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Abstract. An equivalence is proved between a certain macroscopic causality condition
and the normal analytic structure of the physical-region S-matrix. The normal analytic
structure is this: each scattering function has physical-region singularities only on positive-α
Landau surfaces and near these surfaces it is the limit from certain well-defined directions
of a unique analytic function. The macroscopic causality condition is formulated in terms
of S-matrix concepts. It expresses the requirement that in an appropriate classical macro-
scopic limit all transition amplitudes fall off in the way indicated by classical estimates.
This result gives, on the one hand, a physical basis for the basic physical-region analyticity
properties of the S matrix. On the other hand, it gives, alternatively, a basis for a space-time
description of phenomena starting from momentum space properties having no a priori
space-time content.

I. Introduction

Space-time causality properties are intimately related to momentum
space analyticity. This connection is the basis of dispersion theory, and of
certain forms of field theory. In this paper, we study one aspect of this
general connection, namely the connection between physical region,
analyticity properties and macroscopic causality properties. We prove,
in particular, the mathematical equivalence of a certain set of physical-
region analyticity properties of the S matrix, called the normal analytic
structure, to a certain macroscopic causality property, called macro-
causality. This connection has special significance because it deals
with the quantities most closely related to actual physical measurements:
it involves neither conceptions of causality that attribute a fundamental
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physical significance to the idealization of the space-time point, nor
extensions of the S matrix either off the mass shell or away from the
physical-region.

The precise description of the analyticity properties that define
the normal analytic structure is given in Chapter II. These properties,
suggested first by perturbation theory, are, in brief, that the S-matrix
decomposes into a sum of connected parts, each having only one energy-
momentum conservation law delta function (cluster decomposition
property); that each connected part divided by the delta function -
called a scattering function - is furthermore analytic except on positive-α
Landau surfaces; and that near these surfaces they are "plus zε" limits
of certain analytic functions (plus iε rule).

The description of the macrocausality condition is given in Chapter III.
First, a weak concept of macroscopic space-time localization is introduced.
It makes precise the notion that for appropriate forms of their momentum
space-wave functions, particles are asymptotically localized in the
direction of the energy momentum.

Space-time displacements of the initial and final particles of a
scattering process are then considered, and macrocausality is formulated
by means of a macroscopic limit involving a space-time dilation. This
formulation refers only to the above asymptotic notion of localization,
and is such that in a dilated coordinate system a classical description
becomes relevant.

The macroscopic causality condition expresses the requirement that
a certain classical idea of causality should become valid in the macroscopic
limit. This classical idea is that dynamical effects are carried over very
large distances only by (stable) physical particles [1]. In particular, all
transfers of energy-momentum not ascribable to physical particles are
required to give effects having finite range (i.e. effects that fall off ex-
ponentially under space-time dilation, in the asymptotic limit).

This condition is imposed by demanding that if, in the macroscopic
limit, there is no classical multiple-scattering process connecting the
initial and final particles, then the transition amplitude must fall off
in that limit. Moreover, the rate of fall-off should be of the type calculated
by classical arguments, and, in particular, exponential under appropriate
conditions on the form of the (initial and final) wave functions1.

The derivation of the normal analytic structure from macrocausality
is given in Chapter IV 2. The converse is given in Chapter IV 3.

1 The formulation of Chapter III refers directly to the connected part of the transi-
tion amplitude, and requires fall-off unless some connected multiple-scattering process
is possible. This form of the condition can be derived from a more general expression of the
same physical ideas in terms of the complete transition probability itself [2].
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Applications of these results in S-matrix theory and field theory are
discussed in the Conclusion (Chapter V). The connection between micro-
causality and macrocausality is also discussed there.

Several mathematical results concerning relationships between
bounded functionals in L2 norm (with respect to each variable separately),
tempered distributions, and boundary values of analytic functions used
in this work are derived in Appendix I.

The present work is a direct extension of an earlier work along similai
lines [1]. The macrocausality condition stated here is a stronger
mathematical expression of essentially the same physical ideas used
before. From this stronger version, we obtain analyticity in place of the
infinite differentiability obtained previously.

Extensions of the ideas and methods of this paper are made in Ref. [2].
In particular, an equivalence is shown between, on the one hand, the
normal analytic structure together with the discontinuity formulas
and, on the other hand, macroscopic causality together with certain
factorization properties in the cases where classical multiple scattering
is possible. A general discussion of space-time properties in S-matrix
theory is also given there.

II. Analyticity Properties

1. Scattering Functions2

We consider for simplicity a theory with no superselection rules
and with only spinless particles. The arguments extend immediately to
the more general cases.

The basic observable in a scattering experiment can be considered
to be the functional Snm(ψί9 ... ψn; φl9... φm) the square of which is
the transition probability3 from an initial system of m particles represented
by unit norm wave functions φ^ ... φm to a final system of n particles
represented by unit norm wave functions t/^ ... ψn.

The norm of a wave function φt (or φf) is the L2 norm in the on-mass-
shell momentum space of particle i:

M = E(2πΓ3 f \9i(Pi)\2 δtf - μf) Θ(pi0} d^J1'2 , (1)

where μt is the mass of particle i.
2 The approach to S-matrix theory used here is that of Ref. [1, 3]. A comparison to the

approach that starts with the operator S that maps a Hubert space Jtf* of free particle
states onto itself is given in Ref. [2] (see also Appendix I).

3 This strict probability interpretation is not crucial in this paper and could be re-
placed by a weaker condition.

1 Commun. math. Phys., Vol. 14
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The momentum space wave functions can be assumed to span
either the space L2 of square integrable functions or a dense subspace,
for instance the Schwartz space 3) of infinitely differentiable functions
with compact support.

The functional Snm is assumed to be linear in the wave functions
of the initial particles and antilinear in the wave functions of the final
particles.

This linearity, together with the boundedness of the S-matrix (prob-
ability interpretation):

\SΛm(ψl - V>» i Φl 9 Jl ̂  ΓΊ \<Pi\ Π N (2)
i J

implies the existence of the momentum space kernels Snm(ql9 ...,qn,
Pi, ...,.p«) as tempered distributions in the space of all on-mass-shell
momenta (see Appendix I).

Conservation of energy-momentum requires this distribution to be
concentrated on the set Jt, defined as the intersection of the hyperplane
ΣPί ~~Σ3/= =0 with the above space of all on-mass-shell momenta.

This distribution - when restricted to the set of points at which
at least two of the initial and final 4-vectors ph q 3 are not collinear - is
furthermore the product of a δ function <5(ΣPt ~~ Σ<?j) with a correspond-
ing kernel4.

The connected kernels Sc

nm are uniquely defined in terms of the
kernels Snm by the iterative solution to the system of equations:

Snm(Qn> Prn) = Σ β(k} Π ^(Q*, Pmk) , S°ll(Q, P) = Sμ (β, P) , (3)
{k} ke{k}

where the {k} are all subdivisions of the set (n, m) into subgroups (nfc, mfc),
Pm and Qn denote the sets of the initial and final momenta, and the co-
efficients β{k} are phase factors that are equal to plus one or minus one5.

The kernel Sc

nm(Qn, Pm) is a linear combination of products of various
Srt and is likewise a tempered distribution that is the product of a

δ function of energy momentum conservation with a kernel Tnm(Qn, PJ
defined on M [4].

The kernel Tnm(QΛ9 Pm) is called a scattering function.

The analyticity properties described in this Chapter refer to these
scattering functions.

4 The derivatives of <5(ΣPi~ Σ#/) are excluded [4] because of the boundedness (2)
of the S-matrix.

5 They are all equal to plus one if no fermions are involved. If fermions are involved,
then these phases are plus or minus one, depending on the relative order of the subdivisions
{nfc, mk} and {n, m}. (Even though we only consider spinless particles, we need not admit
here the spin statistics connection.)
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2. Landau Surfaces

Consider a multiple scattering6 connected graph G associated with
the initial and final particles of a process, the set / of its internal lines
and a set of corresponding 4-vectors /ct . Each line has an orientation
(sense) that specifies the direction of flow of the energy-momentum kt.

Let / denote a closed loop that can be constructed on the internal
lines of G. Define nίf as follows: nif =0 if loop / does not contain the
line ϊ, nif=+l (resp. — 1) if/contains i with the correct (resp. opposite)
orientation.

The Landau equations of the graph G consist of one loop equation

Σ«<M</=0 (4)
ie/

for each closed loop/, plus the equations of energy-momentum conserva-
tion at each vertex and the (real, positive-energy) mass-shell constraint
for each internal and external line. (The αf are independent of/ and are
not all zero.)

To each internal line of G, let us now associate (in addition to the
"sense" defined above) a "sign" σiy and let the αf in the Landau equations
associated with G be restricted by the further condition σ^ >0.

The Landau surface L(G) is obtained by eliminating the coefficients
αf and the internal fcf. [L(G) is confined to the space M of external mo-
menta.] 7

A graph with all σ f >0 is denoted G+ and the set L(G+) is called
a positive α Landau surface. An important fact emphasized by Coleman
and Norton [5] is this: Any solution of the Landau equations of G+

corresponds to a nontrivial8 classical multiple-scattering process having
the structure of G, and conversely. The vector α^ represents the space-
time interval between the creation and annihilation of internal particle i.

Certain definitions will prove useful: Jί$ is the subset of M where
two (or more) initial or two (or more) final energy-momentum 4-vectors
are collinear.

6 The phrase "multiple scattering" signifies here only the topological aspect that the
lines of G are classified as initial, final and intermediate; that the initial and final lines
have no vertices at their trailing or leading end points respectively; and that the intermediate
lines have vertices on both ends. It is not required of G that there actually exist a correspond-
ing physical multiple-scattering process. In particular, the vertices of G are not required to
be partially ordered by any condition that particles move "forward in time."

7 Graphs G that arise from insertions of vertices on lines of a set of lines that all begin
at one vertex and all end at one vertex of some other diagram G will be excluded, since these
G do not give new Landau surfaces. Graphs with lines that begin and end at the same vertex
will be excluded also, for the same reason.

8 A nontrivial connected multiple-scattering process is one with at least one inter-
mediate particle.
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L0(G) is the subset of L(G) — JtQ that lies on no L(G') where G'
is a nontrivial contraction9 of G.

