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Abstract. We consider a boson field ¢(x) under an interaction of the form
j V(p(x)) dx, where V(x) is a bounded continuous real function of a real variable a. If

R

V() has a uniformly continuous and bounded first derivative, we prove that the Heisenberg
picture field exists as weak limits of the Heisenberg picture fields corresponding to the
cut-off interaction.

1. Introduction

The object of this paper is to study a general class of quantum fields
with a local relativisticinvariant interaction in four space time dimensions.
The fields will be self interacting boson fields, with energy operator of
the form

H=H,+ [ V(p(x)dx.
R3

H, is the free energy operator of a free boson field ¢(x) of strictly
positive mass nm. V(a) is a real function of a real variable o, such that V(«)
is bounded, continuous and with a bounded and uniformly continuous
first derivative.

In two space time dimensions Glimm [1] has investigated the case
where V(o) is a polynomial containing only terms of even degree and a
positive leading coefficient. For this case he proves that, after renormaliza-
tion of the interaction by introducing the Wick product, the total energy
with a space cut off interaction becomes a semi bounded symmetric
operator on the Fock space. The case V(x)=Aoa* and still in two space
time dimensions, can be treated more thoroughly, as shown by Glimm
and Jaffé [4]. Glimm was also able to treat the case V(x) =Aa* in three
space time dimensions [2]. The author’s reason for studying interactions
given by bounded continuous functions instead of polynomials, is
strictly that of mathematical convenience, and he hopes that may be
in this way enough experience can be gained, so that later on one may
be able to treat more realistic models.
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The advantage from a mathematical point of view in studying inter-
actions coming from bounded functions V(x), was also to some extent
demonstrated in a previous paper [6], where the author was able to
prove existence of the asymptotic fields for the cut-off interactions.

The idea behind this paper is first to introduce the cut-off inter-
actions, and to study the Heisenberg picture fields for the cut-off inter-
actions. Then we use compactness arguments to prove that the weak
limits of these fields exists as the cut-off is removed. The idea of studying
the weak limits of Heisenberg picture fields was also used by Glimm to
remove the space cut-off for the Yukawa interaction with a momentum
cut-off [3].

2. The Heisenberg Picture Fields
We shall use the Fock space representation. The Fock space & is

a Hilbert space where the elements are sequences of functions

f={fof1, ...} with f,=f,(p;,ps,...,D,) @ symmetrical function of n
variables py, ..., p,; p; € R?. The inner product in & is given by

dpl dpn
o) o,

(f’ g): ;0 n! ffﬂ(l’b teey pn) gn(pla vy pn)

where w(p)=(p*+ m?)* and m>0. The annihilation operator a(p) is
defined by

@®) f)u 1y - 2=+ 1) (D)% fo01(Ds Prs --os D) -

The creation operator a*(p) is the formal adjoint of a(p), and we have
[a(p), a*(P")]1=6(p—p").
The free energy operator H, is defined by

(Hof)n(Pu ey pn)= 21 w(pi)fn(pl’ AR pn) .

H, is obviously self adjoint on its natural domain of definition D,.

For heL,(R%, it is well known that a(h)=[a(p)h(p)dp and
a*(h)= a*(p) h(p) dp are closed operators with domains containing D,,
and that a*(h) is the adjoint of a(h). Moreover a*(h) + a(h) is a self adjoint
operator that is essentially self adjoint on D,,.

The field operators ¢(x) are given in terms of the annihilation-
creation operators by

o(x)=2"%2m)"* ‘i[ (e'P* a(p) + e~ ir* a*(p)) w(p) *dp.
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¢(x) is of course just as a(p) and a*(p) an improper operator function,
or if we want an operator valued distribution; and only when ¢(x) is
integrated against sufficiently smooth test functions, do we get operators.
For real h we set

@(h)= j3 o(x) h(x)dx.

From what is sald above, about the annihilation-creation operators,
we see that if how ™% is in L,, where h is the Fourier transform of h, then
¢(h) is a self adjoint operator which is essentially self adjomt on D,.

