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Abstract. It is shown that, in theories of exactly localized observables, of the
type proposed by ABAKI and HAAG, the reaction amplitude for two particles giving
two particles is polynomially bounded in s for fixed momentum transfer t < 0.
The proof does not need observables localized in space-time regions of arbitrarily
small volume, but uses relativistic invariance in an essential way. It is given for
the case of spinless neutral particles, but is easily extendable to all cases of charge
and spin. The proof can also be generalized to the case of particles described by
regularized products

/ φ(xl9 . . ., xn) φι(x - xj . . . φn(x - xn) dxt... dxn

of WIGHTMAN or JAFFE fields.

Introduction

This paper studies two-particle reaction amplitudes in a theory of
local observables of the type proposed by ARAKI and HAAG [1—4]; it
shows that, for fixed momentum transfer t < 0, such amplitudes are
polynomially bounded functions of s (square of total energy in centre-
of-mass system). In ordinary field theory, the proof of this well-known
result uses in an essential way the assumption that the vacuum expec-
tation values of the fields behave polynomially at infinity. Although,
this assumption seems very reasonable, and is believed to be verified
in renormalizable theories, it is satisfactory that the result can be derived
from the independent hypotheses of the Araki-Haag theory. Such a
theory could exist without fields in the ordinary sense, but it can also
be considered as underlying any conventional field theory where local
observations are possible (perhaps as a consequence of the self-ad joint-
ness of some smeared field operators). The framework of a theory of local
observables can be briefly described as follows:

1. The physical state vectors are elements of a Hubert space 2/f in
which operates a unitary, weakly continuous, representation of the
Poincare group &\. denoted by (a,Λ) -> U (a,Λ), with U(a, 1) = exp iaμP

μ.
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The momentum operators Pμ are supposed to have their spectrum in
F4", the closure of

There is a vector Ω (with ||β|| = 1), unique up to a phase factor,
such that, for all (a, A) ζέP+ , U(a,Λ) Ω = Ω (vacuum) all state vectors
orthogonal to Ω have masses larger than a certain strictly positive
minimum mass m0 > 0.

2. To each1 open set 0 in R4 (= Minkowski space = space- time) is
associated a von Neumann algebra jtf(Φ), consisting of bounded opera-
tors acting in J>ίf9 with the following properties

a) if 0J C 02 > ^en sί(0^ C ̂ (#2) ί
b) if 0J and 02 are spacelike separated (i.e., if x1 ξ Θl and x2 ξ 02

=Φ (x1 — #2)
2 < 0), then ^(Φ^) and ^(Φz) commute;

c) for every open Φ and every (a, A)

Ό(a,Λ)s/(0) U(a,Λ)-1

d)
'

ΛAbounded

is dense in «#".
These algebras are called "algebras of local observables". An operator

belonging to 30 (Θ) with Φ bounded is called a local operator and is said
to be localized in Φ.

A local ABAKI-UAAG field will be defined, in this paper, as a function
x -> A (x) from R4 into &(3t? ) such that

A ( x ) = U(x, l ) A ( 0 ) U(x, I)-1

and A (0) ζ J/ (ί?) for some bounded open (P.
3. The representation £7 is reducible. In particular there are four

closed subspaces ^f j of 3? > with projectors Es(\ ^ / ^ 4), invariant
under C7, such that the restriction of U to Jf ,- is irreducible, with mass
πij > 0 and spin zero. ̂  is associated with a neutral2 stable particle
labelled j(l ^ j ^ 4). We assume that there are four local AEAKI-UAAG
fields {^;}ι^;^4 such that:

(β, Aj(0) β) = 0; ^^-(0) β Φ 0; (1 - Es) Aj(0) Ω

has a mass spectrum ^ Jf j > m^ .
Remark. Note that these conditions imply that the states of the form

Λ) U(a,Λ)Aj(Q)ΩdadΛ
1 Actually, it would be sufficient to ascribe an algebra of local observables to

each element of a collection ^ of open sets such that: Θ C # =Φ a + A 0 £ ̂  for
all (α, /I) ζ ̂ | and containing some bounded open sets.

2 We consider neutral spinless particles for simplicity, but the generalization
to arbitrary charge and spin offers no difficulty.



Polynomial Behaviour of Scattering Amplitudes 259

where ψ is a °̂° function with compact support on 3P\., (dΛ being an
invariant measure on L\.) are dense in 3?$ (since any vector is cyclic
for an irreducible representation).

Starting from these assumptions, it is possible [1] to apply the
HAAG-RUELLE collision theory, and to define asymptotic states and
asymptotic fields φj lτί and ̂  0ut f°r ^he particles j(l ^ j < 4). Under
these conditions, the S matrix is LORENTZ invariant ([!]).

In particular the reaction amplitude for

particle 3 with momentum — pΛ ( particle 1 with momentum p^

+ particle 4 with momentum — p^ j-f particle 2 with momentum p2

is an invariant distribution T(pl9 p%,pΆ, p&) defined in

4

> PZ> PZ> p*: Σ Pi = 0; pf = mf> ( i ^ j ^ t y piζ F+,

and it can be computed by means of a reduction formula [1]:

Γ 4 1
Pi) = Π(pf - mf) rι(Pι> •» ί

ϋ = ι J
where

Ί(P)*( Σ:
V - i

P

The summation is over all permutations P of 2, 3, 4. The presence of
the function α (defined in Section I) is due to the fact that, for technical
reasons, we use regularized step functions in this paper. It is not necessary
to do so in a theory of local observables, and the reader can banish α
from his mind for the moment.

The "retarded function" r± is actually a tempered distribution
defined on

\,:Σ
( j = ι

The fact that

can be restricted to the mass-shell manifold {p:p% = m%,I ^ k <ί 4} is
one of the most important results of the asymptotic theory. But it can
also be understood by studying the analyticity properties of r[. The
18*
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latter is indeed the boundary value of a function H', holomorphic in a
certain domain. This domain (the full extent of which is yet unknown)
is the same in a theory of local observables and in a Wightman, or
L.S.Z., field theory. (In particular, it is invariant under the complex
Lorentz group, even though r[ and H' are not invariant and have no
simple covariance properties.) As a consequence, all the analyticity
properties which, in ordinary field theory, can be obtained by geometrical
means (Lehmann ellipses, cut plane in s for fixed ί, etc.) remain valid
here. There is, however, an important difference: while in ordinary
field theory, H' is polynomially bounded, at least in the initial domain
where it is given, in the case we consider here, it grows exponentially
in complex directions.

The second important difference with ordinary field theory is the
occurrence of the "intrinsic wave functions" f} in the left-hand side of
the reduction formulae. They are defined on the hyperboloids {p^: pf = mf}
and given by

Ω) for p» > 0 ,

- p) Ω) for p» < 0 .

It is well known, [2, 5], that they have analytic continuations on the
whole complex hyperboloids {k3 ξ C4: kf — mf}. Because they can be
shifted by applying real Lorentz transformations to the operators Aj(Q),
it is clear that their zeros do not introduce singularities in T. However
they are the source of one of the difficulties in finding the growth pro-
perties of T.

We now describe briefly and heuristically the contents of this paper
the reader who is not interested in technicalities can read this outline,
the conclusion and Appendix 3, and dispense with the rest.

Let F(s, t) be the expression of T(pl9 . . ., p±) on the mass shell in
terms of the invariant variables s = (p1 + p2)

2 and t = (pl + £>3)
2. It has

been shown in [6] that, for t < 0, F (s, t) is analytic in s for Im s =j= 0
and \s\ > R(t), i.e., in a cut plane with the exclusion of a large, but
finite disk. We first follow the proof of the corresponding analyticity for
H', and try to find bounds on the growth of this function at each step.
A good part of the effort is devoted to circumventing a totally unessen-
tial difficulty: because the retarded functions are distributions, and not
smooth functions, the function H' grows, at finite distances, like an
inverse power of the distance to the boundaries of this domain. The
remedy is to use, instead of H', a high order primitive of this function,
which is continuous at the boundaries, but, at the end, we have to
rediίferentiate it to obtain bounds on H'. How to obtain such primitives
is explained in Sections I and II. Just as in [6], we study the restrictions
of H' to a certain submanif old V (t) (defined in Section II). This restriction
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is analytic and obeys exponential bounds in certain tubes contained in
i^(t). It is first necessary to obtain the bounds satisfied by H' in the
domain obtained by applying complex Lorentz transformations to these
tubes; this question is answered in Appendix 2. The estimates then pro-
ceed in a rather pedestrian way and the outcome is the following.