The physical side of L0(G+) is the (well-defined) side to which it
would be shifted by a formal scale transformation that increases by a
common factor the masses associated with the internal lines of G.

The physical region of G is the subset of M defined by the Landau
equations for G without the loop equations (i.e. by the mass-shell and
conservation-law constraints alone).

Some properties of Landau surfaces are these: (i) The union L+
of all positive-α Landau surfaces is the union of all L0(G+), plus M^.
(This is trivial.)

(ii) Each surface L0(G+) is a real analytic submanifold of Ji — JίQ of
codimension 1 [1].

(iii) The number of graphs G+ that give positive-α Landau surfaces
L0(G+) that enter bounded portions of the physical region is finite [6].

(iv) L0 (G+) lies on the boundary of the physical region of G+. Further-
more, in some neighborhood of any point of L0(G+), the physical region
of G+ either coincides with L0(G+) or lies on its physical side [1, 7].

(v) If two L0(G+) coincide in a neighborhood of a point, then their
physical sides coincide at this point [1].

By virtue of (v), the physical side of L0(G+) is an intrinsic characteristic
of the surface that does not depend on the particular G+ used to define it.

Property (ii) asserts that for any point P of L0(G+) there is a real
neighborhood m and a real analytic function / (of real analytic local
coordinates10 of Jί - JίQ near P) such that grad / φ 0 in °li and L0(G+)
is defined by / = 0 in tyl. The sign of I is conventionally chosen to be positive
on the physical side of L0(G+).

The power series for / at P defines a function / analytic in a certain
complex neighborhood of P.

The function / should always be understood as an abbreviation of
f[z;P, L0(G+)], where the z are analytic local coordinates of Jt' -M§
near P- of L0(G+). Different functions I could be used to define the same
surface L0(G+) at P, but the properties described below do not depend
on the particular choice of /.

3. Analyticίty Properties

The normal analytic structure is defined by the following properties
(1) through (3):

9 A contraction of G is a graph obtained by equating the two end points of certain
lines of G and then removing all lines that begin at their own end points. G is considered
a trivial contraction of itself.

10 Real analytic local coordinates are local coordinates such that all energy momentum
4-vectors are real analytic functions of them and conversely.
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Property 1. (Posίtive-a, rule). Each scattering function is analytic n at P
unless P lies on the union L+

c of positive-u Landau surfaces of the process.

[By virtue of properties (i) through (iii) of Chapter II 2, the set L+

c has
dimension one less than that of

Property 2. (Plus is rule for simple and quasisimple points.) If P
lies on the Landau surface L0(G+) of a given G+, and if any other L0(G+)
containing P coincides with L0(G+) near P, then P has a real neighbor-
hood °li and a complex neighborhood tft that contains %, such that the
scattering function in fy is the boundary value of a function f(q) analytic
in a domain that lies in Imί > 0. This domain is the intersection of tft with
an open cone CP in Im q that can be made arbitrarily close to the open half
space Im / > 0 in % by taking ^U sufficiently small. The function f(q)
also satisfies a bound of the form \f(q)\ < C|Im/|~m, where C and m are
positive constants that are independent of ^U, for tfl sufficiently small.

By virtue of the edge of the wedge theorem [8], properties (1) and (2)
ensure the existence of a "plus zε" analytic continuation of the scattering
function past the surface L0(G+).

The points which satisfy the conditions of property (2) are called
quasisimple. A simple point P is one such that P lies in the closure of L0(G+ )
for precisely one G+ . The class of quasisimple points thus includes, in
addition to simple points, the points P that lie on some L0(G+) that
coincides with L0(G+), or that are boundary points of some L0(G'+).
In the latter case, G [or one of the G such that L0(G+) coincides with
L0(G+)] is a contraction of G and the consistency of the property (2)
at P with property (2) at points that lie on L0(G/+) in the neighborhood
of P is a consequence of the following property:

(vi) The gradients to L0(G+) are continuous on L+, in the sense
that the directions of the gradients at points of L+

c in some sufficiently
small neighborhood of P lie arbitrarily close to the set of directions
defined by positive linear combinations of the gradients at P.

Property (2) gives the plus is rule at quasisimple points. By virtue
of properties (i) through (v) of Section 2, almost every point lying on the
set of positive-α Landau surfaces is quasisimple. The only remaining
points are those of J?0 - which are confined to a set of dimension 2 less
than the dimension of the complete set L+

c - and the points that lie on
two distinct surfaces L0(G+) - which are confined to a set of dimension 1
less than the dimension of L*.

Most of the latter points are covered by a third property, which is
the generalization of property (2) to points P of L+ — Jt§ such that
for some fixed G+, any L0(G+) that contains P coincides near P with

11 A function is analytic at P if it is an analytic function of analytic local coordinates.
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the L0(G*) of some contraction Gΐ of G+. These points are called
semisimple. It is shown in Ref. [1] that the domains Im/i>0 - where
the index i labels the (necessarily finite) number of distinct surfaces
L0(G*) that contain P - have a nonempty intersection that has a real
neighborhood ^ of P on its boundary.

Property 3. (Plus is rule for semisimple points.) The property analogous
to (2) holds at semisimple "points, with the intersection of the Iml^O
replacing the domain Iml > 0.

Quasisimple points are special cases of semisimple points and
property (2) is a special case of property (3).

III. Macroscopic Causality

1. Space-Time Localization of Particles

To formulate a causality condition, some notion of space-time
position is needed. There is no difficulty with space-time displacements:
we accept that they are generated by exp(ip Ax). That is, the four-vector
a in the equation

<Pa(p) = φ(p)eipa (5)

is interpreted as a space-time displacement.
On the other hand, the position of a relativistic particle cannot be

determined precisely. The sharpest definition allowable either in practice
or mathematically is of the order of the particle Compton wavelength.

For the purposes of this work, it is sufficient to introduce a weak
notion of a macroscopic space-time localization that expresses roughly
the idea that the asymptotic space-time localization of a particle re-
presented by φ(p) lies in its velocity cone 7, which is defined as the
closure of the set of all space-time points that can be reached by traveling
from the origin along any direction that is parallel to any on-mass-shell
four-vector p such that φ(p) is nonvanishing.

To make this idea precise, consider a given arbitrarily small open
region R, the closure of which does not intersect the velocity cone V,
and a dilation that takes each point uf to the point u'τ. This dilation takes
the region R to the dilated region Rτ.

The region Rτ becomes infinitely large as τ->oo. Our basic notion
is that it makes sense in the asymptotic domain τ -»oo to speak of the
probability P(Rτ) that the particle represented by φ(p) can be considered
to be in Rτ. Moreover, this probability should become small when the
space-time wave function corresponding to φ(p) becomes uniformly
small in a region R'τ, where Rf is an open set that contains the closure
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of R. (Notice that R'τ contain all points that lie at distance ατ from points
Rτ, where α is positive and τ goes to infinity.)