Let g be in CP(R®), such that g=0, g(x)=¢g(—x), [g(x)dx=1
and g has support in the open sphere of radius 1 and center at the origin

inR3. Setg,(x)=¢"'yg x , then g, has support in the sphere of radius ¢,
3

and g, tends to Dirac’s J-distribution as ¢ tends to zero. The cut-off
field operators are defined by

0(x)=[glx—y oy dy.

By what is said above about the field operators we see that ¢,(x) are
self adjoint operators which are all essentially self adjoint on D,,.

Let V(a) be a bounded continuous real function. Then V(¢,(x)) is a
bounded self adjoint operator, such that || V(¢ (X)) = |V, =sup|V(a)l-

Since
V(p(x))=U(=x) V(9,(0)) U(x),
where U(x) is the strongly continuous unitary group defined by

n
i

T x
(U(x)f),,(pl,...,p,,)=e" ! f(pla' 1pn

we see that V(¢p,(x)) is strongly continuous in x.
We now define the cut-off interaction energy by

[ Viex)dx

Ixl<r

where the integral is a strong integral. We see that V, , is a bounded self
adjoint operator, and we have the following e-independent estimate for
its norm

4
v, ||<T“ PV @.1)

The cut-off energy operator is defined by
Ha,r = HO + Va,r .

13*
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Since V,, is a bounded self adjoint operator we get that H, , is a self
adjoint operator with the same domain D, as H,.
Let h be real and in L,, we then define

@'(h)= e~ i*Ho g (h) eitHo |
@l (x)=e tHo ¢ (x) &' Ho
@e,r,(h) = e~ tHor () gitHor
We see that all operators defined above are self adjoint operators with

domain containing D,.
We define also

__ ,—itH, itH,
V, (t)=e itHo ,  gitHo

It is well known that the product (p“(hl)‘q)'z(hz) is defined on the
domain of H, and that on this domain
Lo (hy), @Z(hy)]=[fdxdy A(x—y, t; —t3) hy(x) hy(y) 22)
where

A(x,t)= —igt) [21_n S(t? — x?)— %O(t2 —x2) (2= xH) " I (m(t* - xz)%):l

for t +0 and 4(x, 0)=0. (2.3)
From now on.we shall assume that V(a) has a bounded uniformly
continuous derivative V'(a).
Lemma 1. Let h be in L, and assume that V'(x) is bounded and uni-
formly continuous. Then V, (s) leaves the domain of ¢'(h) invariant, the
commutator of these two operators is a bounded operator given by

[o'(h), V, (s)]= | '§< dx [[dzdyh(y)g(x—z) Ay —z,t—s5) V' (9}(x)) .

Proof. We start with proving that V, (s) leaves the domain of ¢*(h)
invariant. Let p be in the domain of ¢‘(h), then we shall prove that
™Y, (s)y is strongly differentiable with respect to 7, and hence
V,..(s)y is in the domain of ¢’(h).

eiw‘(h) Vw(s)w = eiw‘(h) VM(S) e—iw‘(h) eiw‘(h>w .
But ¢i***®y is strongly differentiable with respect to T, hence it is enough

eit,pt(h) Vs r(s) e—i:q,t(h) — J‘ dx V(eir¢t(h) (ps(X) e—-ifq,t(h))
> &€

lx|=r
is strongly differentiable with respect to 1.
Using (2.2) we get that this is equal to

| Vigix)+it[fdydzh(y) g(x—2) A(y—z,t—5)).