We consider the restrictions of H' and fj (p^) to a certain submanif old
of the complex mass shell (in which, in particular, t is fixed) and denote
G(w) and <PJ(W), respectively, the expressions of these restrictions in

terms of a variable w = s -\ — ~- + b(t). We find that G is analytic in

{w : Im w > 0, w\ > R" (t)} and that (omitting growth near the boundary
at finite distance), for some I > 0,

1. I G(w)\~c(t)elW11' at infinity;
2. |6?(w)| is polynomially bounded in a half strip along {w real,

w>R"(t)}.
We study the ' 'intrinsic wave functions" fs and conclude that for

a proper choice of -4^(0), φ$(w) is an entire function of w such that,
(for a certain Γ > 0), \<pj(w)\ < cf (t) ez'M1/2. Using the possibility of
replacing the fields A3 (x) by fields As(x\Λ) = U(x)Λ)Aj(0) U(x,Λ)~l

(for real A ££+), we then prove that T(w) [the expression of F(s, t)
in terms of w, for fixed t] is tempered along the real axis. Let

4

and (for sufficiently large L)

E(w) = T(w) --^ ί Ύ,L™} C W
v ' v ' Z π i J WL(W —w

& being the contour following the real axis for \w\ > B" (t) and the
semi-circle {w: \w\ = Rn ' (t), Im w ^ 0}.

Then E is an entire function as well as φ(w) E(w). But

G(w) - (2πi)~lwLφ(w) ί ^?^\V / V / Ύ V / J W'L ̂ w' _ w)

so
\φ(w)E(w)\ <C"(t)el"W\

Now, by theorem A 3.1 of Appendix 3, if the quotient of two entire
functions of order 1/2 is an entire function, then it is also of order 1/2.
Hence E is of order 1/2. But E is polynomially bounded along the real
axis, so that, by the Phragmen-Lindelόf theorem, it is polynomially
bounded everywhere, i.e., it is a polynomial. Hence T is polynomially
bounded.
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I. Generalized Retarded Functions

1. Definition

Let ^(0), ^a(O), ^43(0), ^.4(0) be four bounded operators in 3F
belonging to the algebra of local observables attached to the following
region of Minkowski space :

{aφΊ + H < Z0/2}

We define the "Araki-Haag fields" A}(x) by

A,(x) = U(x, 1) A^Q) U(x, l)-ι 0' = 1. 2> 3> 4)

The Wightman functions associated with these fields are defined by

&P(x) = (Ω, APl(xPl) . . . AP,(xPί) Ω}

where P is any permutation of 1, 2, 3, 4. They are bounded and contin-
uous. Their Fourier transforms ^P(p) are given by

ft)
7 = 1

or

x1 -x^ . . .d'(z,-xt)

The generalized retarded functions (g.r.f.) will be defined with the help
of a fixed set of regularized step functions (chosen once and for all in
this paper and independent of the choice of the Aj) by the following
rule:

in the usual definition of the g.r.f. (formal in the case of a Wightman
theory, legitimate in the case of Araki-Haag fields) each g.r.f rs(x) is
obtained as

p

where the sum extends over all permutations of 1, 2, 3, 4, and the χStP

are the characteristic functions of certain open sets (these open sets
are the intersections of finitely many half spaces) they depend only on
the time components xf — x% .

In the definition to be used in this paper, each χSfP will be replaced
by its regularized α * χStP

rs(x)=Σ(**χsp(x°))^p(x) (1)
p

αo(*2 - *ί°) XS.P(*'°)

dx^ (2)

where α 0ζ^(R) is chosen once and for all and: 0 <£ α0 ̂  1; ocQ(t)

= α0(— 0; SUPP <^o ̂  t~ tιl%> ^ι/2]; f &o(t) dt = 1. In all that follows,
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Zj is to be regarded as a numerical constant, never to be changed; nor
will the function α be changed. On the contrary Z0 and the choice of the
operators Aj (x) will vary.

Note. — If χ is of the form χιχ% where χ1 and χ2 are characteristic
functions, note that α * χ φ (oc * χj) (α * χ2). However, we have

supp(α * χ) = suppα + suppχ == suppα + (slippy n suppχ2)

C (suppα + supp;^) A (suppα + supp#2)

= supp {(α * fc) (α *

This remark is of some help in finding the support of the g.r.f .
By following the argument leading to the support of the usual g.r.f.

(see for example [7]) it is easily found that, for any permutation /, k, I,
m of 1, 2, 3, 4, one has (in the notations of [7, 8]):

support of dm(= j f k f Z f m) — — support of rm

= {x:xr - xm £ V+ - c, r = , Ic9 ΐ}\

support of dmj(= j \k\ I \ m) = — support of rmί (3)

= {x:xk - xmζV+ - c)xl~xmζV+ - c, xk - xj ζ F+ - c}

\j {x:xk - xm£V+ - c, xl - xm ζ V+ - c, xl - xj ζ V+ - c} .

where c = (α, 0, 0, 0) and a = 9 (ζ -f Z0).
The corresponding tubes of analyticity in momentum space as well

as the Steinmann identities and the coincidence conditions in momentum
space are the same as in the usual case. If we assume that each field Ay

describes the particle labelled j, the scattering amplitudes are yielded
not by the r8 themselves but by

4

% (x) = Π (Παv + w?) fy (x) (4)
f = 1

etc. Also denote
~ 4 ~

The coincidence conditions are

αw? (P) ~~ am(P) = ^ ^ ί̂  < ̂ f )
/ / x / / x Λ •£ / 9x 71^9 ί (5)

amj(P) ~ rl k(P) — 0 it (̂  + £>|) < -ίKt/fcJ

and conditions obtained by exchanging α and r
Steinmann identites:

\ ~ . ~ ~ , ~ / Λ \
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We recall that each g.r.f. rs (resp. r's) is the boundary value of a
function analytic in a tube ^s. All these holomorphic functions are
branches of a single analytic function H (resp. H') with

We also recall [6—8] that, using the local edge-of-the-wedge theorem,
one finds that H' is holomorphic in a primitive domain which is star
shaped with respect to 0 and contains 0. It can also be shown (by purely
geometrical means) that the envelope of holomorphy of the primitive
domain is schlicht, i.e., one sheeted, and moreover invariant under the
complex Lorentz group. This fact was of great importance in [6] and is
equally important for this paper.

2. Eegularization in Momentum Space by Division in x Space

The contents of this subsection will not be directly used in the rest
of the paper. However, the analogous operation for a set of Wightman
functions and g.r.f., in two-dimensional space-time will be used. This
subsection is intended to make the meaning of the procedure clearer
and to stress its generality.

Our purpose is to give a definition of
4

[to - α;2)
2 - A2]~Nr/s, where f ' s ( x ) = /7(D^ + w?) rs(x)

and rs is any one of the g.r.f., the definition being such as to preserve
all the "linear properties" of the r's: support properties in x space,
coincidence properties in momentum space, Steinmann identities. (Here
A2 is a real number > 0.)