Various space-time functions can be defined. Common forms are

-ipx ~r ffΛ
~~~ , V. /

and

/Λ \ ι 12 > V /

where p0=(p2 + m2)1/2.
It is not possible in general to attach a strict physical meaning to

the values of either f(x) or φ(x) at a given point x. However, both
max |/(x)| and max \φ(x)\ have a rapid (i.e. faster than any inverse
xeRτ xeRτ

power of τ) fall-off, under certain conditions on φτ(p). Under certain
other conditions, the fall-off is exponential. Thus, although the actual
values of these different space-time functions are different, the nature
of the rate of fall-off is the same. And this nature is the same also for the
various other quantities that have been proposed as measures of the
space-time densities (cf. Ref. [2]). Thus it seems reasonable to take the
nature of the rate of fall-off given by these functions to be a reliable
indication of the nature of the rate of fall-off of P(Rτ).

For example, suppose the wave function φ(p) belongs to the Schwartz
space 2. If the closure of R does not intersect V, then Ruelle's lemma [9]
implies that both max |/(x)| and max \φ(x)\ have a rapid fall-off with τ.

xeRτ xeRτ

If we consider a set of relatively displaced regions Ru centered at
different space-time points u, then this fall-off is also uniform on compact
subset of M'S, as long as the closure of the set of Ru does not intersect V.

Consider next gaussian-type wave functions that shrink with the
displacement parameter τ [10]. In particular, consider the class of wave
functions of the form

-(p-p}2yτ, (8)

where P is a given 3-vector, y is a positive constant and the χ(p) are
restricted to the class of functions of <2)κ that have compact supports
confined to some fixed compact set K\ that are analytic in some fixed
complex neighborhood AT of P; and that satisfy \χ(p)\ ^ 1 iΐp is real or in N.

Theorem. Both max \φ(x)\ and max |/(x)| have an exponential fall-off
xeRτ xeRτ

if the intersection of the closure of R with the line parallel to the 4-vector
P(P0 = (p2 + m2)1/2, P) drawn from the origin is void. This fall-off is,
moreover, uniform on any compact subset of u's over which this intersection
remains void. Furthermore, the constant of exponential fall-off decreases
no faster than linearly in y in the γ ->• 0 limit.
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In particular, for all y smaller than some fixed y0, the following in-
equalities hold:

>
xeRτ

 Λ" /g\

max\φχy(x)\<De-βyτ

xeRτ *' γ

where C and α (resp. D and β) do not depend on χ, y, or τ.

The proof is given in Appendix III.
The fall-off indicated by the symbol ==>0 will mean a fall-off of the

type specified by (9) when the φτ(p) under consideration are of the form (8).
The φ(p) in 2f of interest will be the y = 0 limit of the φτ(p) of (8). The
meaning of => switches to rapid fall-off in this case.

Our general assumption about space-time localization is that for
any φτ(p) of the form (8) (including y = 0), P(Ruτ)=>0 uniformly in u on
compact sets such that the intersection of the closure of the union of the
Ru with V is void. The set V is the velocity cone of φτ(p) = χ(p) for y = 0,
but for y φ 0, it is the line through the origin with direction P. Thus V
is defined by the "effective support" of φτ(p\ which for the case y φ 0 is
simply the point p = P.

2. Macroscopic Causality

Let φiτ be a set of initial and final wave functions of the form (8)
and let φfτ

τ be a corresponding set of displaced wave functions:

It is convenient to visualize the limit τ -» oo in a space-time coordinate
system scaled to τ. Then the displacements utτ become fixed dis-
placements ut and the regions Rτ of the preceding section become fixed
regions R.

In this system, the particle i becomes localized, in the limit τ->oo,
in its displaced velocity cone Vfl with tip at ut. (That is, the probability

0 as τ -» oo, if the closure of R does not intersect the corresponding

The requirement that the transfer of energy-momentum from the
initial particles to the final particles can be ascribed to (stable) physical
particles is the requirement that one can draw a network of lines re-
presenting a classical multiple scattering process that is compatible with
both the momentum-energy requirements on the various initial and final
particles and also the space-time requirements entailed by the positions
of the various initial and final velocity cones Vf\ Specifically, the energy-
momentum of each external line of the classical process must satisfy
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the appropriate mass shell constraint, and its momentum must lie in
the effective support of φiτ(p). Moreover, the particular vertex of the
multiple scattering diagram that represents the interaction involving
the external particle i must lie in the corresponding V"\

For a fixed set of φίτ, there may be certain sets u = {ut} of displace-
ments such that it is possible to find a classical multiple scattering process
that satisfies the conditions just described. These u are called causal
with respect to φτ = {φiτ}. The set consisting of the M'S that are noncausal
is called <stf({φiτ}\ The set consisting of the M'S such that one can find no
connected classical process is called stfc ({φίτ}). In the case γ > 0, the
3/({φiτ}) and <$tfc({φiτ}} depend only on P = {Pi} and they will often be
denoted simply by jtf(P) and jtfc(P) respectively.

Macrocausality is the requirement that

|Sc({<tfΓ})Hθ (ii)

uniformly on compact subsets of j t f c ( { φ ί τ } ) 12

For y = 0, the symbol =>0 denotes a rapid fall-off and for γ > 0, it
denotes a bound of the type (9):

\Sc({φΐiτ})\<Ce-«?τ. (11')

This bound (1Γ) is to hold for y smaller than some fixed y0, and C and
α are independent of y, τ and the χ/s, provided the χ/s satisfy the condi-
tions listed under (8)13.

The form of the bound in (11) is justified on the basis of the classical
model. All transfers of energy momentum not ascribable to stable
physical particles in accordance with the classical ideas are assumed to
give only effects that fall off at large distances with some arbitrary but
fixed exponential rate. For sufficiently small y, these terms are all masked
by effects ~ e ~α y τ that are classically ascribable to stable physical particles:
these latter effects come from classical multiple scattering processes in
which some external particles are not localized in their effective velocity
cones (or the momenta are not in the effective supports). Similar classical
effects occur in the y = 0 limit, where they give contributions having
rapid fall-off. Thus, the dominant effect for small enough y has the
same type of fall-off as P(Rτ) itself. This is the assertion of (11).

12 The physical justification of macrocausality described below requires that the
velocity cones used in the construction of jj or s/e be "infinitesimally larger" than the ones
defined by the effective supports of the φiτ. This modification of the definitions of j/ and jtfc

does not significantly alter any arguments, as long as P is kept away from M§ [1]. In this
work, we consider only a restricted macrocausality condition that excludes in particular
all points of Jt^. Hence this slight complication will be ignored.

13 The rapid and exponential fall-off rates can depend on the compact sets in sίc. The
rapid fall-off rate can depend also on χ.
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A final remark: Suppose Z(p) is some function of all the initial plus
final variables pt that is analytic with an appropriate choice of units in
each (complex) component piμ of each vector pt for \piμ - Piμ\ ^ 1. (The
corresponding domain of analycity in p = {pt} is N.) Then consider the
function χ(p) = Z(p)χ(p), where χ is a product fl& °f functions of the

i
form (8) that has its compact support in N.

Macrocausality says a priori nothing unless Z has itself a product
form14. However, it is easily seen - by using a multidimensional Cauchy
expansion for Z around the point P = {PJ - that (1Γ) still holds for this
nonproduct χ(p) (with some different C)15.

3. Causal Displacements [1]

In this section, we describe some basic properties, which will be
used later, of the set j/c of noncausal displacements. [By causal displace-
ments, we mean here only those that are associated with connected
diagrams (i.e. that do not belong to J/C)].

(i) If the (effective) support of φτ=Y[φίτ contains no positive-α
ί

Landau point, then all nontrivial displacements with respect to φτ

belong to jtfc(φτ).
The trivial displacements with respect to φτ are displacements that

consist of any common displacement of all particles, plus any set of
displacements of the various particles along lines that lie in their own
velocity cones.

Property (i) is a consequence of the Coleman-Norton [5] remark
that the positive-α Landau equations are precisely equations of classical
kinematics: if the Landau equations cannot be satisfied, then there can
be no causal displacements except trivial ones.

Let P be a point of Jt — JίQ. Let u represent a 4(n + m)-dimensional
displacement vector. Let {ύk} be a set of / = 3(n -f- m) — 4 of these vectors
such that the corresponding qk = ύk'(p — P) are real local analytic
coordinates of M — JtQ at P. (A specific set of ύk and qk is exhibited at
the beginning of Chapter IV 1.) Let Γ be the space spanned by the set
{ύk} and let any u in Γ be written as u = Σukύk. Then u - (p — P) = Σukqk

= u-q.
14 We have specifically restricted the statement of macrocausality to the case of product

wave functions φf{τ, because the classical arguments are more compelling in this case. In
any case, the physical arguments are difficult to extend to "wave functions" that mix
initial and final variables.

15 The assumption that C and α are independent of the χ, [in the class defined below (8)]
is used precisely here; all functions of the form f] (piμ - Pίμ)

n μχt(pf) belong to this class.
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The following properties are proved in Ref. [1]:
(ii) If the support of χ = Y[ χt is sufficiently small, then the inter-

/
section of Γ with the set of displacements that are trivial with respect
to χ is the null vector.

Properties (i) and (ii) ensure that if P does not lie on l£, then all
nonzero displacements in the set Γ belong to s/c(P\ and also to j/c(χ) if
the support of χ is sufficiently small.

(iii) If P is a simple or quasisimple point of L+, then there is only
one causal direction u in the set Γ at P [i.e. which does not belong to
<£/c(P)] and this direction is precisely the direction of the gradient at P
to the Landau surface L0 that contains P. That is, uk = (8l/dqk) h, where h
is positive.

Moreover, given any open cone C* that contains the causal direction
at P, there is a neighborhood N of P sufficiently small so that all nonzero
w's in Γ lying in the complement C'P of C£ lie also in j/c(χ), for all χ with
support in N.

(iv) At a semisimple point P, the analogous property holds, with the
direction of the gradient to L0 at P being replaced by the closed convex
cone Cp that is formed of positive linear combinations of vectors uc (P)
that are gradients at P to the various L0 that contain P.