[xl<r
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Since V(«) has a bounded uniformly continuous derivative V'(x), we

have that %(V(oc+cr)— V(a)) tends to ¢V’'(2) uniformly in o. Hence
1
for any self adjoint operator A, " (V(A+ct)—V(A)) tends to cV'(A4)

in norm, and the convergence is uniform in A where 4 range over the
set of all self adjoint operators. Hence

V(p(x) +it [f dy dz h(y) g,(x — 2) A(y — z, t — 5))
is norm differentiable in 7 and the convergence of the difference to the
derivative is uniform in x. Hence

J V(g +ic [[dydzh(y) g.c—2) Ay —z,t =)

Ixl<r

is norm differentiable with respect to 7, and with derivative given by

i ‘ [ dx [fdydzh(y)g,(x—2) A(y —z,t =) V'(9}(x)) .
x| <r
This proves that V, (s)yp is in the domain of ¢'(h). By differentiating
the first formula of this proof we see that

PV, (w="V,.(s) o'Wy
+ | dx[fdydzh(y) g.(x—2) Ay —z,t—5) V'(9}(x)).
x| =r
This gives us the formula for the commutator as given in the lemma.
Using this formula together with the assumption that V'(a) is bounded,
we get that the commutator is bounded. This proves the lemma.

Corollary 1. |[[¢'(h), V, ()] S Clt —sI* [|V'l|, llhll;, where C depends
only on the mass m of the free field.

Proof. From Lemma 1 we get that
ILe' (), Ve, = 1V Nl §dz 1§ h(y) Ay — 2, = 5)]

and the estimate in the corollary follows then from (2.3) and the asymptotic
behaviour of J;. This proves the corollary.

The Heisenberg picture fields corresponding to the cut-off inter-
action is given by ¢, , (h). We intend to use the fact that the estimate of
Corollary 1 is uniform in ¢ to select a sequence ¢, tending to zero such
that ¢, , .(h) converge weakly for all ¢t and r, and all h inL,nL,. The
way we do this is by showing that Corollary 1 implies that ¢, , (k) is
equicontinuous as functions of r,t and h with respect to &. Then we
use the Ascoli theorem to pick out the sequence &,.

Let y be in D,. Since D, is the domain of H, as well as H, ,, and
also therefore e's¥=r leaves D, invariant, we get that e~ ‘¢~ 9Ho gisHery,
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is strongly differentiable with respect to s, and the strong derivative is
given by

e—i(s—t)Ho le , eis""'lp =i V£ r(s _ t) e—i(s—t)Ho eisH,;,rw .
Let h be in L,. Since D, is contained in the domain of ¢(h), we get from

Lemma 1 that the derivative is in the domain of ¢(h). Using now that
¢(h) is closed we see that

% @(h) e 670 Ho gisHery — o (R)iV, (s —t) e ™16~ 0 Ho gisHeuryy,

where the derivative is taken in the strong sense. From this we get that if
v, and y, are in D, then

(wl’ e—iSH“’ei(s-t)Ho (p(h) e—-i(s—t)Ho eiSHe’rU’z)
=(e—i(s—t)Hg eisH.;,,wl’ (p(h) e—i(s—t)Ho eiSHE'er)
is differentiable with respect to s and the derivative is given by
(e—i(s—t)HoiVE,reisH,;,rwl’ (p(h)e—i(s—t)Ho eisHE,,wz)
+(e—i(s—t)Ho eisH,;,rw“ (p(h) e—i(s—t)HOiVE,r eiSHc'er)
=(p1, e e 3(h), iV, ] Mery,).
By integrating the derivative we then get

t

(1/»)17 (@, () — o' (h)w,)= j ds(py, e~ Her [ ~5(h), iv.,] esHery,)
0

Since the right hand side is a bounded operator by Lemma 1 and D,
is dense in & we get

t
Per,o(h) — @' ()= [ ds ™[ =5(h), iV, ] fHer, (2.4)
0

where the integral on the right hand side is a weak integral.
Lemma 2. Let h be in L, NL,, then
Lo'(h), iV, (s)]
is norm equicontinuous in t with respect to ¢ and r.
Proof. Let h be in C§. Then we get from Lemma 1 that
Ie" (h), iV, ()] — [@™(h), iV, ()]
SVl fdzIfh() Ay =zt —5)— A(y — 2, t, — 5)) d)]

We see that the right hand side is independent of ¢ and r. Moreover
as t; tends to t, [h(y)4(y—zt; —s)dy tends uniformly in z to
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Jh(y)4(y —z,t, —s)dy, and as the functions are zero outside a fixed
compact we see that the right hand side tends to zero. Hence we have
proved that for h in C§ [¢'(h), iV, (s)] is norm equicontinuous. But
C§ is dense in L, and by linearity in h and corollary 1 we get norm
equicontinuity for all k in L,. This proves the lemma.