Let β and γ be two multi-indices and D&, Dγ the corresponding diffe-
rentiation monomials in the variables xμj(j = 1, . . ., 4; μ = 0, 1, 2, 3).
Denote

An examination of the proof of the support properties of the rs

shows easily that the rSβγ(x) have the same x space supports as the fs

and that this property only uses the coincidence properties of the various

Dvi^P(x) in x space, i.e., the domain of analyticity of their common
analytic continuation Dγw(z). This domain is left unaffected if we
divide D^w (z) by [fo - z2)

2 - A*]N. Indeed the manifold {z : (z1 - z2)
2 = A2}

does not intersect the tube {z:ϊm.(z1 — z2) ζ V+} nor any of its images
under a complex Lorentz transformation. Now the initial tube of ana-

lyticity of any ii^P is contained either in {z:Iro.(z1 — z2) ζ V+} or in
{z : Im (zl — z2) ζ V~} and, hence, is not intersected by the manifold in
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question. If two permuted Wightman functions Dγi^P and Dvi^P> have
their tubes of analytieity in {z:Imfa — z2) £ V+} their region of coin-
cidence is unaffected by the multiplication by [(zl — 22)

2 — A2]~N since
the latter has the same boundary values in either of their tubes. If their
tubes are contained in {z : Im (z1 — z2) ζ F+} and in {z : Im fa — z2) ζ F~},
respectively, then their region of coincidence is contained in {x : (xl ~ x2)*
< 0} where [fa - z2)

2 - A*]~N is °̂°. [We have in fact reobtained the
well-known result : the domain of analytieity of w (z) (and of Dyw (z)) is
contained in the complement of {z: (zi — z,,-)2 ζ 1R+} for any pair ί =j= ?').]

Hence, if we define

these distributions have, in x space, all the linear properties of the
rs(x). The same holds true for

defined in this way and for KN (x) r's(x) defined by appropriate linear
combinations of the KN (x) r^γ(x).

To see the effect of this operation in momentum space, we now
study

R* (x) IT'r (x} = & (x) Π ( Π* + "»?) W~ (*)•

K(z) = [(», - z^

is analytic in the tube of analytieity of ifp \{z — x-\-iy\yP^~ Ί/P(J-I) ζ F+,
j = 2, 3, 4} and satisfies the required conditions to coincide in this tube
with the Laplace transform of a tempered distribution KP(p) with
support in the cone

SP - {p:pPι 6 F-, pP8 + ̂ p4 6 F~, Ppl ζ F+}

On the other hand WP being analytic in the same tube, its Fourier
transform i^P(p) has its support in the same cone SP. More precisely

supp. l^ptSp = {p:p*P± > Jί§>4, p
Q

P4c < 0; (pP4 + pP3)
2

> Jί?P4)(p8), PP4 + PPS < 0; 2^1 > MQ

Pl, pQ

P1 > 0} .
Thus

hence



266 H. EPSTEIN et al. :

We have thus shown that (KP^)Ni^f(p) has the same support
properties as W (p) Using this fact and following the usual argument
yielding the coincidence properties of the r's(p) (in momentum space),
it is easy to see that the (K*)Nr's(p) [as we shall denote, by abuse of
notation, the Fourier transforms of the KN (x) rfS(x)] have the same
coincidence regions, in momentum space, as the r'N, namely (5).

In fact we have

κp(p) = - 4aet(ίMft; A) Jaβttaft; A) ^RetMft + p8); A) >
K%N(p) = (- l^SSteft; A) ΛS£(*2ft; A]

Where λ , Λ. /0 \ 4 r Γ - e*»*d*x
', A) = (2π)-« li

(x _ ίη)t _ A, ,
__

has its support in F+ and satisfies the equation

)= (2π)-4(- l)*lim f

satisfies η€V+

(D, + A*) Alξt(p; A) = A$g-»(p; A) ί or N > 1

Standard computations show that, for ^V > 2, ̂ ^(^ ^4) is a continuous
function (in the whole space) with support in F+; for N = 2 it is a ̂
function multiplied by θ(pQ) θ(p2). For iV ^ 2 we have

In fact 2α
Λ^N/w Λ \ _£_ V£_

^RetVjr ' / ί2ττ^ %^(N 1^ '

and Jtf-z(z)lzN~2 is an entire function of z2 which, for real z, satisfies

It follows that, for N ̂  3, ^Ket(^5-^) is a 2 JV-5 times continuously
differentiable function (this is not true in two-dimensional space-time;
see Section II), with polynomial behaviour at oo. Hence (KP ^)Ni^p(p)
is for sufficiently large N, a 2 N-q times continuously diίFerentiable
function with the same support as WP. (For a detailed proof see [7]
[9].) We have, for any multi-index β such that \β\ < 2 N — q,

[ 3 3 -|ί»

ι+ £ 2:(^)2 .?• = i ^ = o J
Hence, for any φ ζ

+ Σ (χ^
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If we restrict ourselves to functions φ with support in a fixed compact,
the last quantity can be reexpressed in terms of max \D&φ(x)\. Since

KN(x) r's(x) is of the form Σ D?χP(x) KND^i^P(x)ί a similar estimate
holds for it and we conclude that, in p space, (K *)Nr's(p) is 2 N — q
times continuously diίferentiable. It is easy to see that its analytic
continuation, the Laplace transform of KN (x) r's(x), is bounded, in the
tube where it is initially defined, by

\(K *)NH'(p + iq)\ < const (1 + \p + igf)' exp-f- Σ Itfl

[Here H'(p-\- iq) denotes the common analytic continuation of all the
r's(p) and (K *)NHf denotes (symbolically!) the common analytic
continuation of all the (K *)Nr's(p).] Note that

We have given a very sketchy account of this subject here since the
corresponding properties for two-dimensional space-time (the only ones
actually used in this paper) are explained in detail in Section II. It can
be proved that the division process can also be applied to any set of
(possibly "sharp") g.r.f. defined (by any means) in a Wightman theory.
This proof will be given elsewhere.

II. Restriction to a Submanifold

It was shown in [6, 8] that it is possible to restrict the function H'
to certain tubes of a certain submanifold ^(t). The latter is defined,

for real negative t < 0, as the set of complex points ^, . . ., &4 I with of

course Jζ* &$ = 0 I , such that
j = ι

2, —= (ml -ml + t),

where π± = (πj, π\) and jr2 = (π%, π\) are arbitrary complex two-vectors.
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The eight tubes ± ̂  ± ̂ ', ± *, ± ̂ ' are defined by

j ζ F~}

'̂ - {π:Im(π2 - πj ζ F

They consist of points of analyticity of H'. Since we want to obtain
some estimates on the restriction of H' to these tubes, we shall not use
the purely geometric methods of [6, 8], but proceed in two steps.

1. First Step

The distributions r's(p) can be regarded as continuous functions of
the two last components of the momenta, {p?}μ = 2, 3, with values in the
tempered distributions in the variables pf , pj .

To prove this well-known property, one may introduce, for / = 1,
2, 3, 4, the notation

Pi = (KI > rι)> with- ^ = (dj > π}) = (pf ,p}), and

Similarly, in x space, we denote by xs the two- vector (xf, x]).

Consider now, for example, the distribution a±(p) = α4(π, r) and
define

4(ί, r) = (2π)~6/ exp -

For fixed x, the domain of integration is given by

(xf - x\)* + (xf - a*)* £ (xf -xl + a)* -
Hence

.

4

where \\A\\ stands for /7 \\Ak(0)\\ and D« - D%D
k = 1

In particular



Polynomial Behaviour of Scattering Amplitudes

and similar inequalities hold for the other rs defined by

P(&, r) = (2π)-6/(exp - ί Σ \$($ - *ϊ) + rf(xf -

269

Let φ be a function in

We find
φ(x) = f

= (2π)-6

and

f φ ( x ) d ( x ) r )
? = ι

£ π*(2π)-™\\A\\

\ \\φ(x)

ί / (^o + α
IF^-C

where the last inequality uses SCHWARZ'S inequality.
The integral in the curly brackets is equal to 1/3. Going back to

momentum space we find:

φ(π)aA(π,r)

and

L*(dn)

The other g.r.f. have similar bounds. The vacuum expectation values
of the ' 'multiple commutators" are linear combinations of appropriate g.r.f.

and therefore also obey/for example [l, [2, [3, 4]]] =

similar inequalities. Finally the permuted Wightman functions if^p are
obtained as linear combinations of expressions of the type (β * %$ (pQ)) Gj (p)
where Cό (p) is a "multiple commutator" v.e.v. χ$ is the characteristic
function of a certain open subset of the space of the components #$;
β is a Ή00 function with compact support and it can be chosen once and
for all in a way depending only on the spectral masses of the theory.
Thus we see that there exists a constant <70 , depending only on the masses
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of the theory, such that
/»