The closed convex cone Cj of causal displacements at a semisimple
point P is precisely the "polar cone" of the cone CP of analyticity defined
in property (3) of Chapter II. That is, either cone is defined in terms of the
other by the condition u - Imq > 0 for all u in Cp and Imq in CP.

IV. Macrocausality and the Normal Analytic Structure

i. Introductory Remarks

In Section 2 below, the normal analytic structure of the S-matrix,
that is, properties (1) through (3) of Chapter II 3, is derived from the
macrocausality condition (11). The linearity in y, for small y, of the
constant of exponential fall-off, and the rapid fall-off at γ — 0, are crucial
in this proof; we have not succeeded in deriving the analyticity properties
simply from a condition of exponential fall-off at one fixed value of y.
(This is discussed in Appendix II.) On the other hand, (11) can be slightly
weakened: condition (1Γ) can be replaced by:

Sc({φ»lτ})<0>(τ)e-^τ, (12)

where ^(τ) is a fixed polynomial in τ. The derivation of the normal
analytic structure is only slightly affected by this change.
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In Section 3, various converse properties are derived. In Subsection (a)
the rapid fall at γ = Q demanded by (11) is derived from the normal
analytic structure. The support of χ is assumed to contain only points
of the type referred to by the normal analytic structure: i.e., they must be
either non-Landau (not on any positive-α Landau surface) or semisimple.
In Subsection b), the fall-off property (12) is derived for y > 0, provided P
is non-Landau or semisimple. This proves the equivalence of the normal
analytic structure to a weak form of the macrocausality condition (11).
This form is restricted to the points referred to by the normal analytic
structure, and has (12) in place of (11).

The physical space-time arguments for macrocausality give (1Γ)
rather than (12). In Subsection c), the stronger condition (1Γ) is derived
from the normal analytic structure, together with the boundedness
condition on the S-matrix, provided P is non-Landau or quasisimple.
We see no reason why (1Γ) could not be proved also for semisimple P,
but the additional effort seems unwarranted.

From the full macrocausality condition (11), one can derive analyticity
properties also at points not covered by properties (1) though (3). At
all points except the very rare type-II points [1], the scattering function
decomposes into a sum of terms corresponding to different parent
diagrams. The proofs and results are direct generalizations of those
given in Ref. [1] and are not further discussed here.

2. Derivation of the Normal Analytic Structure from Macrocausality

Consider the 3(n + m) components of the (n + m) vectors Pi — Pi. For
simplicity, we may choose from among them a set of l = 3(n + m) — 4
analytic local coordinates of M — JίQ at P. [This set can be chosen in
the following way: Since P is not in M^ there must be two noncollinear
4-vectors Pίl5 Pί2 and two components Piιμ, Phμ of their 3-momenta such
that Piιμ(PiίoΓl:ϊPi2μ(pi2θΓ1 We exclude from the set of 3(n + m)
variables {pt — PJ the two corresponding components, plus two other
components with different values of μ. The remaining set of / components
is a set {qk} of real analytic coordinates at P. That is, any pf can be ex-
pressed, locally, as a real analytic function of the qk.~] These qk are written as
qk = ύk'(p — P). Then the set Γ of Chapter III 3 is the set of u of the form
u = Σukύk, and u-q = ̂ ukqky where sums on k run from 1 to /. (This
particular choice of qk and uk is made only for definiteness; it is not
important in the proofs.)

The initial and final wave functions will be restricted to a class of
functions [φ"?} of the form (8), where the support of χ = Y[ χt lies in

I

the neighborhood N defined at the end of Chapter III 2. The neigh-
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borhood N is taken to be small enough so that the intersection of N
with the complex mass shell ^lies in the region covered by the local
analytic coordinate system at P.

The connected amplitude Sc({φ£|τ}) of the process can now be
written, taking \u\ = 1,

έ** Se({φ%*}) = ί T(q) χ(q) J(q) *-*' *-''•'*«> dq , (13)

where v = τu, T(q) denotes the scattering function, J(q) is the Jacobian
that comes from the elimination of the δ functions of energy-momentum
conservation and of mass-shell constraint, and μ = £(/>,- — Pj)2, where ί

ί
ranges over all the initial and final particles.

The function μ(q) is positive for real q and vanishes for q = 0. The
functions J(q) and μ(q) are analytic in complex neighborhoods of the
origin and N is taken small enough to lie in both of these. Finally,
J(0) is nonzero.

We introduce
f(υ, ί) = J F(q) e~tμ(q) e~ίqv dq , (14)

with
F(q)=T(q)χ(q)J(q). (15)

Then (13) gives
\v\) = Se({φ^})^p^. (16)

In Subsection a) below, the analyticity of F(q) at q = 0 is derived
from macrocausality, in case P of Jt lies on no positive-α Landau surface.
In Subsection b), the plus ίε rule for F(q) at q = 0 is obtained for semi-
simple points P. The corresponding properties of T itself, considered
as a distribution, follow 16 from these properties of F(q\ together with
the facts that J(q) is analytic and nonzero at q = 0, and that χ(q) is analytic
and can be taken nonzero at q = 0.

α) Analyticity at Non-Landau Points. Consider a point P = {Pt}
of M that does not lie on L*. Then choose the support of χ sufficiently
small so that it contains no point of L*9 and so that the set of all unit
normed w's of the form (u± ... ut) is a compact subset of ^c({φiτ}) for
7^0 (see Chapter III 3).

The special case γ = 0 gives the rapid fall-off condition:

f(ϋ,0)=>0 (17)

for |ι>|->oo, uniformly in all directions of v.
Then (14) shows that F(q) is the Fourier transform of f(v, 0):

F(q) = (2n)~l ί f(υ, 0) eίqv dυ . (18)
16 This is proved in Ref. [1], Appendix D. The analytic representation applies also

for product test functions in L2. See Appendix 13 below.
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The uniform rapid fall-off of f(υ, 0) entails that F(q) be infinitely dif-
ferentiable.

To show that F(q) is also analytic at q = 0, we write (18) in the form:

I
yoM ϊ

Γ ft
f(v,γ0\v\)e™W>lM - <fί — [fίM)*"*"]^

oJ ^ 1(19)

Eqs. (1Γ) and (16) immediately entail that the term F±(q) coming from
the first term under the integral is convergent and, moreover, analytic
in the domain $ defined as the intersection of N with

α, (20)
To

where α is the fall-off parameter in (1Γ).
The domain in S includes the origin since μ(0) = 0.
The integral F2(q) associated with the second term under the integral

of Eq. (19) is a well-defined function for q real in S since F and Fx are
both well defined. We shall now show that it is also analytic in δ.

Introducing (14) into the term of the integrand of (19) that corresponds
to F2, one obtains

eiqv -j^ [T (υ, t) etμ(q)-] = f F(q') ei(q~qΊv

 e

t(μ(q)-μ(q'» \_μ(q) - μffl] dqf . (21)

(The transference oϊd/dt to the integrand is allowed because F(q) belongs
to 0.)

Hefer's Theorem [11] allows one to write

μ(q)-μ(q') = Q(q,qf) (q-q'), (22)

where the components ρ7 (/= 1, 2, ..., /) of ρ are analytic in the product
of the domains N in q and q' space. Eq. (21) then becomes

eίqv ~ lT(υ, t) etμ^ = Vv[_eiqv etμ™ H(q, υ, ί)] , (23)
ot

where

H(q, v, t) = - J iF(qf) e~ίq'v e~tμ^ ρ(q, qf) dq' . (24)

We may thus write

Γ yo M Ί
(2π)lF2(q)=-lίm\ f dυ J at Vυ[_eiqv e^ H(q, υ, ί)] . (25)R"°°Lki<Λ o J

For fixed jR, we may change the order of integration and perform
a first integration over v in the domain t/γ0 < \v\ < R. Then Gauss'
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theorem gives this integral as a difference of integrals over the boundary
surfaces at \v\ = R and \υ\ = ί/y0.

The contribution F2(q) to F2(q) associated with the surface \v\=R
vanishes in the jR -> oo limit (this is proved in Appendix IV).

The function F2(q) is thus equal to the contribution from the surface
atί/y0:

(2π)' F2(q) = y0 f **" **>M*«> v H(q, v, γ0\υ\) dv , (26)

where v = \v\~1v.
Since each component Hj is an analytic function of q in AT, F2(q) is

analytic in $ by virtue of (1 Γ) (and the remark at the end of Chapter III 2).
The argument is essentially the same as for fi (q).

This proves the analyticity of F(q) [and thus of T(qJ] at q = 0, and
completes the proof of property (1) of Chapter II.

b) The Plus iε Rule. Consider the cone Cp of causal u at a semisimple
point P and a slightly larger cone C+ that contains Cp . We choose the
support of χ sufficiently small so that all v φ 0 in the complement C of
C+ lie in the acausal set j t f c ( { φ i τ } ) for y ̂  0.

The cone C+ has a nonempty open polar cone C, which is the set
of all vectors y = (yί . . . y^ such that y - υ > 0 for all v =t= 0 in the closure of C+.

The proof of the plus is rule proceeds as follows. The f(υ9 1) of (14) is
written as:

where Θ(C) is one for v in C and zero otherwise.
The distribution F(q) divides accordingly. The first term,

fcfo) = J Θ(C+) f(υ, 0) J*» dv(2πΓl , (27)

is a boundary value of a function analytic for Imq in C due to the expo-
nential fall-off of eίqv as |u|-xx). [T(v, 0) is bounded by a constant
(see (2)).]

The second term is

The intersection of \u\ = 1 with C is a compact subset of ^c(χ).
Thus the arguments of Subsection a) can be used again.

The only difference is that there is an extra surface term at the boundary
of C. This term is confined to the boundary of C+ and thus, similarly
to Fc(q), it is a boundary value of a function analytic in the intersection
of Imq in C with a neighborhood of the origin. Details are given in
Appendix IV.

The sum F(q) is, therefore, analytic in the intersection of Imq in C
with some neighborhood of q = 0.
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This proves property (3) of Chapter II, and property (2) is a special
case. The bound \T(q)\ <C\lml(q)\~l for q in Cp n^ follows from (27)
and the remarks at the end of Appendix IV.

3. The Converse

In this section, we prove the fall-off properties for a given u of j/c.
The proof of uniformity on compact subsets of sίc follows from continuity
arguments.

a) Proof of Rapid Fall-Off (11) for γ = 0 17. It is a simple matter to
construct a set of local analytic coordinates qk = ύk'(p — P) such that
the given u of j/c(χ) belongs to the corresponding set Γ (see Chapter III 3).
Thus we may still write

eipv Sc({χΓ}) = f T(q) χ(q) J(q) e~^ dq = f ( v ) , (28)

where v = τu and J is a Jacobian that is analytic (and nonzero) at all
points that lie in the (sufficiently small) support of χ. (If the support of χ
is not sufficiently small, we use a suitable partition of unity [13] and
prove the rapid fall-off (11) for each corresponding term.)

By virtue of property (1) of Chapter II, Eq. (28) entails immediately
the rapid fall-off (11) if the support of χ contains no positive-α Landau
point.

The set jtfc(χ) lies in the intersection of the sίc(P) over all P in the
support of χ. This is evident from their definitions. Thus the given u
in <s/c(χ) must lie in all the j/c(P) for P in supp. χ. If the support of χ