Lemma 3. Let h be in Ly L,, then
t
@e,r,i(h) — o'(h)= _[dS e sHer[ ! S(h), iv,,] eisHer
0

where the integral is a strong integral, and the integrand is strongly con-
tinuous.

Proof. By Lemma 2 [¢'~*(h),iV,,] is a norm continuous function of s.
Hence the integrand is strongly continuous and therefore strongly
integrable. But for strongly integrable functions the strong and the weak
integral coinside and the lemma is therefore proved by formula 2.4.

Corollary 2. For h in L, nL,, we have that

19c,r, () =@ WIS CIP V'l l15lly

where C depends only on the mass m of the free field.

Proof. We use the norm estimate of Corollary 1 to estimate the inte-
grand of Lemma 3. This gives us the estimate of Corollary 2, and this
proves the corollary.

Lemma 4. Let h be in LynL,, then ¢,, ,(h)—¢'(h) are norm equi-
continuous functions of t with respect to ¢ and r.

Proof. By Lemma 3 we get for t; <t,

10e,r,0, (1) — 0" () = @, 1, (h) + (M)

g{mwwwwanJ—wvwmnmn

+ [ dslfe k), V1.

151

By Corollary 1 the integrand of the first integral is uniformly bounded,
and by Lemma 2 it tends pointwise to zero as t; tends to ¢, or t, tends
to t;, uniformly in ¢ and r. Hence by Lebesques lemma on dominated
convergence the first integral tends to zero as t;, tends to ¢,, or ¢, tends
to t,, and the convergence is uniform in ¢ and r. By Corollary 1 the second
integral is dominated by C|t, —t,| 3 |V'|l, |k]; which obviously
tends to zero uniformly in ¢ and r. This proves the lemma.
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Lemma 5. ¢''#=r is norm continuous in r, and the normcontinuity in r
is uniform in ¢ and on compact intervals in t. We have the estimate

i i 4r
et then — eitHera) < < jrf =31 ] V]
Proof. Since the domain of H, , is equal to D, for all r, we have that

e'sHer leaves D, invariant for all r, and therefore e'¢~9Her gisHer; jg
strongly differentiable in s on D, with derivative

d eI Heury pisHerry — piG=9Horry () gisHer,
dS s F2 s ¥l
Integrating both sides, we get on D,
. . t . .
eitHer, _ pitHery — j‘ ds &t =9 He,ry i(I/E,rz _ Ve,rl) eisHery |

0

Since D, is dense in & the estimate in the lemma follows from a direct
estimate of the norm of the integral above. This proves the lemma.

Lemma 6. Let h be in LN L, then ¢, ,(h) — ¢'(h) is norm continuous
inr, and the normcontinuity inr is uniform in € and in t on compact intervals.

Proof. From Lemma 3 we get
t
(Pe,n,t(h) - (pe,rz,t(h) =i f dS e—ISHE’rl [qot_s(h)a Vs,n] eISHc’rl
0
t
—i[dse s ten[p! 5 (h), V,,,,] €4 Hen
0

t
=i [ds{(e™isMe — e~ Hem) [ TR, ¥, ] €5 e
0

e A (AN A P

+ e isHe,r, [(p'_s(h), Vs (eisH&,r1 _ eich,rz)} .

s F2.

The first and the last term of the integrand is estimated uniformly
in ¢ and in t on compact intervals by Lemma 5. The second term in the
integrand is estimated by C|r; —r3| where C is independent on ¢ and on t
if t is on a compact interval, by the formula of Lemma 1. This proves
the lemma.

Theorem 1. There exists a sequence g, tending to zero, such that for
allhin LinL, and all t and v, @, _, ,(h) — ¢'(h) converge weakly to a limit
@,(h, t) — @' (h). The convergence is uniform for r and t on compact intervals,
and the limit is normcontinuous in r and t. Relative to the strong L, topology,
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the limit is also normcontinuous in h and
lo,(h, 1) = @' (W S CItl* 1V'[l 1Bl
where C depends only on the mass m of the free field.