, r) φ(π) dπ σ Σ + <

with

The preceding considerations allow us to define, for any real t < 0,
distributions ς , ,

rf (π), r^(π), θTPf t(π), ^Ptt(π)
as the restrictions of

r^(π, r), r'^(π, r)

to the manifold defined by fixing

(π, r), ̂ (π, r)

r t =

^9 —

r» =

rΛ =

(8)

The distributions we obtain possess all the linear properties of the
set of g.r.f. and Wightman functions of a theory defined in two-dimen-
sional space-time, provided we replace m} by μs, Mj by Λt'j, Mίk by
*JtίlCί where

μi = μί = *
1

~~ ~ 4ί

"ΪT
ms)

- m

13 —

= 23 = f 4 - - K - ml +4 - mf)2 ,

= M fo
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We also define, for future use

<J£± = min {^{ , ̂ ^} and Λt 2 = min
We have

rf(x) = Σ {* * J
P

ηs(x)= 77 (Dί,
7 = 1

with evident notations the Dalembertians are two-dimensional.
We can now apply to the functions r't

s the process of "multiplication"
by Kξ(x) Kξ(x), sketched in Section I, for the four-dimensional case,
with

By abuse of notation we denote

Kz(x)NKs(x)Lr't
s(x), etc.,

the distributions obtained by the "multiplication" as defined at the
beginning of 1.2. and by

(Kz*)»(KΆ*}i<r'tS(π}, etc.,

their Fourier transforms. The common analytic continuation of all the
(Kz *)N(K3 *}Lr't

s will be denoted (#2 *)N(K3 *)LH't.
We shall now make a detailed study of the behaviour of (K2 *)N

(K3 *)LH't in the initial tubes where it coincides with the Laplace trans-
forms of the various Kj K%r's .

a) Bound for K$KξD^P, t

We have seen in Section I. 2 that (K2 *)N(KZ *)L^p,t ^ in effect
the convolution: (K2P *)N(K3P *)

π - π

π3-π'1- πί); A) π'

where ε^ = ±1 (j =\, 2, 0); Sj depend only on P. A_-$&i(n\ A) is the
retarded function in two-dimensional space-time given by

2π- 2 lim

4L^ (π; A) = (- I)N(2π)~* lim / e~^^ [(x - iη)* -
-
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The range of integration is contained in the compact set :

πP3 ζ F~; π'Pl ζ F+;

F 7Tp4 + ^P3 ~~ πP4 ~~ πPZ £ V > ^Pl

This compact set (of volume 8"1 Jip4πp1(πp3 + πP4)
2) is itself con-

tained in the set defined by

ίπp4 6

7Zp4 —

\πf-π'f\ίί

K + π? - π;° - πj°| ^

#=1,2,3,4;

and

for all I 4= / ,
as can be verified by straightforward computations.

Hence, the range of integration is contained in the following set

- πί")| g

In this set
/ 4 \ | v | / 4 \ 2

\π'Λ = 2: W| , (̂  - τrί)2 < 27 |4I , etc.
U = l / \A = 1 /

On the other hand, detailed calculations show that if π° + π1 = u}

= 22N~l(N - r - 1)1 (N - s - 1)1

The expression in the right-hand side is the exact value for A — 0. The
derivatives (in the sense of distributions) are actually functions conti-
nuous in the whole space, with support F+, provided N — r — s — 1^0,
N — r — 2^0, N — s — 2^0. We can also write

\j\7li ) Ό \7t ) 71 \Ai7l )

durdv*

Hence, if α is a bi-index and

r - 1)! (N - 5 - 1)!

and if N — |α| — 1 ̂  0, (|α| = α0 + ^i) we have
(rrz\ ^Z(N -l-\a.\(π ) π_ _

|α| - 1)! (N - |α| - 1)!

- |α| - I)!]2 '•
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Combining this information with our bound for i^pt t , we easily see
that there exists a constant C± , depending only on L and N and on the
spectral masses of the theory, such that, denoting

T = Σ 1*41 >
fc = l

taking as our independent variables πl , πz and π0 = πα + π3 , we have :

)--|r,|-|f.||;ι + (I + a) T]12 (9)

for N - I r j j - 13 ^ 0, JV - |ra| - 13 ^ 0, L - |r0| - 13 ^ 0 .

One also finds that (JΓ2 *)N(K% ^)L(nyi^P^ has continuous deriva-
tives of orders |fj ^ N - 14, |ra| ^ N - 14, |V0| ^ L - 14.

The Fourier transform of that function is therefore a tempered
distribution which, when regularized by convolution with any test
function in &*, decreases at CXD. The same is true for the r[s which are

obtained from the ̂ Pt t by multiplication with standard ^^ functions
and linear combinations. Coming back to momentum space, we can
infer from this regularity properties for the functions (K2 *)N(K% *)Lr't

s

and (K2 *)N(K3 *)LH't. We now proceed to do this in detail.
b) Bounds for K$K$ft

s

Let ξ1 — #! — #3 , |2 = x2 — #4 , £Q = $3 — %£ be our independent
variables in x space and denote π0 = (π-^ + π%). Since

4

, ,
/ 4 \

I when Σ π j ~ 0 I j î > π2 an(^ πo are ^ne conjugate variables to ξ1 ,
\ ? = ι /
and |0.

Let be a function in ^(R6) and

It follows from (9) that

X \<p(π)\dπ,
where

21 = Σ 1̂ 1 [(1 + α) ίP + I]12 ^ 2"(1 + (1 + α)12!712) .
* = ι

19 Commun.math.Phys.,Vol.l3
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Defining S* = Σ \π}\* + K|2 we find: T ̂  4 8 so that the expression
j = 1,2,0

under consideration is bounded by

This is again majorized by

where ̂  = |y| - 9 + 4t(N - 1) + 2(£ - 1) - 1^1 - |r2| - |r0

Let $2 denote the differential operator

Q 2 _ _ $ ( d* I

~ , fΌ\(^)2

then the last bound can be rewritten

Since the Kj Kξr't
s are sums of terms of the form

where \γ\ ̂  8 and the functions χΛ are °̂° functions defined once and
for all, [in particular, independent of a and of the choice of the fields
AJ(X)], with derivatives bounded in the whole space, there exists a
constant <72 depending only on N9 L and the masses of the theory,
such that :

This holds for 2r ̂  N - 13, 2h ^ L - 13. It is important to note that
the norms on φ occurring in this formula are invariant under trans-
lations.

We now choose (once and for all) a function g of one two-vector
$£.0(R2), with support contained in {X:\XQ\ + \xl\ < ZJ, and g(x)
= fe-ίπ*g(π)d2π, with gr(0) = 1. For any ε > 0, ε < 1, define gβ(x)
= llεzg(xlε), and gB(π) = g ( ε π ) . For 0 < ε ̂  13 0 < η g 1, we define
two functions on R6 by
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We compute an upper bound for

275

1) rt

s(x') gε,η(x - x') d»ίίd>f£d"ίί

') W) gε>η(ξ - ξ') dξ'

)r(1

where \o^\ ^ 2r — 4, |α2| 5j 2r — 4, |α0| ^ 2 A — 4 (for future purposes).
Each derivative of a given order of

has its modulus bounded by a constant multiplied by

-'(i + i&n-σ - M
2

Moreover, when ξ — ξ' is in the support of gεtη, there is a constant κ,
independent of ε and η such that

Hence there is a constant <73 depending only on the masses of the theory,
on N, L, and g, such that

) r^(r) ̂ ,(1 - f > ifίίfέdft
r +

• (i + Ifi (i + l + llfoll 2)
with R = 4N + 2L + 10.

This will enable us to estimate

in the initial tubes. For this purpose, we must first estimate, in each of
these tubes:

4

sup exp it / , 71 * Xj

or, equivalently

(- Σ *sIm ̂ )
f \ 7=1 /

= sup

19*
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We first consider the first term. It is sufficient to consider two
special cases:

i) r's = dϊ(z*lϊ 2 f 3f 4)

supp α4 = {x .Xj -XI£Y+-C,J = 1, 2, 3} .