is sufficiently small, and contains only non-Landau and semisimple
points, then by virtue of properties (1) and (3) of Chapter II, and property
(iv) of Chapter III, there is a fixed direction of Imq that satisfies Imq u < 0
such that for all Reg in the support of χ the point q lies in the domain of
analyticity of T(q) for sufficiently small but positive Imq having the
fixed direction.

Consider a small box yΓin g-space that contains the support of χ, and
such that the above-described analyticity property holds also for Reg
in Λ/ΓThe codimension-one faces of yΓare defined by equations qt= ±at.

Now define

This function is analytic inside Jf\ we choose Jf sufficiently small
so that u also belongs to jtfc(ξ). (If this were not possible for the function χ
considerec}, again use a suitable partition of unity.)

17 A special case of this result has been proved in Ref. [12].
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The function f(v) in (28) can be written as the convolution of the
Fourier transform χξ(v) of the function χ(q) J(q) (ξ(q))~1 with the Fourier
transform fξ(v) of the distribution T(q)ξ(q) [see Appendix I3(c)]:

f(v) = χ ξ ( v ) * f ξ ( v ) . (29)

The function χξ(v) has a uniform rapid fall-off in all directions of v.
On the other hand, the function fξ(v) has a uniform rapid fall-off in all
directions of i? that belong to compact subsets of jtfc(ξ). To see this, it is
sufficient to consider a distortion of the interior of Jf into the part of
the complex g-space that lies in the domains of analyticity of T(q)
and ξ(q) and such that Imq u<Q. The result then follows from the
fact that ξ approaches zero on boundary of Jf faster than any power of
Imq (for appropriate distorted contour Jf\ whereas T(q) can grow no
faster than an inverse power oϊlmq [14].

Finally, fξ(v) has a slow growth (no faster than a polynomial) in the
causal directions of v9 since T(q) is a tempered distribution.

Eq. (29) can be written:

To prove the rapid fall-off of f(v) in the direction v of sfc(ξ\ divide
the t '-space as follows:

(i) The points that lie outside a sphere Sα of radius φ| centered at
the origin, where α is large compared to one (\v — v '\ « \v'\9 |t/|^α|ι>|).

(ii) The points that lie inside Sα but outside a sphere Sβ of radius β\v\
centered at the point v9 where β is chosen such that Sβ does not intersect
the cone Cξ of causal directions with respect to ξ. (\v — v'\ ̂  ]8|ι?|, \v' ̂  α|t?|).

(iii) The points inside Sβ.
Each term is easily seen to have the rapid fall-off of (11): use the rapid

fall-off of χξ and the slow growth of fξ for the first two domains, and the
rapid fall-off of fξ in the directions of s/c(ξ) for the third.

b) Proof of (12). In the case of y > 0, the proofs are adapted from
Appendix III. Consider a local coordinate system q at P of M — Ji§ and
suppose first that the support of χ is sufficiently small so that all points in
that support are covered by the above coordinate system. (If not, use
a suitable partition of unity, as is described later.)

Since μ(0) = 0 and μ(q) is analytic and positive, it is equal to
a positive quadratic form in the components of q9 plus a third-order
term. Thus the region in real g-space defined by μ(q) g α grows mono-
tonically with α for small α.

If the support of χ contains no positive-α Landau point, then the
bound (1Γ) follows from the same arguments that give (9). (The condition

3 Commun. math. Phys., Vol. 14
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that u be noncausal, hence nontrivial, replaces the condition in (9) that x
be not along P.)

Suppose the support of χ contains Landau points and that P is non
Landau or semisimple. If the support of χ is sufficiently small (if not,
use also here a partition of unity), then the scattering function T(q) is
equal (see Appendix 1 2b)) to some derivative of a continuous function
C(q) which has the same analyticity properties as T:

Γ. (30)

As is discussed in Appendix B of Ref. [1], the given noncausal displace-
ment u is equal, up to a trivial displacement, to some noncausal ΰ in Γ,
where Γ is the space associated with the coordinate system q. Then, by
virtue of properties (1) and (3) of Chapter II, and property (iv) of Chapter
III 3, there is a fixed direction of Imq satisfying Imq ΰ < 0 such that for
all Re q in a sufficiently small neighborhood Jf of q = Q, the point q
is in the domain of analyticity of T(q) provided Imq is sufficiently small
but positive and has the fixed direction.

The region Jf will be distorted into Jf' by shifting each point along
this fixed direction, and the bound (12) follows from the same arguments
that give (9). The polynomial ^(τ) arises because of the derivatives in q
on the function e

ί(p-p^uτ

m The derivatives on the function χ itself obliges
us a priori to admit a dependence of the coefficients of ̂  on some derivatives
of χ, but we now show how this can be eliminated. The following method
also allows one to treat the cases when the support of χ is not sufficiently
small (or is not even finite).

Consider a partition of unity in the space of the initial (resp. final)
3-momenta into a part that has a sufficiently small support around
the point Pin = {Pί}ίein (resp. Pf) and a part that vanishes in the neighbor-
hood of Pin (resp. Pf). This defines a corresponding partition of unity
in the space of all momenta into a part that has its support in a neigh-
borhood Jf of q = 0 and a part that vanishes in a neighborhood of
that point. The contribution of the latter is easily seen, by using the
boundedness of the 5-mαίrzx18, to have a bound of the type (1Γ) itself.
The above partitions are chosen so that Jf is (much) smaller than the
domain Jf of analyticity of χ. Then all the occurring derivatives of χ
in Jf will be bounded by virtue of the bound on χ in Jf. (Use a multi-
dimensional Cauchy formula to see this.)

18 Instead of (2), we use in the remainder of this chapter the general condition

\Snm(ψn,φm)\ί\φm\\ψn\,

where φm and ψn involve only the initial and final variables respectively, and are square
integrable (see also Appendix T).
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c) Proof of (1Γ). The methods of Subsection b) are sufficient to
prove (1Γ) in case P is not a positive-α Landau point. In this subsection,
we prove (1Γ) in case P is a quasisimple point.

Consider a local coordinate system q at P of the type described
at the beginning of Chapter IV 1, and a (sharp 19) separation of the real
g-space into a neighborhood Jf of q = 0 and an external part. The
neighborhood Jf is chosen to be a product of two neighborhoods.
These two neighborhoods depend on the coordinates qίn and qf respec-
tively, where the qin and qf are components of the initial and final pt — Pi

respectively. They are made small enough so that: (i) all points of χ
are covered by the above coordinate system; (ii) χ(q) is analytic in Jf\
(iii) μ(q) is analytic in a region μ(q) ̂  α which contains Jf\ (iv) the region
μ(q) ^ #! grows monotonically for o^ ̂  ά [see subsection (b)] and (v) any
part of L* in ^Γis "almost flat in J f \ i.e. the normal to L+

c does not change
appreciably in Jf.

The contribution of the external part is again easily seen by using
the boundedness of the S-matrix, to have a bound of the form (1Γ).

As in Subsection b), there is again a fixed direction of Imq satisfying
Img Π<0 along which yΓcan be distorted. But, instead of using (30)
we now show that, by using an appropriate choice of coordinates and
an appropriate jYl one can obtain an Jf' that completely avoids the
singularity surface L+. Then the scattering function T(q) is analytic
and bounded on this Jf' and the bound (1Γ) is obtained. (The justifica-
tion of the use of a "sharp" division is given in Appendix I 3.)

We denote by N the direction of the gradient at P to the surface L+.
We then chose Jf to be a product of boxes in the spaces of variables
qin and qf such that the direction d of some one of the one-dimensional
edges of Jf satisfies the conditions:

d ΰ <0,

and such that the Landau surface intersects the boundary of Jf only
along the (closed) codimension 1 faces that contain this direction.
(This is possible unless ΰin and ΰf are both parallel to Nίn and Nf respec-
tively. In this latter case, it is easy to show that one may find a coordinate
system qf for which these conditions are not satisfied.)

One may then use an imaginary distortion along the direction d
to shift Jf away from the Landau surface. (Recall that by virtue of the
Fundamental Theorem of Cauchy-Poincare [15], one can shift ^con-
tinuously into Jf' provided only each boundary point of Jf is shifted
in a way that maintains the various boundary equations satisfied at

19 In contrast to Subsection b), we do not use here a partition of unity.
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that point. For the codimension one faces of Jf, there is only one equation,
in the space of / dimensions. For the one-dimensional edges of Jf, there
are / — 1 equations, and hence only one (complex) degree of freedom.
At the zero-dimensional corners, there are / equations. Hence these
corners cannot be moved at all. See also Appendix C of Ref. [16].)

Dimensional arguments indicate that this argument should be able to
be extended to any semisimple point P. However, when the number of
Landau surfaces through P becomes large, it is not so easy to construct
the required distortion, which can no longer have a single fixed direction.
This problem is left for possible future work.

V. Conclusions

1. Applications to S-Matrix Theory

In 5-matrix theory, the analyticity properties are derived from the
principle of maximal analyticity. This principle says that the analyticity
structure of S is the simplest one consistent with its unitarity and cluster
decomposition properties.

For the physical region, this principle is interpreted as follows:
The insertion of the cluster decomposition of S and S'1 into SS'1 = 1
gives an integral equation for the scattering function that has terms having
explicit singularities. Inductive or iterative procedures give other ex-
pressions for the scattering function having terms with other explicit
singularities.

It has been shown that all explicit singularities generated in this
way by the combination of the unitarity and cluster properties are confined
to Landau surfaces. The first specific content of maximal analyticity
is, accordingly, the assertion that all physical-region singularities of the
scattering functions are confined to Landau surfaces.

One cannot conclude in the same way that the singularities should
be confined to positives Landau surfaces, for the individual terms in
the expansions do not have this property. And even if the singularities
were confined to the positive-α surfaces, it is not apparent that the plus
iε rules should hold, since these rules do not hold for individual terms.
In fact, these terms generally do not continue via any path into the func-
tions defined on other sides of these singularity surfaces: the functions
in different sectors are different analytic functions. Unitarity places very
strong conditions on the analytic structure of scattering functions, and