Proof.Lety, andyp, bein & and hbein Ly N L,.(yy, ¢, .(h) — ¢ (D) ;)
is then by Corollary 2 a uniformly bounded family of functions of ¢
and r, depending on a parameter ¢. By Lemma 4 and Lemma 6 it is
also an equicontinuous family of functions of r and t. The Ascoli theorem
then gives the existence of a sequence s, , tending to zero, such that the
corresponding sequence of functions converge uniformly for ¢ and r
on compact intervals. By passing to a subsequence ¢, we get uniform con-
vergence for a countable dense set of y, and ,, and a countable set of h
that is dense in L; n L, in the strong L, topology. The norm estimate of
Corollary 2 then gives us convergence, uniformly for ¢ and  on compact
intervals, for all y, and y, in & and all hin L, nL,. This proves the weak
convergence. To see that the limit is normcontinuous in ¢, we use Lemma 4
which gives us that for all ¢>0 there exists a 6 >0 independent of n
such that

1@en,r, e () — @ (h) = @)+ @' (W) s &

as soon as |t| < §. Now we use that the set of operators with norm smaller
or equal to ¢ is weakly closed to get the same estimate for the limit.
This proves normcontinuity in ¢, and normcontinuity in r is proved in
the same way by using Lemma 6. Normcontinuity in & follows from the
norm estimate of the theorem. Hence it is enough to prove this estimate.
But using again that a closed ball of operators is weakly closed, we see
that this estimate follows directly from Corollary 2. This proves the
theorem.

Lemma 7. Let H, and H be two self adjoint operators on a Hilbert
space, such that V=H — H, is bounded. Let A be a bounded operator
and define A, = e~ """ ¢'tHo fe=itHo oitH Thop we have for t =0,

where V(t)=e "Ho V(t) e''Ho. The integrals are strong integrals and the
sum is norm convergent.

‘ -Proof. Since V is bounded, H and H, have the same domain and
e'M and "o leaves this domain invariant. Let y; and y, be in this
domain, then we see that (y,, 4,y,) is differentiable with respect to ¢ and

d —i i —i . i
=7 Wi Apd)= (e HleitHo ge~iHo iV e M yp,).
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By integration we get that

t

(W1 Apa) = (w1, Apy) + [ds(yy, e “H &[4, iV(s)] €0 ey,
0
Since the domain of H, is dense and A4,, 4 and V(t) are bounded the
identity above holds for all y, and all y,. Hence

A;=A+ifdse sHesHo[4 V(s)] e "sHogisH

where the integral is a weak integral. But we see that the integrand is
bounded and strongly continuous, hence strongly integrable, and there-
fore the weak integral coincides with the strong integral. By iterating
the formula above we get the formula of Lemma 5. The norm convergence
follows from a direct norm estimate. This proves the lemma.

Lemma 8. Let h be in LinL,, then for t =0

(pe,r,t(h)_(p’(h)= Z i" J‘_[ [[¢t(h)’ Vs,r(tl):l teey Ve,r(tn)]dtl "'dtn
n=1 12t 2th 20
where the integrals are strong integrals and the sum is normconvergent
uniformly in .

Proof. The formula of Lemma 3 may be written
q)z,r’t(h) _ (p‘(h) =1 j‘ ds e_iSHt;,r eisHo[q)t(h), Va,r(s)] e—is eiSH“' .

By Corollary 1 [¢'(h), ¥, .(s)] is bounded uniformly in ¢. Hence we may
apply the formula of Lemma 7 to the integrand, and this gives us the
formula of Lemma 8. To prove that the normconvergence is uniform in ¢,
we estimate the norm of the n’th term in the sum by

t”+1

CIV o Il 1V !

using Corollary 1. But since

4z
(AR

we see that the normconvergence is uniform in ¢. This proves the lemma.