In the corresponding tube, Im π$ ζ V+ for / = 1, 2, 3 and

- £ί f c lmπ f c =- Σ (*,-ί4)Imπ,^c J7 Im π, = f- Σ I** *ί|
fc = l 7 = 1 ? = 0 Z & = 1

ϋ) ̂  = ̂ (^1 J 2 f 3f 4)

The support is the union of two parts

i ) ^x '. XQ x^ \^ y Of Xcj> x^ \^ y 0) x% X ̂  \^ y Cj .
Writing

4

- a* ϊm πfc = - (x - x±) Im π - (x - x

we see that if Imπ3 ζ F+, Imi^! + 7ra) £ F+ and Imπj ζ F~, we have
4 4

2°) The other part of the support is obtained by exchanging x3 and x2

and yields again 4 4

4

Let us consider now the expression Σ ~~ ^fc Imπfc when » ζ supp <7e>
A;=l

and π is in one of the initial tubes. We have
4

and since in each of the tubes Imπ3 ζ ± F+, / = 1, 2, 0, we find:

2;

Putting together these bounds we obtain :
Lemma 1. // K| ^ N - 17, |α2| < N - 17, |α0| g L - 17,

exists a constant (74, depending only on the masses of the theory, on N, L
and g, such that

\Dl\Dl\g (επjg^) g(ηπ0) D%(KΛ *)N(K3 +)*H't (π)\

α/2 Σ

(where B = &N + 2L -\- 10), in αni/ o/ ίΛe initial tubes.
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In particular, let ε0 > 0 be such that (|π|| < ε0 =Φ \g(π)\ > 1/2 and
set η = ε0/(£o + ll^oll) m ̂ ne formula of Lemma 1, We obtain

\D«n\Dllg (επj g(επj Dl\(Kz *)*(K3 *)LH't(π)\

2 C

a/2 -f llm

2. Second Step: Restriction to
Let

ψ(π) = DΛ

π\Dllg(επl) g(επ2) (K2 *)N(%3 *)LH't (π) .

\ is defined by: π^ + τr3 = 0. To find bounds on Ψia the tube J3f C'
defined by

F"1"}

+ πa) ζ F", Imπ3 ζ F

If we fix π^ and π2 such that Im^ + π2) 6 F+, ImjTj ζ F~, we have
to solve an edge-of -the-wedge problem : the restriction of Ψ to the two
tubes yields two functions of nλ + π3 = π0 respectively analytic in

{πQ:ϊmπ0ζV+}
and

{π0:Imπ0 £ F", Im(π0 - ^) ζ F+}
(see Fig. 1).

we consider the restrictions of Ψ to the two tubes

{
and

Fig. 1. Tubes of analyticity in π0 for fixed πx ζ F~ and π± + π2

The boundary values of these functions for real π0 coincide when
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We define

% - π$ + π}, Vj = π$ - π] (j = 0, 1, 2, 3, 4) ,

ρl = min {If13, (Iπu^l, llm^l} .

Then Ψ, as a function of πQ is analytic in a neighbourhood of

{uQ} V0:ϊmu0 > 0, Imv0 > 0, \u0\ < ρl9 \v0\ < gj

\j {u0ί v0:ϊmu0 < 0, Imv0 < 0, \u0\ < ρ1? |v0| < ρj

W {UQ, v0:ImuQ = Imί;0 = 0, \u0\ < ρ1} \v0\ < ρj .

Introducing the new variables u'0 = log (ρ1 — W0)/(ρ1 +
VQ = log(ρj — V0)l(ρ1 + v0) we reduce the problem to the application of
the tube theorem which yields the envelope of holomorphy of the domain
this envelope contains in particular the following domain :

(10)

(see Fig. 2) which, in turn, contains the polycylinder

{u0, v0:\Uo\ < ft(|/2 - 1), |wβ| < a(|/2 - 1)} .

u0-plαne -plane

Fig. 2. The domain of analyticity of Ψ in τr0 contains the topological product of
the shaded domains

In (10) the function Ψ is bounded by

[Indeed we have at non-real points of (10)
1 < 0; Imπ3 ζ F*; Im(π3 + 2^) ζ V~

so
0 < Imπg < - 2 Imπ?; Imπ4 ζ F~; Imπ2 6 F+
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Hence
4

Σ |Im^2| — 2(Im^3 H~ Iπiπ®) ^ 4(|Imjrι| + |Imπ§|).]

It follows that Ψ is bounded by the same expression B in the poly-
cylinder (11); Cauchy's inequalities yield:

dυξ dvv

Q ^πβ a=o= ρf"(J/2- l)zv

so that

(where ΓL depends only on L and A). This means that

π)|n. . 0

with 6 = 2α + εZ ι ; J5' = ΓίOίH^H (1 + α)lzε~R; ΓL depends only on L
and ^42. Here L ̂  17.

Let us choose |αa| ^ 1 and
l+1'

with l^2L+2,l'^2L+2

(meaning, of course, differentiations at fixed τr2 and π0). (This choice
forces N ^ 21 + 4£. We can take L = 17 so that we must take N Ξ> 89.)
Then, by successive integrations over % and vl , we find (see Appendix 1) :

Lemma 2. Let N ^ 89, |αj| ^ 1, |αa| ^ 1. TΛere ê *«5ί«5 α constant C5

depending on N, g, and the masses of the theory, such that when π is in
any one of the tubes ±J/,± jtf', ±&9 ± 88' of

\D%D%g(sπύ g(sπ2) (K, *)NH't(π)\

£ C5\\A\\ (1 + a)**ε-*(

where b = 2a + ε^ and R = 4rN + 44.
The estimates provided by Lemma 2 are very far from optimal, but

they are of the right form for our purposes.

III. Exponential Bounds in the Submanifold if

In this section we shall study a function F of two complex two-
vectors, TTj and τr2? defined and holomorphic in the union of the eight
tubes ± Λ/, db ̂ ', ± ̂ , ± &&' of i^ and of open sets given by:

jtf')r\ Λ^Ί where Λ^[ is a complex connected neighbourhood of
the real points such that πf < ̂ {2, n\ < ̂ 2,

— &)r\ Λ^iz where Λ^iz is a complex connected neighbourhood of
the real points such that (π^ + π2)

2 <
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± (<$&' — &') πΛ^ίi where Λ^ is a complex connected neighbourhood of
the real points such that (π-^ — π2)

2 < ~^f4 ,
± (& — 3$'}r\ c^2 where Λ^ is a complex connected neighbourhood of

the real points such that π| < ~^22> πί < - l̂2-
We know that the envelope of holomorphy of the domain so described

is schlicht and invariant under the complex Lorentz group of two-
dimensional space-time, i.e., the group of all transformations [λ] given
by [λ] π = ([λ] πlt [λ] πa) and:

[λ] Uj = (λUj λ^Vj)

in characteristic co-ordinates (Uj = π® + π} , vs — π® — π}). Here λ is any
complex number Φ 0.

Moreover we assume that F is continuous at the boundaries of the
domain just described, and that, in the tubes, it is bounded by

\D-F(πiίπ^\ ^ eft<H*»ίl + P*»a>

for a certain b > 0, and for any α with |α| ^ 1.
We use the notation π± = πλ ± π2> u± = u± ± u2, v± = v1 ± v2.

1. Bounds in the Extended Tubes

We first prove the following.
Lemma 3. For every π — (π1} πz) such that, for some complex λ φ 0

π = [λ] πr, π' belonging to one of the eight tubes ± jtf, ± <$/', ±&, ± &' ',
the following bound holds:

\D*F(π)\ < expδ(|Im^+| + |Imv+| + \ϊmu_\ + |Imv_|), |α| < 1 .

A consequence of this Lemma is that F is continuous at the boundaries
of the "extended tubes" U [λ] jtf, etc.