it may ultimately be possible to prove that the normal analytic structure
is the only one consistent with unitarity, given the fact that the singularities
are confined to Landau surfaces. So far, however, it has always been
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necessary to assume at least certain features of the normal analytic
structure.

The justification for these assumptions is provided by macrocausality.
This justification is completely in the framework of S-matrix ideas: no
appeal to ideas based on microcausality or locality properties is needed.

If the normal analytic structure is someday proved from maximal
analyticity, then our converse results yield the interesting conclusion
that maximal analyticity entails macroscopic space-time causality
properties: space-time properties emerge automatically from a frame-
work that contains no a priori space-time notions.

The idea that the wave functions defined by Fourier transformation
are related to space-time properties was introduced into the above dis-
cussion as an a priori notion, in connection with the direct proof. The
converse result provides a basis for this notion.

In the above discussion, the principle of maximal analyticity was
accepted as the basic principle - macrocausality was used only to restrict
the singularities to the positive-^ Landau surfaces, and to give I'ε rules
Alternatively, macrocausality can be accepted as the prior principle:
macrocausality would then be used to justify the entire normal structure,
and maximal analyticity would then merely extend this primitive domain
of analyticity. There are evidently a variety of ways dividing the roles
played by maximal analyticity and macrocausality.

A broad general conclusion to be drawn from our work is that the
validity of the normal analytic structure and of strong macroscopic
space-time causality properties does not provide a basis for believing in
microscopic locality properties: from macroscopic space-time properties,
it is enough to have physical-region analyticity properties, and υice versa.

2. Applications to Field Theory

It has so far not been possible to derive any analyticity in the physical:
region directly from general field theoretic axioms. Thus macrocausality
would seem to be independent of microcausality. On the other hand,
some analyticity in the elastic region of the 2 -» 2 process has been obtained
if a certain extra smoothness condition is imposed [17]. Macrocausality
is thus presumably related to this smoothness condition.

If one wants to use physical assumptions instead of purely technical
ones, then macrocausality could be added to the field theory axioms.
This would yield, by virtue of the above work, the normal analytic
structure. But the proof would not depend on the field theoretic sub-
structure.
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Alternatively, one might try to derive from field theory (plus smooth-
ness) the macrocausality condition. The feasibility of this approach is
suggested by the work of Williams [18]. If macrocausality can be derived
from field theory, then the normal analytic structure would follow.

Appendix I

1. Scattering Functions as Tempered Distributions

Suppose first that the functional Snm(ψl9 ..., ψn; φl9 ...,φm) is defined
for all wave packets φt (or ψj) in the space L2(R3) of square integrable
functions. Then the continuity (2) of the functional Snm in L2-norm with
respect to each separate variable implies the continuity in the topology
of the Schwartz space £f, which in turn implies that Snm is a tempered
distribution (nuclear theorem) : that is, Snm can be extended to all functions
φn+m of £f(R3n+*m) and this extension is linear and continuous in the
topology of £f. On the other hand, the nuclear theorem is not valid
for L2 (which is not a nuclear space) and Snm cannot be extended to all
functions φn+m of L2(JR

3π + 3m). That is, there are square integrable φn+m

of nonproduct form for which S(φn+m) is not defined (i.e. is infinite).
The continuity (2) in L2-norm allows one to show that the order 20 of the

distribution Snm is not greater than 2(n + m).
Proof [19]. First write

, (31)

where * denotes convolution.
Then use the distribution identity

iΛl

I Here α is positive and A{ — — ̂  -- h -r^ -- \- -^
V d Pn d Pi2 d2P

This gives

«2)C.m, (32)
i J

where
g-α|pil e-*\qj\

c- = s»».*Ππ7rΠ-jί|- (33)

i \Pi\ j \9j\

Since the function e~"\p~p'l\/\p-p'\ of p' belongs to L2(#3), the
bound (2) implies the existence of Cnm for any value of the p{ and qj9

20 A distribution is of order / if it can be expressed as a finite sum of /th derivatives of
continuous functions.
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and it is easy to show that it also implies that Cnm is a continuous function
of these variables. This completes the proof.

Suppose next that the functional Snm(ψl9 ...9ψn;φl9 ..., φm) is originally
assumed to be defined, and to satisfy (2), only for wave functions φt and ιψj

in the dense subspace 2 of L2. We show now that Snm has a unique linear
extension to functions in L2 for which (2) still holds, and hence that all
the above results still remain true.

A functional F(f) that is defined for / in 2 and that is linear and
continuous in L2-norm:

if ωι 5; i/i
has a unique linear continuous extension to functions / in L2. This
well-known result is obtained by considered a sequence [fp] of functions
in 2 which approach /in L2-norm. They then satisfy the Cauchy condition :

l/p-/ P Ί<ε, if p,p'>N(ε).

By virtue of the boundedness condition, differences P\Jp) — f\Jp>) also
satisfy the Cauchy condition :

TO - F(fp.)\ = \F(fp - fp,)\ (linearity)

^\fP-fP'\ (continuity).

The sequence of numbers Fp = F(fp) thus has a limit and it is easy to
show that the extension of F thus defined is still linear and continuous.

This result cannot be used directly because (2) holds only for product
wave functions. [In any case, (2) cannot be extended to functions that
mix the initial and final variables.]

Consider a set {/j}/=ι, ...,„,+„ of functions in L2. Each /• may be
approached by a sequence {/ίf j } of functions in 2. Then write

,/2jp,,/3,p,,...) (34)

>Jm + n,pm + n) " w l,pί> ' Jm + n,p'm + n' '

Then we may use the linearity and continuity with respect to each
variable to show that the sequence in the left-hand side satisfies the
Cauchy condition. The existence of the extension of Smn to functions
fi in L2 follows, and it is easy also here to show that this extension is
linear and continuous (in L2-norm).
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2. Distributions and Boundary Values of Analytic Functions

In this Section and in Section 3, we consider only distributions with
compact support: in the applications to Chapter IV, the scattering func-
tion T can always be replaced by its product with a function of Q that
is equal to one over a sufficiently large domain.

(a) Consider any distribution T(x) (where x is an /-dimensional
variable) and define:

(35)

This function is a well-defined analytic function of z when all Imz^ Φ 0.
Then define:

= Σ(Π, *t + j«M (})=τ(x)*Π -rf-r (36>i \ *i T- Si J

where ηt = ± 1 and the sum runs over the 2l combinations of the values
-1 and +1.

It is well known [20] that

T(z) = limfε(x) (37)

in the sense of distributions.
It is easy to see [21] that if T(x) is written as the derivative (dn/dxn) C(x)

of a continuous function C(x), then

dn ~

dz» (Z)?

and that consequently each term on the right-hand side of (36) approaches
the real x space no faster than inverse powers of the st:

T, (38)

where C is independent of x and ε.
Finally, if a function is analytic for all Imz^ΦO and has a bound

of the type (31), then its boundary value in the limit Imzf->0 is a distri-
bution [21].

(b) Suppose now that the distribution T(x), when restricted to test
functions with support in a given compact set K, is also the boundary
value of a single function T'(z) from a single well-defined open convex
cone C[T'(z) is analytic for Re z in 1C and Imz in the intersection of C
(having apex at Imz = 0) with a neighborhood of Imz = 0].

If x is one-dimensional, then the edge of the wedge theorem implies
immediately that T'(z) has also a bound of the type (38): According to
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(37), one has in the distribution sense

T(x) = lim f (x + iε) - f(x - is) .
ε->0

If T(x) is also equal to lim T'(x + iε), then the restrictions to Imz > 0 of
ε->0

T' and T are equal up to a function analytic in a neighborhood that
contains K. Thus T' must have the bound (38), since T has it.

We do not know if this result can be extended to the many-dimen-
sional case. On the other hand, if we suppose that T has a bound of
type (38), then the distribution T(x) is (in K) the multiple derivative of a
continuous function C(x) which is also the boundary value of a single
function C'(z) analytic in the same domain as T'. To see this, one can
integrate T'(z) from some fixed point in the domain of analyticity. The
power bound Π(yi)~mi then entails that after some finite number of
integrations, one will get in the limit a continuous function.

Applications. From macrocausality, one derives a power bound of
the form (38) (see Chapter IV 1). This bound is used in the converse
proof of Chapter IV 2 a) (γ = 0 case). The result of the above paragraph
is used in Chapter IV2b) [y > 0 case with polynomial ̂ (τ)]. The uniqueness
of the analytic function that represents the scattering function is proved
in the following subsection.

(c) The representation of a distribution as a limit of 2l analytic
functions in highly nonunique [21]. On the other hand, the representa-
tion as the limit of a single analytic function is unique, if it exists.

Lemma. Let K' be an open neighborhood in Rl with closure K. Let @κ be
the space of infinitely differentiate functions of compact support K.
Let z be in Cl and let f(z) be a function analytic at all points of the strip

S = {Rez in K, Imz = εe, e = (eί...el)9 e/>0, 0<ε<ε0}.

For any φ in £%κ, define

Suppose for any φ in @κ the functional

Γ[φ]EElimΓε|>] (39)
ε->0

exists (is finite). Then T(z) is unique in S.

Proof. Suppose there were two T(x + iεe) that satisfied (39). Then
their difference D(x + iεe) would give, for all φ in 2K9

lim Z)ε[φ] =0.
ε-»0
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For φ in Sίκ,,, where K" € K, the function Dε[φ] is an analytic function
of ε for ε0 > Reε > 0, |Imz| < α, for some sufficiently small a. And it
approaches zero as Reε-»0, for all |Imz|<α. This analytic function of
one variable is therefore identically zero. But, if Dε[φ] =0 for ε >0 for
all φ in @κ,,9 then D(x + iεe) must be identically zero.

(d) The following lemma is used in Section 3.

Lemma. Let T[φ] and T(x + ΐεe) be as in the preceding lemma.
Suppose, moreover, that T[φ] has a representation

where C(x) is infinitely differentiate. And suppose finally that T(z)
< B(lmz)~m in S, where B and m are fixed positive constants. Then, for
any x in K',

fi->0

Proof. Let x be an arbitrary fixed point in K'. Let N be a real neigh-
borhood of x that lies in K and is defined by