Definition. For any subset S of R® we define S,=S+B,
where B, = {x;|x| < t}. S, is then the set of points in R® which is causally
dependent on S up to the time ¢, or in other words S, is the set of points
that can be reached, in a time less or equal to ¢, by a light signal emitted
from S. We shall also use the expression that to sets S; and S, are causally
independent up to the time ¢ if S; ;N S, =0.
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Let A be any compact set in R®. Then we define

Ve,A = § V((pa(x)) dx > Hs,A = He,A
and
@ ni() = €0 () &l

Theorem 2. Let h be in LN L,, then ¢,(h, t) — ¢'(h) converge in norm
in norm to @(h,t)— @'(h). ’I'he convergence is umform for t on compact
intervals, and the limit is norm continuous in t. Relative to the strong L,
topology, the limit is also normcontinuous in h and

lp(h, ) = @' (W)l < CItP V'l 11

where C depends only on the mass m of the free field.

Proof. We shall assume first that hisin L, and have compact support S.
It follows from the expression for the function 4 that ¢°(h;) and ¢'(h,)
commute if the support of h; and the support of h, are causally in-
dependent up to the time |t —s|. This gives us for any two bounded
continuous functions F;, and F, that F,(¢3(x)) and F,(¢.(y)) commute
if [x—y|= |t —s|+2¢. From Lemma 1 we get for t=t, =0

Lo (h), Ve, (t)]=L¢'(h), Ve s, ..(t)]
=[¢'(h), V; 4(t,)]
if §,_,,+.CB,and S,_, .. CA.

Using now that F, (¢3(x)) and F,(¢.(y)) commute if |x — y| = |t — s| + 2¢,
we get for t>t, =t,=0.

[[(pt(h s Ve, r(tl)] (t )]
=[le'(h), Ves,_., ..(tD] Ves, tzﬂs(tz)]
= [[‘P (h), Ve, a(t)]s Ve, 4 tz)]

if S,+38CB,. and St+3£CA.
In the same way we get for t=t, =t,...=2t,20

[...[o'(h), Vo, (t)] ..., Ve (8]
=[...[¢' (h eSe-gg et s Ves, o vanene(t)] (29
_[[(p h), Va,A(tl)] sees s,A(tn)]

if Sy + (2n+1): C B, and Sy 2n41), C 4.

But this proves that the n first terms in the sum in Lemma 8 is in-
dependent of r as soon as S, ; (5, +1). C B,. Assume now that S, is contained
in the interior of B, and that r; <r,. Since the sum in Lemma 8 is norm-
convergent uniformly in ¢ we then get that ¢, ,,,(h)— o, , ,(h) tends
to zero in norm as ¢, tends to zero. This proves that the weak limit
o,(h, t) — ¢'(h) is independent of r as soon as S, is contained in the interior
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of B,. This proves the normconvergence uniformly for ¢t on compact
intervals, if # has compact support. But since functions with compact
support is dense in L; nL, relative to the strong topology in L,, the
estimate of Theorem 1 gives us normconvergence uniformly for ¢ on
compact intervals for all hin L, nL,. That the limit is normcontinuous
in t follows from uniform convergence. The estimate of the theorem
follows immediately from the estimate of Theorem 1, and this gives
also the normcontinuity in h. This proves the theorem.

Lemma 9. Let h be in L, L,, then for t 20

¢£,A,t(h)_(pt(h)= Z " jj [[(pt(h)7 Vs,A(tl)]"" VE,A(tn)] dtl"'dtn
n=1 t2t;2t,20

where the integrals are strong integrals and the sum is normconvergent

uniformly in & and uniformly in A, with |A| < C. |A| is the total volume of A.

Proof. This lemma is proved in the same way as Lemma 8, and
only trivial modifications of the proof of Lemma 8 is needed to prove
Lemma 9.

We will now prove two theorems which express that the interaction
is local.

Theorem 3. Let ¢, be the sequence of Theorem 1.

Let h be in L, with compact support S. Let A be any compact such that
S, is contained in the interior of A. Then ¢, 4 ,(h)— ¢'(h) converge weakly
to @(h, t) — @'(h) as n tends to infinity.