Λ ={= 0

Proof. We apply Lemma A2.1 of Appendix 2, with n = 2, ̂  = — 2πί9

k2 = (πj + π2), and obtain that, with our previous notations, when
π ζ [λ] Λ/, λ Φ 0,

\D«F(n)\ < exp ~ (\Imu+\ + |Imv+| + 2 jlm^j + 2 llm^l)

The last bound clearly remains true if £$ is replaced by any of the eight
tubes.

2. Definition of New Variables and Analytic Completions

We are now in a position to follow step by step the analytic comple-
tions described in [6], and compute bounds for the continuation of F.
Notations:

= n\ .
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Moreover we define

s = z3 + -ΓΓ (m\ — m| + m|

where
Φ - 4 min (Jf? - m?) = 4 min (uf? - μ?)

•Λ *** * *^ A J ' A 1 O ^ ί / '

and ]/— 2 is defined in the cut plane z $ 1R+ and Re ]/— z ^Q;M= min M $.

2.1 First Completions

We start by considering points of the form [λ] π where λ =f= 0 and π
is such that

u+ = v+ = a ̂  σ0 > (̂  + ̂ a)

For the justification of our subsequent use of these points see [6],
(p. 252—253). In the case treated here, note that, for fixed λ φ 0,

F±([λ] π) = lim F([λ] (π+ ± iη, π_))

is a continuous function of π_ and σ, holomorphic in τr_ in the forward
and backward tubes: ± {π: Imw_ > 0, Imί;_ > 0}; the boundary values
from these tubes at real π_ coincide when

^ ^ 4^
u_ ( '

Since we need estimates of the continuation of F} we do not use the full
Jost-Lehmann-Dyson domain (which is the solution of this edge-of-the-
wedge problem). We first extract from the region of coincidence the real
open set defined by :

- - , ( '
where

Ml

= max
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It can be checked that the set (13) is contained in the set defined by (12).
It can further be checked that the region defined by (13) contains the
angular domains £& and — 9t, given by:

gt= UQ {α. β real: |α - J/σ72 - 4 ̂ 2 - ρ| < ρ sinθ0 ,

\β + j/σ72 - 4 ̂ 2 + ρ| < ρ sin<90}
i.e.,

St = {α, β: |α + /J| < [α - β - 2)/σ'2 - 4 ̂ 2] sin00}
with

sinΘ0 g -i-J/V2-4 J ,̂ (cos00 S -̂ -) .

[̂  is the angle defined by the tangents to the hyperbolas

(α ± a') (β ± a') = 4 ̂ 2

at the point α= - /9 = |/σ'2- 4^2.] For or>^1 + ̂ f2, we have
σ' > 2 c f̂ and σ2 > (/% -f μ2)

2 > |/4| hence σ' = σ + |zl|/σ is an increasing
function of cr. From now on we restrict our attention to values of σ
such that

G' > GO , cr >• cΓ0, (TO == OΌ 4~ j 0*0 •-

We then choose

sinθ0 g — |/^
°0

in the preceding definition of ̂ .
The first definition of ̂  displays it as the union of a family of squares

(double-cones). To each of these squares we associate the following set DQ:

DQ = {α, β: |α - J/σ'2-4^2 - ρ| < ρ sinθ0, (^ + ]/σ/2 -

+ ρ| < ρ sinθ0} r\ [{α, β:Imoc > 0, ϊmβ > 0}

\j {α, β:Imα < 0, Im/3 < 0} u 1R2] .

jP±([A] π) is holomorphic in π_ (hence in α and β) in a neighbourhood
of Dρ . It is bounded, in Dρ by

\F± (W π)\ ̂  expb ||ImA^_| + [ImA-1^! + Imσ (λ - y)

hence (using J/σ/2 - 4 ̂ 2 < σ) by

\F± ([λ] π)\ < expb[\λ\ + \λ^\] [2 σ + ρ(sinθ0 + 1)] . (14)

The envelope of holomorphy of DQ contains, (as we have already seen
in Section II.2), the poly cylinder PQ given by

PQ = {α, β: |α - J/σ'2 -4^ - ρ| < ρ sinθ0(J/2 - 1) ,

\β + }/72-4^2 + ρ| < ρ sinθ0(|/2 - 1)} .
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As a consequence the bound (14) also holds when π ζ Pρ.
We now show that (for a' S> a'Q) the conditions

'u+ = v+ = σ ,

- w)+J/σ' 2-

ρ > 0, \w\ < τ, 0 < τ < -p-,

\ζ\<2εM,ε>0,

imply, for sufficiently small ε and τ, (α, β) ζ ± PQ.
From

. + ..fc + . ._li_i h_H_ 4 ._

we deduce

fc_v_ + σ2 - 2 μ\ -

Λζ*

- Φ

and
1

— (α
4 V

I/- z)2 σ2(2Jf + ]/- ss)

We assume, for definiteness, that Re(α — β) > 0.
From (15) it follows that

and that Res < 0. We distinguish two cases:

1°)
We have

0<ρ fS]/V 2

hence

r) (3 + τ))/σ/2 - 4

Re(2Jf + J/^) If,

<'8ρe .

4σ2(2Jf
+

(15)

]fσ" -

The denominator has a real part ^ |/σ/2 — 4^2, so this expression is
majorized by

Sερ Ί / ^ ^ Sρε
^ / 2 - 2 ^
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|α -

\β + J

- ρ| < ρ(τ + 12ε + 16ε2) ,

+ ρ| < ρ(τ + 12 e + 16ε2) .

Re £<-
+ I/- *)

w}

+ τ) ρ2 < 8ρ2,

ιcιiF~* ^ 3ερ ,

w) - r)

2-(«-/5)-[ρ(l + W)+l/σ' 2 9ε2ρ2

4ρ(l -τ)

Since 1 - τ > 1 - l/[/2~> 1/4, and J/V2 - 4^ > |/I|/σ, the expression
is majorized by: ρ(9ε2 + 3ε). Finally

ρ| < ρ (r + ~ε

Thus, for all values of ρ > 0:

|α — J/σ'2 — 4^2 — ρ| < ρ(τ + 12ε -

\β + ] /σ 2 — 4«^f2 -f ρ| < ρ(r + 12ε -

and (α, β) ζ Pρ provided τ and ε have been chosen so that:

τ+l2ε+ 16ε2 < sinθ0([/2 - l) .
Let us choose

sinθ0(|/2- l) = j, sinθ0--L—, τ = y, ε

then r + 12ε + 16ε2 - 0.212016 < 0.25.
This choice corresponds to

a/1 13-2J/2 4^2

Λr\o2/-J . ' Λ -̂ ^

1000

Finally we see that

= v+ = σ, σ ̂  σ0 ,

ια< 2Jf
1000
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(with Re}/- 2 + σ'2- 4^>0) imply (α, β) £ ± PQ and, as a con-
sequence

\F([λ] π)\ £ expb (|λ| + ±) (2σ' + ρ(l + sinθ0)) .

Let x + iy provisionally denote the quantity

#+ iy = y- z-f σ'2-

(the square root being defined with a positive real part). A necessary
condition for x -f iy to be of the form ρ(l + w), ρ > 0, \w\ < 1/5, is that

|arg(α: + iy}\ <Θ1 = Arc siny, i. e. 0 g J|L < -τ= = tgθ x.

This condition is also sufficient if it is satisfied, we can take ρ = α:/cos2 θl,
since

'-sin2<V

On the other hand, with this choice

Since
|J/

we have :

Moreover

4

the subset of the z plane defined by :

|arg {}/-z + (7'2-4^2 - J/σ/2 -

contains the subset given by

Collecting our information we get
Lemma 4. F± ([λ] π) is analytic in u_, v_ at the points π such that

u+ = v+ = σ > σ0 > 2 Jt (cos θo)-1, with sin ΘQ = ^—^ — ,

and σ0>t^1 + ̂ 2,

1z)\< θι> with s ί n θ i - ,
points:

\F±([λ] π)| < exp6(|A| + |A-*|) [2 |
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By identical arguments, we can estimate F([λ'} π') for points π'
satisfying

u'^ = vL = v real > σ0,

|aτg(-«)l<0ι, (16)

\ζ\<2M 10-3.
For such points

\F([λf] π')\ < expδ (μ'| + -τ4-) (2v + 2\z\V*) .

