Commun. math. Phys. 14, 13-14 (1969)

A Remark on a Paper of J. F. Aarnes

ROBERT R. KALLMAN*

Mass. Institute of Technology, Cambridge

Received April 28, 1969

Abstract. Let \mathscr{A} be a C^* -algebra on the separable Hilbert space \mathscr{H} , and let \mathscr{R} be the von Neumann generated by \mathscr{A} . Let G be a topological group and $a \rightarrow \varphi(a)$ a representation of G into the group of *-automorphisms of \mathscr{A} . Suppose that each $\varphi(a)$ extends to a *-automorphism of \mathscr{R} , and suppose that $a \rightarrow \langle \varphi(a) (T) x, y \rangle$ is continuous for each T in \mathscr{A} and x, y in \mathscr{H} . Then, for a large class of groups G, one has automatically that $a \rightarrow \langle \varphi(a) (T) x, y \rangle$ is continuous for all T in \mathscr{R} and x, y in \mathscr{H} .

Consider the following setup. Let \mathscr{A} be a C^* -algebra (with identity) of operators on the Hilbert space \mathscr{H} , and let \mathscr{R} be the von Neumann algebra generated by \mathscr{A} . Let G be a topological group, and let $a \rightarrow \phi(a)$ be a representation of G into the group of *-automorphisms of \mathscr{A} , denoted by Aut*(\mathscr{A}). Suppose that $a \rightarrow \langle \phi(a)(T) x, y \rangle$ is continuous on Gfor all T in \mathscr{A} and x, y in \mathscr{H} , and suppose that each $\phi(a)$ extends to a *-automorphism of \mathscr{R} (which we also denote by $\phi(a)$). One may easily check that the group property $\phi(ab)(T) = \phi(a)(\phi(b)(T))$ still holds. Question: Do we have that $a \rightarrow \langle \phi(a)(T) x, y \rangle$ is continuous on G for all T in \mathscr{R} and x, y in \mathscr{H} ?

This question was elegantly answered in the affirmative by J. F. Aarnes in [1] under the assumption that $(a, T) \rightarrow \phi(a)(T)(a \text{ in } G, T \text{ in } \mathscr{A})$ satisfies a mild joint continuity condition. The purpose of this paper is to prove the following theorem, which roughly states that the continuity of the representation of G into Aut*(\mathscr{R}) is automatic under certain circumstances.

Theorem. Let G, \mathscr{A} , \mathscr{R} , $a \rightarrow \phi(a)$, and \mathscr{H} be as above. Suppose \mathscr{H} is separable and the topology of G is given by a complete metric. Then $a \rightarrow \langle \phi(a)(T) x, y \rangle$ is continuous for all T in \mathscr{R} and all x, y in \mathscr{H} .

We remark that this theorem has wide applicability since the topology of every separable locally compact group is given by a complete metric. See Dixmier [2] for the elementary facts about von Neumann algebras used in the following proof.

Proof of the Theorem. Let T be in the unit ball of \mathscr{R} . Choose a sequence $T_n \ (n \ge 1)$ such that T_n converges strongly to T as $n \uparrow + \infty$. The Kaplansky

^{*} Supported in part by NSF Grant GP-9141.

density theorem implies that such a sequence exists since \mathscr{H} is separable. Let $[x_i | i \ge 1]$ be a dense sequence in the unit ball of \mathscr{H} . Since each $\phi(a)$ is in Aut*(\mathscr{R}), each $\phi(a)$ is continuous in the weak operator topology on the unit ball of \mathscr{R} . Hence $\langle \phi(a) (T_n) x_i, x_j \rangle \rightarrow \langle \phi(a) (T) x_i, x_j \rangle$ as $n \uparrow + \infty$, for all a in G and $i, j \ge 1$. Now, for each $n \ge 1$, $a \rightarrow \langle \phi(a) (T_n) x_i, x_j \rangle$ is continuous on G. Hence, Osgood's theorem (see Kelley, Namioka, et al., [3], p. 86) implies that $a \rightarrow \langle \phi(a) (T) x_i, x_j \rangle$ is continuous on a set of second category, say S_{ij} . Since the topology of G is given by a complete metric, $S = \bigcap_{i,j \ge 1} S_{ij}$ is also a set of second category. Since the topology of G

is given by a complete metric, S is nonempty. Choose an element b of S. Let w and z be in the unit ball \mathscr{H} . Let $\varepsilon > 0$. Choose x_i and x_j such that $||w - x_i|| \le \varepsilon$ and $||z - x_j|| \le \varepsilon$. Easy estimates show that $|\langle \phi(a)(T)w, z \rangle - \langle \phi(b)(T)w, z \rangle| \le 4\varepsilon + |\langle \phi(a)(T)x_i, x_j \rangle - \langle \phi(b)(T)x_i, x_j \rangle|$. Hence, $\langle \phi(a)(T)w, z \rangle \rightarrow \langle \phi(b)(T)w, z \rangle$ as $a \rightarrow b$, for all w, z in \mathscr{H} . Let c be arbitrary in G and let $a \rightarrow c$. Then $bc^{-1}a \rightarrow b$. Hence, $\phi(bc^{-1}a)(T) \rightarrow \phi(b)(T)$ in the weak operator topology. But $\phi(cb^{-1})$ is an element of Aut*(\mathscr{R}), and any *-automorphism of \mathscr{R} is continuous in the weak operator topology on the unit ball of \mathscr{R} . Hence, $\phi(a)(T) = \phi(cb^{-1})(\phi(bc^{-1}a)(T)) \rightarrow \phi(cb^{-1})(\phi(b)(T)) = \phi(c)(T)$ in the weak operator topology as $a \rightarrow c$. Q.E.D.

Bibliography

- Aarnes, J. F.: On the continuity of automorphic representations of groups. Commun. Math. Phys 7, 332–336 (1968).
- Dixmier, J.: Les algèbres d'opératuers dans l'espace Hilbertien. Paris: Gauthier-Villars 1957.
- 3. Kelley, J. L., I. Namioka et al.: Linear topological spaces. New York: van Nostrand 1963.

Robert. R. Kallman Department of Mathematics Mass. Institute of Technology Cambridge, Mass. 02139, USA