N = ί(Xj-Xj)2<αf all j\.

Consider the test function that is given in N by

where z = x + iεe is in S. Let C be a contour in S, defined by ε = ε(x),
where ε(x) is continuous for x in N9 positive for x in AT, and zero for x on
dN = N -N. Let C(ε') be the particular contour C defined by

Let Tβ'[φfe5)]be

J T(z)φ(z,z)dz.
C(ε')

Then, for any ε' < ε,

In particular, the contour originally defined by limε-»0 can be shifted
to the fixed contour C(ε') by means of the generalized theorem of Cauchy-
Poincare [15]. The contribution to the integrals from near dN = N — N
are exponentially damped by the exponential factor in φ(z9 z) (cf. Ref. [14]).

Let ε' be gradually increased. For sufficiently small ε, the contour
C(ε') passes through the multiple-pole singularity of φ(z,z) when ε'^ε.
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Then for ε' > ε, one has

-[fl/ -(z -x/Γ1 . (40)

One obtains this result by shifting the contour successively through
each pole singularity of φ(x,z)\ the difference gives a delta function in
place of the pole.

Now, fix ε' > ε and let ε-»0 (z-»x). The contribution from Tε/[φ(z, z)]
gives an analytic function of z for z ss5c. The contribution from T[φ(x, z)]
is equal to the convolution product of the infinitely differentiable function
C(x) with a distribution with compact support (a pole gives a well-
defined distribution in the ε-»0 limit); it is thus an infinitely differentiable
function [22].

From (40), the limit ε ->0 of T(x + iε) is thus also infinitely differentiable
and it is then evidently equal to T(x) as a function since it is equal to it
in the distribution sense.

3. Bounded Functional and Boundary Values of Analytic Functions

(a) Consider any functional T that satisfies, the boundedness con-
dition :

\T(φ',φ")\^φ'\\φ"\ (41)

for any φ' and φ" in L2(RP) and L2(Rq) respectively. Then we know
(Section 1) that T is a distribution, which can be written as a sum of
boundary values of 2(p+q) functions [see (36)].

We show below that this representation holds equally well for
functions φ' and φ" in L2.

Lemma. For any φ in L2 (with compact support), one has

l im|φ β-<p|=0,
e-»0

where φε is defined from φ as in (36).

One sees by direct calculation that the Fourier transform φε(x) of φε

is equal to

p
Φε(χ) = Φ(χ) Π eχp( - εi l*il) >

i = l

where φ is the Fourier transform of φ.
Since φ is in L2, the result follows.
Using this lemma and the bound (41), one obtains

")= lim T(φ'ε,,φ'ε,,). (42)
β',e"-*0
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Since φ'^ and φf^ are smooth (and in fact analytic) functions and the
same is true of ΓβV/, one can apply the results of [20] to show that

Thus one obtains from (42) that

") = KmTε,A<p',<P'') (43)

Thus the representation of Γby 2 p+q functions holds also for functions
φ' and φ" in L2.

(b) Suppose now that T is, as a distribution on 2K9 the boundary
value from the open convex cone C of a single analytic function T'(z)
which has a power bound of type (38) [see Section 2b)].

We show below that this respresentation holds equally well for
functions φ' and φ" in L2, at least from certain directions in the cone C.

We denote by x' and x" the subsets of variables associated with
φ' and φ" respectively. Let φ' and φ" have their supports in sets K' and
K\ with K' x K" smaller than K, and let χ(x) = χ'(x') /"(*") be a function
of @p+q that has its support in K and is equal to one over K' x K". We
denote by Tx the functional:

Using the same methods as in Subsection a) and then the con-
volution theorem [23], one gets [see end of Subsection d)]

,
-'.«"-o (44)

= lim f ί» φ'( - v') φ"(- υ"} exp( - £fii (i j) dv ,

where ε' = εί -f ε'2 (resp. ε" = εj -f εj), the ε, are the components of the
vector ε(ε', ε") and Tx(v) is the Fourier transform of the distribution T*. It is
thus an infinitely differentiable function and it is bounded by virtue of (41).

On the other hand, using the methods of Chapter IV 3 a), one shows
that T χ(v) has a uniform rapid fall-off in all directions of a cone C+

that is arbitrarily close to the polar cone of C. We write correspondingly

f*(v) = Θ(C+) f*(v) + (1 - Θ(C+)) T*(v) ,

where 0(C+) is one inside C+ and zero otherwise.
The contribution T{(φ',φ") associated with the second term is

easily evaluated: by virtue of the fall-off of (1 — Θ(C+)) fχ(v)9 one can
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take the limit ε->0 inside the integral and obtain, using again the con-
volution theorem,

Tf(φ', Ψ"} = J Tf(x) φ'(x) φ"(x") dx , (45)

where Tf (x) is the Fourier transform of (ί—θ(C+))Tx(v) and is thus
infinitely differentiable.

The contribution Tf(φ'9φ") associated with the term θ(C+)T*(v)
is then well-defined in the ε->0 limit. We show below that it is equal to

Γf Op', φ") = lim f Tf(x + iε) φ'(x') φ"(x") dx , (46)

where (i) Tf(x + iε) is the Fourier transform of θ(C+)f*(v)e~ε'v and
is thus analytic in the polar cone of C+ - which is arbitrarily close to
the original cone C; (ii) besides the condition εt»0, the direction
ε along which the limit is taken is required to satisfy

^°> (47)
εV'^0, { '

for all v in C+.
To prove (46), consider a given direction ε which satisfies (47) and a

coordinate system in which the first axis in t/ space (resp. v" space)
is along the direction *? (resp. ε"). Then υ( = |t>i| and v'[ = \v'[\. Since the
function Θ(C+) T x(v) exp - [εi v( H-εX] still belongs to L2 by virtue of
the term θ(C+\ one can move to inside the integral in (44) the limits
when all other εf->0. Fourier transformation then gives the result (46).

Inserting (46) into the original representation, one obtains the distri-
bution equation

T$(x) = lim [r (x + iε) - Tf(x + iδ)] ,
ε-»0

where Tξ(x) is infinitely differentiable. Then the lemma of Section 2d)
insures that this result holds also in the pointwise sense. The result
stated at the beginning of this subsection then follows.

Applications. We admit here, as in Chapter IV 3 c), the following
boundedness condition for the 5-matrix:

|S.m(V*ΦJI^IvJIΦ«l (48)

for any ψn and φm in L2(R3n) and L2(R3m) respectively.
It is then easy to construct a similar bound for the scattering function

T(q) itself with respect to L2 functions in the variables qin and qf respectively :
one simply takes special wave functions that depend only on the variables
qin and qf except at large distances from the points that satisfy the mass-
shell constraints.
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The same proof holds with only a slight modification for the product
of T with the function e~γτμ(q) J(q) and the result described [in Sub-
section b) above] then justifies the use of the representation
T = lim Tς for all square integrable wave functions [of compact support]

ε->0
and in particular for the "sharply cut" wave functions of Chapter IV 3 c).

A final remark: the proof of Subsection b) just above is similar to the
proof from macrocausality [1] that the scattering function is, as a distri-
bution, the boundary value of an analytic function; then φ is in 2 and
φ(v) thus has a rapid fall-off. In that case, the limit ε-»0 in (44) can then
be taken inside the integral and a factor e~εv can be reintroduced for
the term Tf for any ε such that εv > 0 for all v in C+.

(c) Proof of (29).

* S[χJ/ξ] .

The second line follows from Ref. [24], since Tχ J has compact support
and the last line follows from [23], since Tξ is in 5 '̂ and χJ/ξ is in
the dual of Φ'C9 the space ΦM of infinitely differentiable functions with
slow growth.

For (44), one uses the converse theorem that for T in O'c and U in ϊf'

Appendix II. Exponential Fall-Off and Analyticity

If a function F(v) has a uniform exponential fall-off,

W9 (49)

then its Fourier transform F(q) is analytic in the domain \lmq\ <α for
all values of Reg.

The result of Chapter IV 2 constitutes in some sense a generalization
of this result to the case when F(q) is not analytic for all real values of
Reg. The exponential fall-off then refers to the function

Fy(Ό) = J F(q) e~iqv <r*H*<«> dq , (50)

where y is positive, μ(0) = 0, μ(q) is positive for q real and is analytic
at q = 0.

The analyticity of the distribution F(q) at q = 0 follows from the con-
dition (11). Our proof can be carried under slightly weaker conditions,
but it depends crucially on the fact that the constant of exponential fall-
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off of Fy(v) is proportional to γ for small y, and on some fall-off condition
for y = 0 (see Appendix IV).

In the special case when q and v are one-dimensional variables, the
analyticity of F(q) at q = 0 follows simply from a condition of exponential
fall -off of F(v) at a given value of y (for instance, y = 1). The question thus
arises whether this stronger result can be obtained also in the many-
dimensional case.

A proof in the one-dimensional case is given below. It makes use
of the fact that any distribution F(q) is a sum of boundary values of two
functions analytic in the upper half plane and lower half plane respectively.
The analogous result when q belongs to Rl is that F(q) is the sum of 2l

boundary values of analytic functions in corresponding domains. We
have tried to use this to generalize the one-dimensional proof but have
not succeeded. Neither have we found any counter example. Thus we
do not know whether our stronger conditions are actually necessary.

One-Dimensional Case. Consider the function

F(v) = J F(q) e~iqv e~^μ(q) dq , (51)

where μ(q) has the properties stated below (50). We suppose for simplicity
that the distribution F(q) has a compact support, but this condition could
be weakened. The function F(v) is supposed to fall off exponentially in
the ϋ-> +00 limit.

Define the functions

G+(q)= ] F(v)eiqvevμ(q)dv; (52)
o
o

G_(q)= J F(v)eiqve~vfl(q)dv. (53)
— oo

It is clear that G+ and G_ are analytic in the intersection of a neigh-
borhood of the origin with the domains:

α, (52')

α, (53')

where α is the constant of exponential fall-off.
Both domains contain the origin.
Consider, on the other hand, the function G+ (q) itself, and suppose

first (see below for contrary case) that F is a continuous function. Then
one has, from (51) and (52),

G+ (q) = J dv J F(q') ei(q~q')v <««> -*«'»» dq' .
o
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The integrand is absolutely convergent in the domain

Reμ(<?) - Imq < 0 .

By changing the order of integration in that domain, we obtain

G+ (q) = f F(q') Rq - q') (i + ρ(q, q'^dq', (54)

where we have used the equality

Q(q,q')(q-q') (55)

The function G+(q) defined by the above integral is analytic in a
neighborhood of the real axis with the exception of a cut along the real
axis itself.

Consider the values of G+ (q) at q + i ε and q — iεforq real and μ(q) < α.
It is easy to show that

+ (q + iβ) - G+ (q - ie)] =

Since G+(q) is equal to G+ above the cut, it can be analytically
continued into the domain defined by (52'). F(q) thus appears as a
boundary value of a single function H_(q) analytic in the intersection
of the lower half plane with a neighborhood of the origin.

Using G_(g), one can similarly show that F is the boundary value