Now set

which implies:

- (J\ V t_ =

(17)

In these formulae we define ]/u_v_ as a holomorphic function in
{^_v_ £ C — R~} positive when ^_v_ > 0. In this domain, (17) displays
A', u'+ , ̂ ψ and ^ as analytic functions of A, u_, v_, σ. From

it follows that, in the set defined by (16),

Reσ 2 < - (v* - 4^2 + 2\Δ\) < - (σg -

Reσ2 < Bez < 0 ,

Imσ2 - Ίmzi |σ2| > |z|; |σ2|

Similarly Re(21ί + J/^) > Re |/^ > 0 and |2 Jf + J
We have

>

hence

A J.JL
Λ' + λ

As a consequence

< 2 + J/5 and -̂ - < 2 + J/5 .
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Lemma 5. For u+ = v+ = a and:

(z - σ2 + 2μ* + 2μl + Φ) real > 0% ,

/ l \
|arg(— z)\ < θlt I sm PI = -*-)>

\ ® /

|f I < 2 Jf/1000 ,

the boundary values of F ( [ λ ] π ) are bounded by:

\F([λ] π)\ < exp56(|λ| + (Aj-1) (4|z|V2 + 2\zs\V* -
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We now consider points of the form [A7] π' where A' Φ 0, and π' is
such that

u{ = - v( = ]/- z, > 0 (with 2ι < 0),i i K i v i " (18)

Setting z3 = (% + «4) (vι + ^2)?

When ^ describes the upper half plane {w^Imw^ > 0}, ̂  describes
{̂  lm^ > 0} and z3 describes the whole cut plane {z3 : s;3 $ z1 + ̂ 2

± (2 l/Zj 22 + R+)} Thus all values of ZΆ such that Imz3 Φ 0 are obtained
by varying u'% in the upper half plane (or in the lower half plane). This
corresponds to values of π' lying on the boundary of $0 ', but which are,
in fact, contained in the domain of holomorphy of F, since these points
can be carried into <stf by a Lorentz transformation [λ], λ — 1 — iη, 0 < η
sufficiently small. Applying Lemma 3 we get

\F([λ'] π')\ expδ |JImλV+| + |Imλ'«L| +

We again apply this to the case when

λ'u'+ = λa, -γ=*-ϊ>
(19)

We then obtain

\F([λ\ π)\ < expδ

Ύ

Im-

λ '

+ \Lmλσ\ + ImTΛ

at the points under consideration. At such points, zλ and z2 are real and
negative so that

is real negative and

- Φ= -
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We shall restrict our attention to real values of z and ζ such that:

Imz 3Φθ, z<-8^2,

|f I < 2Mε = 2M/1000 .
These inequalities, and

• z9 = Δ — zζ

imply [̂  — z2| < — (z1 + z2), hence z1 < 0 and z2 < 0. Any point with such
invariants can be expressed as [λf] π1 with λ' =j= 0 and conditions (18)
satisfied.

Under these conditions

Δ_
a

\u_
'

- 2

M ' 1*1
- M _L U2I

Ml

so that

\u_\ or |v I <
|U| jϋ|

and we obtain:
Lemma 6. For any point π such that:

u+ = v+ = σ') Imz 3Φθ,

z real < - 8^2; ζ real and \ζ\ < 2Mε = 21Γ/1000, one has

\F([λ]π)\ <exp&(|A| + [A]"1) (2|σ| + -ψ- + 2M*\*\1'* +

Conclusion. We see that

holds for any complex λ and any point π such that u+ = v+ — a and one
of the three following situations is realized:

i)
z is real negative < — 8 c^2

< 2Mε = 2Λf/1000, f real; (20)

^ 3 >0.

2)

|arg(- 2)| < θlt

|C| <2Jlf/1000;

Im23 = 0, σ > σ0 .

(21)
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3)

|arg(-z)

(22)

z3 - z - 4 + 2 \Δ\ real < - σ§ .

Remark. The set described by (21) is not a set where jP([λ] n) is
analytic in all variables. But every point of this set is the centre of a
poly cylinder in which F ( [ λ ] π ) is analytic except where Imz3 = 0.
A similar situation holds for (22). This presents no difficulty (see [6]).

2.2 Further Completions

The three sets Ul9 U2, U3 are contained in the topological product :

{z3, z, f : |arg(- z)\ < ΘI9 \ζ\ < 2M/1000, 0 < argz3 < n + ΘJ .

We shall study the behaviour of certain functions in the above domain :

a) The function J/— z is defined with a cut along the positive real
axis and is positive along the negative real axis,

γ=z = ]/H e<*/a, φ = arg(- z) ,

γ\z\ ^ ReJ/^« = J/H cosf- ̂ COS

b) The function — &jΛ'z3 is defined with a cut along the negative
imaginary axis, and so as to be real > 0 along the positive imaginary
axis. Hence if z3 = |z3| e ,̂ — ττ/2 < ψ < 3πj2 we have

in the domain we consider, — π/4 < γj/2 — π/4 < τr/4 + θj/2 hence

Ee(- i |/ίζ) cos -

c) The function I/— ijΛ'z3 is the inverse of the preceding, its real
part is l^h1/2 cos (^/2_-jτr/4) > l^l"1/2 cos(π/4 + θj/2).

d) The function J/— z(— ^'J/^^)"1 is given by

with, in the domain we consider, — θj/2 < 99/2 < θj/2 and — θj/2 — π/4
< π/4 — ψ/2 < π/4, so that cos(φ/2 — y/2 + τr/4) > cosίθj + jr/4). (Note
that θα + τr/4 < π/2.) Hence

Ee l/^(- i /ί̂ )-ι > -^ 1/2 cos (̂  + £ ) .

20 Commun.ιnath.Phys.,Vol.l3
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It is easy to verify that cos (τr/4 + ΘJ2) > cos (π/4 + 9j) ^ y and

cos θj/2 > -g- . Let us define

Then we have

for any λ φ 0 and any π such that u+ = v+ and (z3 , 2, £) ζ U, U = ί/j
w £72w Ϊ73.
Let us denote
e/Kj a neighbourhood (arbitrarily thin) of U^ (in the space of the variables

z3,z, £);
Λ^ the intersection of a neighbourhood of U2 and {2, z3 , £ : Imz3 > 0}
i/f*3 the intersection of a neighbourhood of U3 and {2, z3 , £ : Im (z3 — z) > 0}

and for / = 1, 2, 3, Λ°? = ̂  n {z, zB,ζ:ζ = 0}.
The analytic completions carried out in [6], Section 5, show that

any function of z3 and z analytic in N\ \j jV*\ \j ./flj has an analytic
continuation in

+ Φ\ < η}

where η0 > 0 and R (t) > 0 are certain functions of t.
Using the conformal map

to transform the disc {£:|£| < 2Mε} into the strip {£':|Im£'| < π/2},
and following the arguments in [6], it is easy to see that: any function
/ (23 9 z> £) analytic in tΛ

r

1 \j i/K2 u ./F3 has an analytic continuation in

U = o< V< ,. ̂ 3' Z> C: |f| < %> l

;

/

where ηt > 0 is some function of ί (with ?y1 < 2 Jf/1000;
Φ

< -«-

Let JδP be the manifold {π : u+ — v+} (in which we shall use the co-
ordinates u+,u_9 v_) and <g ± = & r\ {±Imu+ > 0}. We denote J^_ the
mapping from <£? ± into C3

and Jl the map
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defined (and biholomorphic) in the domain

z = 2(zl — μl) + 2(z2 — μl) — Φ $ 1R+

by the formulae of the beginning of Section III.2. Let J± = JλJ
Q

± . Let

J/z^ be defined with a cut along the positive real z3 axis, and such that

In j£? + we have

U+ = J/^3

l_f , x _L_, _ v
2 («_ + tU - y- ft z2)

4 ~~ ~ z3

Now let W(u+) (u_ -f- v_), (u_ — vjf) be a function analytic in J~^l(Λr

l

\J ^Γ2 \j e 3̂) = E. This domain is invariant under the reflection
π-> ωπ defined by: (ωπ)f = π®, (ωπ)} = — n] (j = 1, 2), that is, in
<£?:u_ ί-* v_. If TF depended on (u_ — v_) only through (u_ — v_)2, it
would define an analytic function of z3, z, ζ ir

It is therefore natural to introduce

W(u+, (u_

TFs(π) can be written as /S(z3, 2, ί) and TΓα(π) as f a ( z 3 , z, ζ), fs and /α

being analytic in tΛ
r

l \j ̂ 2 w ̂ 3 . These functions can be continued
in U. Therefore W = W s -f (u_ — v_) Wa can be continued into J~l(U).