Proof. From the proof of Theorem 2 we see that the n first terms in the
sums in Lemma 8 and Lemma 9 is the same if S, (3,4+1). C A and S, 4 (2541)e
CB,. Hence ¢, 4 ,(h)— ¢,,,,.(h) converge to zero in norm by Lemma 8
and Lemma 9, if S, is contained in the interior of A and of B,. But from
the proof of Theorem 2 we see that ¢, , ,(h) — ¢’(h) converge weakly to
@(h, t) — @' (h). This proves the theorem.

Theorem 4. Let h, and h, be in L, with compact supports S, and S,.
If S, and S, are causally independent up to time t, then @(hy, t) and @(h,)
commute.

Proof. Since ¢'(h;) and ¢@(h,) commute, it is enough to prove that
o(hy, t) — ¢'(hy) and ¢@(h,) commute. But since the set of operators that
commute with ¢(h,) is weakly closed it is enough to prove that ¢, ,(h)
— @'(hy) commutes with @(h,) if ¢ is small and r such that S, , is contained
in the interior of B,. Using once more that the commutator is weakly
closed and Lemma 8, we see that it is enough to prove that for t>t,
=2 t, =0

[---[o'(h), Ve, (@), Ve (60)] (2.6)
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commute with ¢(h,) for ¢ small enough. But by (2.5) we have that (2.6)
is equal to

(VAP (2 ) SO AP () B 2.7)

Using Lemma 1 we see that ¢(h,) commutes with [¢'(h,), V,, Steceg +olt1)]
if S; and S, are causally independent up to time ¢t +¢. For j=2,3,...,n
we see that (h,) commutes with Vo, . ..., (&) if S and S, are
causally independent up to time ¢ + (2j + 1)¢. Therefore ¢(h,) commutes
with (2.7) if §; and S, are causally independent up to time ¢+ (2n + 1)e.
But since S; and S, are compacts, we see that if they are causally in-
dependent up to a time ¢, then there exists 6 >0 such that S; and S,
are causally independent up to time ¢+ J. Hence for 2n+ 1)e<d we
find that ¢(h,) commutes with (2.7). This proves the theorem.

For the free Heisenberg picture fields ¢(h) we have the following
translation invariance

U(=x) @' () U(x)=¢'(h),

where U(x) is the unitary group of space translations introduced in the
beginning of Section 2 and h,(y)=h(y — x). The next theorem states
that the interacting Heisenberg picture fields are also translation in-
variant.

Theorem 5. Let h be in L,NL,. Then for any x in R®
U(=x)oh, ) Ux)=p(h, 1)

where U(x) is the unitary group of space translations and h,(y) = h(y — x).

Proof. Since ¢'(h) is translationinvariant, it is enough to prove that
@(h, t) — ¢'(h) is translation invariant. Due to the uniform norm estimate
in Theorem 2, it is enough to prove that ¢(h, t) — ¢'(h) is translation in-
variant for h with compact support S. By weak convergence and
Theorem 3 it is enough to prove that ¢, _,,(h,)— ¢'(h,) and

U(=%) (e, 4, — @"(h) Ux) = @, 4,.:(h) — ¢ (hy)

have the same weak limits when S, is contained in A. The identity above
follows from the identity

U(—X) Ve,A U(X) = Vs,Ax .
But that ¢, 4 ,(h)— ¢'(h,) and ¢, 4 () — ¢'(h,) have the same limit
follows immediately from Theorem 3. This proves the theorem.

Remark. To get rotational invariance of the Heisenberg picture fields,
we have only to choose g(x) rotational invariant. Since then all the cut-
off fields ¢, , ,(h) will be rotational invariant.
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Even though the interaction is formally relativistic invariant, we
can not at this stage at least prove that the Heisenberg picture fields
are relativistic invariant or not. Already for the time translation we do
not even know if it is implemented by a group of C*-automorphisms or
not. So probably stronger results then weak convergence of the cut-off
fields would be needed to discuss relativistic invariance.
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