotropy markedly altered the time-
scale near the singularity (in fact to (4.2)) and the helium abundance
could thus be drastically reduced. The helium production is dependent
on the volume expansion alone [22] unless there are serious departures

14 Doroshkevich and Novikov find that even if in this case all three horizons are
removed the time-scales are such that the induced "mixing" is ineffective in reducing
anisotropy [44].
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from the local thermal equilibrium assumed in the calculations15. The
amount of helium produced in various models has been calculated by
a number of authors [22, 25, 41]. From Sections 4 and 5 we see that
except in a few special cases (4.1) holds near the singularity in the models
considered and that in most cases (4.2) also holds. Therefore we may
expect that the dependence of the helium production in our models on
the anisotropy and matter parameters is generally similar to that found
by Thorne [22]. Only numerical calculation would show if this expecta-
tion is borne out in detail.

The qualitative behaviour of the evolution of the length scales for
different directions is helpful in predicting that of the redshift-magnitude
relation [3]. The general rule is that if the length scale in a particular
direction increases slower (respectively, faster) than the average length
scale, redshifts of objects in that direction appear lower (respectively,
higher) than average16. Thus if for example there is a direction for which
the length scale tends to a finite number as we approach the singularity,
there will be a finite maximum redshift for objects in that direction.
Therefore in type IX we expect to see oscillatory deviations from the
Hubble Law while in type II we see one reversal of the deviations (when
β\ reverses). Using the expressions of [3] for the rA — z relations, and the
above equations for the dynamics of the evolution, one could plot
numerically the magnitude-redshift relation for any axis, and the de-
pendence of the black-body temperature on angle, for any particular
model. Some work of this kind has been carried out by Saunders [27]
but he unfortunately overlooked the possibilities of reversal of motion
in the β plane.

Numerical computations of specific models of our class are of value
in several ways. First we can determine whether there are models which
do not become asymptotically Robertson-Walker (as found in Section 6)
but in which there is a certain time when the model is observationally
admissible. Secondly there are a number of points mentioned above
about which it would be useful to have quantitative information, for
example, one might want to find the detailed time-scales of the model,
e.g. that for which (4.2) is valid, in terms of the model's physical para-
meters (e.g. matter density) see e.g. [44]. In certain cases (namely those
of types VIII and IX) there is a difficulty in that the model performs
infinitely many oscillations near the singularity and so one cannot use
a computer to follow the evolution right back to the singularity. (One
can of course use a new "regularised" time coordinate τ(ί) such that τ(0)

15 Strictly there must be some departure from thermal equilibrium in an expanding
universe [40].

16 For fuller discussion of the behaviour of null geodesies in the models see [3].

6 Commun. math Phys., Vol. 20
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Fig. 10. Diagram showing specialisation of group types which can be obtained on letting
non-zero parameters go to zero. A broken arrow changes the group class, an unbroken

arrow does not

is infinite, e.g. τ = Ω, in order to compute any given finite number of
oscillations: cf. work by Okerson reported in [17], and [43].

The motivation for this paper and its predecessors has been to
understand the dynamical effects of anisotropy of shear by carrying out
an analysis of the simplest cases, i.e. anisotropic spatially-homogeneous
cosmological models, basing this analysis on a canonical classification
of their symmetry groups. Within the class of models considered it can
be said that certain types of model are the most general, in a sense derived
from Fig. 10. This shows how specialisation of group type occurs on
setting certain parameters to zero (which of course does not represent
a dynamic evolution). From this the most general cases, to which future
studies should pay particular attention, are those of types VIII, IX, Vlh

and VΠΛ.
The models can be generalised by the introduction of a stress-energy

tensor other than that for perfect fluid, or by no longer taking the fluid
flow vector to be orthogonal to the surfaces of homogeneity, or both.
A number of papers on these lines have appeared (e.g. [10, 16, 19, 22, 25,
28]). The introduction of anisotropic stress is especially interesting
because it could counteract the mechanisms which cause certain models
not to be asymptotically Robertson-Walker. If so, a rather wider class of
models would become observationally admissible than if anisotropic
stress were disregarded. Indeed certain types of anisotropic stress (e.g.



Cosmological Models 83

those due to collisionless neutrinos or magnetic fields) in fact must act
in this way (cf. forthcoming work by Jacobs and Hughston). There is
controversy about the effectiveness of the dissipative processes, [10, 20,
42, 44] especially as it appears that in certain cases the fluid approxima-
tions usually made need not be valid at any epoch [42].
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