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Abstract. The equivalence of additive and analytic renormalization is proved for any
choice of finite renormalizations and any fixed generalized evaluator.

In recent years two rigorous renormalization schemes for the per-
turbation series of the Green’s functions in Lagrangian quantum field
theory have been shown to be closely related, the additive renormalization
(R-operation) of Bogoliubov and Parasiuk [1, 2] and the analytic
renormalization of Speer [3]. Speer has shown that an analytic re-
normalization starting from any generalized evaluator leads to an
additive renormalization for certain finite renormalizations. For peda-
gogical reasons we remark that the converse is true in the following
sense: '

In the notation of [2] and [3] let # be a generalized evaluator and
G(V;, ... V,; &) any graph in Lagrangian quantum field theory. Let
Uy, ... Um be any partition of {V;, ... V,}, let Z,(U,), ... Z.(U,,) be finite
renormalizations and let T 3e,/(Us, ... U,) be the analytically regularized
Feynman amplitude of G(Uy, ... U,,, &),

%,a,r(Ub m) = n %(U H Aw) er (1)

conn

According to [3] # 7, o,0(Uy, ... U,) € ' ([R*").
Let {Z,(U)} be any choice of finite renormalizations for all

Uuc{v,,...v,}
e%7*9.1,5,r(V1’ Vn)

and

be the R-operation on
e9-1, s,r(Vl 3 e Vn)

including the {#.(U)}. According to [1-3]
im im %7, , ,(Vy,... V,)e & ®R*") )

el0 rl0

is an additive renormalization.
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Theorem. Given any generalized evaluator F, any graph G(Vy, ... V,; &)
and any choice of finite renormalizations {Z(U)}. Then there exist
a unique set of finite renormalizations {%,(U)}, such that

limm AT, ., (Vis . V)= F ¥ T0,0UL . Upim) )
& r P
where ) extends over all partitions P of {Vi,...V,}, and the

P . A -
T 1.6,(US, ... UE p) are defined by (1) starting from Z(U%), ... Z,(U% )

Proof. Let {QA”B(U)} be any choice of finite renormalizations. By [3],
Theorem 3, one has

FT1.0,0(Us, ... Uy) = lim li}g@f«%,s,r(Ul, - Un) 4)

where 2% is the R-Operation on 7 , (Ui, ... U,) including the finite
renormalizations )
Z,U) for s=1

xZ(U,...U)=<0 for G(Uj,..U,;%)IPR
FMT, .o, ... Uy) otherwise

for any {Uj, ... U;} C{U,, ... U,}.
Furthermore

R* T o o(Uss ... Up) =Y RT (WL, ... W) (6)
Q

where ) is over all partitions W2, ... W&, of {U,, ... U,} and Z is the

R-operz?tion without finite renormalizations starting from the vertex
parts 27 (W2) = &7 (Uy, ... Uy), if W2 ={U,, ... Uy}.

Forevery U= {V], ... V;} ({Vy, ...V,} we define the finite renormaliza-
tion Z,(U) by

YEZWE, .. W),
Q
ZU) =Z,U)+3 if GWL ... WS %) is IPI (7)
0, otherwise
where )" extends over all partitions W2, ... W&, of {V{,... V,} into

Q
k(Q)> 1 sets. We claim that (3) holds. For, use (4) and (6) for the right-
hand side of (3). Expand the left-hand side of (3),

'%'g-l,s,r(Vb Vn) zzg‘%,s,r(Ulpn UrrI:(P))i (8)
P .

where the 7, ,,(Uf,... UL ) are defined from the %,(UF). The
RT;, ., (UL, ... Urp) are multilinear in their vertex parts and can be
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expanded, if (7) is inserted. The resulting sums over R-operations on the
left- and right-hand side of (3) are identical for ¢ | 0,7 | O.

One sees from (7) that one can -recursively obtain any choice of
finite renormalizations {%,(U)} by a unique choice of {%,(U)}, since the
second term only depends on contributions from proper partitions of
{Vi,... %/} QED.

Speer has introduced one particular generalized evaluator, which is
given by a multiple contour integral in the region of holomorphy of
T 1.0.0(V, ... V). Tt is useful to know for studying the analytic structure of
perturbation theory that the R-operation for any choice of finite re-
normalizations can be effected by this concrete integral representation.

References

1. Bogoliubov, N. N., and O. S. Parasiuk: Acta Math. 97, 227 (1957).

2. Hepp, K.: Commun. Math. Phys. 2, 301 (1966).

3. Speer, E. R.: J. Math. Phys. 9, 1404 (1968); — Generalized Feynman amplitudes.
Princeton: Princeton University Press 1969.

K. Hepp

Seminar fiir theoret. Physik

der Eidg. Techn. Hochschule
CH 8044 Ziirich, HochstraBe 60