of a function H + (q) analytic in the intersection of the upper half plane
with a neighborhood of the origin.

The edge of the wedge theorem [8] then guarantees that F is itself
analytic in the neighborhood of the origin.

If F is not known a priori to be a continuous function, but is a distribu-
tion, then it is equal to some derivative of a continuous function C:

JΎ (57)

That is,

G+ (q) = i dv f C(q') -^ |V<«-«> e<"<«> -«<«'»»] dq' . (58)

It is still easy to show the absolute convergence in the domain
Reμ(<?) — Imq < 0, and G+ (q) is then equal to

+ (q) = f C(q') dq' -~ [_(q -q') (i + ρ(q, q')J] ~ 1 , (59)
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which is also analytic in a neighborhood of the real axis with a cut
along the real axis.

It is still possible to show that (56) holds in the sense of distributions:

ί c(«)--(φ(9))dq = lim [G+fe + ie)-G+(q-iβ)](1 -fρfe q)φ(q)dq)

(60)

for any test function φ in Q), and the end of the proof is unchanged,
since the edge of the wedge theorem applies equally well to distributions.

Appendix III. Fall-Off Properties of Space-Time Wave Functions

Consider the wave functions (8): φ(yτ)(p) = χ(p)e~(p~p)2yτ where
χ is analytic in a neighborhood of P and 7 is positive. We study in this
appendix the fall-off properties of the space-time wave functions defined
in (6).

We shall adopt the notation /(x) for either one of the functions /
or φ and the notation χ(p) for the function χ(p)/2p0 or χ(p)/(2po)1/2

respectively.
We prove the exponential fall-off of/(uτ) in the τ -+ oo limit for a given

4-vector u that is not parallel to P ((P2 + m2)1/2, P), and the precise
bound of (9)

If we use the variable q=p — P and denote from now on by χ(q)
the function χ(P + q) \_l(q) is analytic at q = 0 in either case], we can write:

/(«τ)W<p">*fχ(g)exp(-τ[f2^

(61)

Consider, for any positive α, the set of surfaces ΣΛ in the space of
complex q:

Re[<,2y - %« - u0[((P + q)2 + m2)1/2 - P0])] = αy . (62)

The intersection of Σa with the space of real q is the sphere Sa:q
2 = a.

If it is possible to find on ΣΆ a 3-dimensional surface Lα bounded by Sα,
continuous in α, closed and bounded and lying in the domain of analyticity
of χ [and of ((P + q)2 + m2)1/2], then f(uτ) is easily seen to have an ex-
ponential fall-off e~Λyτ in the τ->oo limit: to see this, divide the region
of integration over real q into the two parts |#|2>α and |0|2<α. The
contribution of the part \q\2 > α has the fall-off e~Λyτ because of the pres-
ence of the gaussian in the integrand. The contribution of the part \q\2 < α
is evaluated by distorting the contour to the position Lα. The fall-off
e~α y τ is thus obtained.

4 Commun. math. Phys., Vol. 14
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We will not determine here the maximum value of α for which the
properties required on ΣΛ are satisfied21, but will prove the existence of a
positive α independent of y such that the surface Γα satisfies these prop-
erties for all y smaller than or equal to y0.

We denote by jc and y the real and imaginary parts of q, and choose
a coordinate system in which the first axis is along the direction of the
vector d = u- (P/P0) u0.

Consider the surface Lα obtained by setting y2 = y$ = 0:

ίy(jc2 — y2) + dyί —uQ Im[φ(jc + ij)] = α y .
^α'

where

Γo
If we use the new variables (jc, zί = yjy\ (63) becomes

x2 - y2 z2 + dz1 - UQ z1 ψ(x, y zj = α, (64)
where

the function (^(yz^) being of the first order in yz x .
Choose α sufficiently small so that \u0ψ(x, 0)| <d for |x|^J/α.

[This is possible since tp(0,0) = 0.]
For y = 0, (64) defines explicitly zί as a (positive) function of x in the

region |jc| ̂  |/α. By virtue of the implicit function theorem, this equation
also defines z implicitly as a function of x in that region, provided y
is sufficiently small22. We denote by y0 any strictly positive number such
that zt(jc) is unique and continuous in |x[:g]/α for y ̂ y0

The surface Lα in the region |jc| ̂  j/α is thus closed and bounded.
If α is chosen sufficiently small, then all the surfaces Lα for y ̂  y0 also
lie in the domain of analyticity of χ (and of ((P + q)2 -hm2)1/2), and
f ( u τ ) has thus the exponential fall-off e~α y τ_for y ̂ y0.

Consider finally a set of χ that have a common support in the region
\q\ ̂  1 and a common upper bound K for q either real or in the complex
domain lying between the surfaces {q real, \q\ ^|/α} and Lαyo.

21 In nonrelativistic quantum mechanics, where the factor ((P + q)2 + w2)1/2 is re-
placed by (P + 0)2/2w, this maximal value is

(ιι-(P/m)«0)
2

(X =

V2-Ku0/2m)2

(if the domain of analyticity of χ is sufficiently large).
22 It is sufficient to show that (d/dzj Fy(x, zj is different from zero for |jc| ^]/α on

F = α, where F denotes the left-hand side of (64). It is different from zero for small y because
(d/dzj Fγ is a continuous function of y and zί and (d/dzj F0 = d — u0ψή=Q.
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The above argument then gives the bound

\f(uτ)\<Ce-"*9. (65)

where C = K(AΛγo + A')9 where AΛγo is the area of Lαyo (in the region
|jc| ^]/α), and A' is the area of \q\ g 1.

The choice of coordinates q = p — P is not important. Consider, for
instance, the special coordinates qf such that qΊ=u(p — P\ and q^q's
are some two of the components of q. For an appropriate choice of
these two components, the Jacobian d(q')/d(q) is different from zero
in a neighborhood Jf of the origin, since u is not parallel to P.

The methods of this appendix are easily adapted to the above co-
ordinates; the internal part around q' = 0 is chosen to lie in Jf, and the
surface Γα is now simply

where μ(q') = q2.
These coordinates q' are precisely those that can be used, on the

other hand, to show the rapid fall-off of f ( u τ ) in the case y = 0, if u does
not belong to the velocity cone of χ and if χ belongs to 2 (Ruelle's lemma).

We conclude with some remarks useful in adapting the methods
of this appendix to the problems of Chapter IV 3.

(i) The choice of y1 along the direction of d = u — (P/P0)u0 is not
important. It can be chosen along any direction df such that dd'ΦO.
If dd' > 0, then yί is still a positive function of jc for small y.

(ii) in the proof given above, we placed the contour along Lα(y)
[see (63)]. We may, instead, keep the same Lα(y0) for all y ^ y 0 The
relevant quantity

is equal on Lα(y0) to αy plus the term

y (dyί-u0lmφ)9

which is positive or equal to zero, for small y. . Consider now the set
of surfaces Lα(y0), where α^αrgo^. These surfaces do not intersect
each other for y0 sufficiently small, and their real bases are the spheres
\q2\ = α. Consider a real domain 2 that lies between the domains \q\2 < αx

and \q\2 <α2. If we divide the domain of integration over real q in (61)
into an internal part in 2 and an external part outside 2, then we may
use any distortion 2' of 2 that lies between Lαι and Lα2, and the methods
of this appendix will yield a fall-off e~aιyτ for y^y 0 The domain Jf
of Chapter IV, Part 3, can be taken to be a domain 3i of this type, and Jf'
can be taken to be of the type 2'.
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Appendix IV

1. Contribution of the Surface \υ\ = R in the R-+CO Limit

From (24), the term associated with the surface \v\ = Ris

F?(q) = - lim Γ*'-1 J at dΩvv [H(β, υ, t) έ* *<"<%, , (66)
Λ~*°° I 0<t<y0R J

where / is the dimension of the g-space (/ = 3(m + n) — 4).
This immediately entails that

IFfte^limfa'-1 j άtέ** Max |fl/ί,ι;,ί)|N=Λ] (67)
*-*°°L 0<t<y0R J = l , 2 , . . . , / J

up to a constant which is the product of / times the surface of the unit
(/— l)-dimensional sphere.

To show that the limit of the right-hand side of (67) is zero, we use
the following fall-off properties of the components of H(q9 v9 1):

(i) Eq. (1Γ) and the remark at the end of Chapter III 2 [together with
the definitions (13) to (15) and (23)] yield the bound:

\Hj(q9Ό9γ\Ό\)\<Ce-Λ^^ (68)

for Orgy rgy0, where C can be chosen independent of 7, v9 y and q for q
in β [see (20)].

(ii) The function F(q') Qj(q9 q') Q~tμ(ql) belongs to 2 as a function of q'.
This yields a uniform rapid fall-off of the components Hj of H in the |u| -> oo
limit, for fixed ί:

\Hj(q, v, t)\ £ ̂ ±ί} (69)

for any positive integer N.
The dependence of CN on t can be exhibited explicitly, as we now

show in the case N = 0 and N = 1.
For N = 0, one immediately obtains

\Hj\ < j \F(qf) Qj(q, q')\ dq' = C0(qJ) . (70)

For N = 1, we use the equalities

ί e~ίq "w LF(qf) e~tμ(qΊ Qj(q* ̂  dq'
Ί e~tμ(qf) Qj(q* qf}] dqf
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which holds because F is infinitely differentiable with compact support,
and

Since (71) is valid for all i, it is easy to see that

j , .

Repeated application of this argument yields the bound

(73)

\Hj(q,v,t)\< (74)

where C(

0

N) and CN are independent of ί and v and can also be chosen
independent of j and q for q in $.

Consider any fixed q inside the domain S and denote the positive
quantity α — Reμ(#) by β. We define t(R) by

(75)

and divide the domain of integration over t in the integral of (67) into
the parts 0 < ί < t (R) and t (R) <t<y0R.

The contribution of the region t(R) <t<y0Ris bounded [using (68)]

CR

yo-R

ι-ι I

t(R)

Since e βt(R} = Rl, this contribution vanishes in the R-+OO limit.
The contribution of the region 0 < ί < t(R) is bounded [using (74)] by

t(R)

RN

If we choose AΓ^/{1 + [μ(q)/β]}—l9 this contribution also vanishes
in the £-> oo limit. Hence FR ->0.

[This argument is only slightly changed if (1Γ) is replaced by the
weaker (12): / is replaced in (75) by / plus the degree of ^(τ).]
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2. Contribution of the Boundary of C

This contribution is

F( 9 )=-limΓ J at \ dI,(V)-\H(q,v,t)e'^el^vJ, (76)
Lθ<t<y0R (t/γo)<\v\<R J

where c is the boundary of C (or C+) and dΣ? is the corresponding
surface element.

We show that the integral on the right-hand side of (76) is absolutely
convergent for q in the intersection of δ and the polar cone C of C+.
This will imply the analyticity of F(q) in that domain. Eq. (68) is valid
for q in δ and v in c, since the directions of v in c are by construction not
causal. Thus the integral of the absolute value of the integrand is bounded
up to a constant by

ί ••"*!•
ί>0 vec vec

The polar cone C is defined by the condition that lmq-v>0 for all
q in C for all v in C+. The inequality holds also for v on the boundary
c of C+ for q inside C. The integral is therefore absolutely convergent
for any q in C, and uniformly so for q in any compact set lying in the
interior of C.

We must finally show that the infinitely differentiable function
F(q) defined for real q by (76) is the limit of the analytic function defined
by the same integral but with q in C. To show this, we divide the domain
of integration into the regions 0<ί<ί(|ι?|) and 't(\v\)<t<γ0(\υ\),
where t(\v\) = lβ~1ln\v\. Using the same methods as in the preceding
section one then shows that the integral is absolutely and uniformly
convergent in the closed cone C. The limit of the integral is therefore equal
to the integral of the limit.
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