We have thus proved that :
the envelope of holomorphy of J~^(j^^ w^F2 Wι/Γ3) contains J+l(U).
The same is true if J+ is replaced by J_ .

We apply this result to the function defined in £?+ (resp. JS?_), for
any fixed λ, by

Since this function is continuous at JΓIjI1(C/1 \j U2 w C^3) and is bounded
there by 1 in modulus, and since «7+ is open, it is clear that we can choose
eΛ !̂ , Λ^g , c/F3 thin enough so that the above function is bounded in
modulus by 1 -f ρ in J^I1 (tΛ

r

1 \j ^K2 \j Λ^), Q being an arbitrary positive
number. As a consequence, the analytic continuation of this function
in J^l(U) is bounded by 1 -f ρ for every ρ > 0, hence by 1, and the
20*
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analytic continuation of F([λ] π) is bounded by:

>» for πζ

the same holds for π ζ J~l(U). We have proved:
Lemma 7. F([λ] π) is analytic in λ and π for any λ =f= 0 and any π

such that u+ = v+ and (z3 , z, ζ) ζ U. At such points it satisfies the inequality:

\F([λ] π)\ < expδδ (\λ\ + —-) [s\z VB + 4uT + 4|z3 Va

2 |Z1| 2Jf |s|*/ 1

"*" |z3|
1/2 1000 l^l1/2 J '

Since, in U, \Φ + z\ < η0 < Φ, and 23| > E(t), it is clear that there exists
a constant Γ' (t) > 0 such that, at the points mentioned above:

\F([λ] π)\ < expδδ |A| + ~ [4|z,|Vi + Γ(t)] .

Γ' (t) depends only on t and on the masses of the theory. Moreover

\F([λ] π}\ < expδδ |λ| + [6 zsp + IβJ/Φ] .

Unfortunately we need yet another estimate. Let (πl9 π2) be a real
point such that : π\ = μ\ , π% = μ% , π ̂  , π2 ζ V+. This point can be surroun-
ded by a real cube (or "double- cone") of the form

{ π f : \ u j - uj < ρι(π), \v - vs\ < &(n), j = 1, 2}

lying in the region {π : π'j 2 < ΛέJ ,j= 1,2}; the latter is the region of
coincidence of the boundary values of F(π') from the tubes

and
a = .{π':Im(πί + π'2) ζ F

In each of these tubes F(π') is bounded by

\F(π')\ <eδ(l lmπί°l + i l m π2 0l)

We introduce a new two-vector variable denoted π5 = (π% , π\) or, in
characteristic co-ordinates : uδ , v5 (u5 = π® 4- π\ , v5 = π® — π\) and (deno-
ting γ the real two-vector with γ° = b, γ1 = 0) consider the function

Gfo, πa, τr5) = [e— <^ - ^(πl5 π,)]^
where κ > 0.

It is analytic in the two tubes

, Imπ2 ζ F",
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It is continuous at the boundaries of these tubes. Its boundary values

from j/ and £$ coincide at real π^π'z, π'5 such that

K - ui\ < £ι(π)> K ~ vi\ < £ι(π)> ? ̂  *> 2

Let us denote, for real π' = (π[ , π'2 , π'δ) :

Then the local edge-of-the-wedge theorem (see for example [8]) indicates
that G has an analytic continuation in

{πf — (π'ι, π'z, π'δ) £ convex envelope of

j/ \j $\r\ \π": ΐReπ" — π\ <-^-p1(π]

It is easy to see that this domain contains all π' — (π[ , π'% , 77:5) such that

0

0 < Ίm(v[ + Vg); 0 < |Imt;ί| + llm^l < Im^ <-^ ρ1(π)ι

jReπ' — π\ < -^ ρl (π) .

This means that F(π') is analytic at all π' — (π{ , n%) such that

t>,| < ftfπ), # = 1, 2;

0

0

and at such a point

l^ίπ')! < βxpy

There remains to estimate ^(π). One finds

Φ

so that :
Lemma 8. // π = (π1? π2) i« ? βαZ αTiίZ πf = μf, πl = μ|, ̂  ζ F+,

jr2 ζ F+, ίΛeτι jP i« analytic at every point πf — (π[ , π^) «swcΛ that

0<Ίmu'+ <-oτ

where
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At such points

\F(π')\

IV. Application to H't

1. Application of Lemma 7

We apply Lemma 7 of Section III to the case when

const F(π) = g(επ1) g(επ2) (K% *)NH't (π) .

Then substituting ε = εQ/(εQ + 2||:τr1|| + 2|[π2||), we find:
Lemma 9. There exists a positive integer N, a constant C6 and func-

tions E (t) > 0, η0 (t) > 0, η^ (t) > 0, all depending only on the masses of the
theory, [with E (t) > 4σg (ί), ηQ (t) < Φβ],such that if \ 1 - λ\ < 1/2 ,u+=v+,
|f I < ηι(t), \z3\ > R ( t ] , Im23 > |Φ -f z\, \Φ + z\ < η0(t), then (K2 *)N H[
([λ] π) is analytic at this point and

exp25α[6|z3|
1/2+ 16J/Φ] .

Our purpose is now to obtain, by differentiation, a bound on H't itseK.
Indeed we have:

H't (π) = (Dπι + A2)N (Ππ 2 + Aψ(Kι *}NH't (π) ,

4 a2 4 a2

At points π of the form π = [λ] π'', with u'+ = v'+9 and satisfying the
inequalities of Lemma 9, we can consider u±,v± as functions of

X = u+/γz3 = }/u+/v+ and of the invariants z%, z and

IV —- Zί \Z-\ — ^2/ — ^-* '== ^4-^— ~\ ^ ^-i- ~~ ^^—1

and we can write3

a a a

a a a a u+ .
-JΓ^ = U+-1Γ- +U.-Ϊ-+U -a Ί>—λ-
OV+ ~*~ OZ3 ^ ΌZ ~~ OW Z23

a a a

Hence, applying to (7f2 *)NH't a monomial of degree <£ &N in the
operators d/du±, d/dv±) one obtains a linear combination of derivatives
of that function with respect to z3, z, w and A, multiplied by polynomials
in u+9 v+, u_, v_, λ and z^1/2. The derivatives are at most of order 4^.

3 The notation w — 2(z1 — z2) — 2/d is used only in this section; the letter w
denotes a different variable in the Introduction and Section VI.
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We now try to estimate such derivatives at a point π such that

u+ = v+ = j/z3, (i.e., λ — 1), z = — Φ, ζ = 0, by using the Cauchy ine-
qualities. For this purpose we find a poly cylinder (in the variables A,
23, z, w) lying in the domain of Lemma 9 and centered at the point we
study.

Let π' be such that u'+ = λ'J/zJ, v'+ = |/z£/λ' and z' = 2(zJ - μ?)
+ 2(4 - μ|) - Φ; w' = 2(4 - 4) - 2A (4 - π(2, 4 = 42) One can
easily check that the inequalities

' '

\z' + Φ| <min|r/0(0,-2-

|4 - 23| < min|γlmz3, |z8 - B(t)

imply that π' is in the domain of Lemma 9.
Hence, by CAUCHY'S inequalities and Lemma 9, at the point π

a \«. / a \«s / a \^ ^

1 , 2 \«β

• C6\\A\\ (1 + α)"(l + 2|^3|)
2^+26exp25α[9|^|1/2+ 16J/Φ] .

If E (t) is redefined by adding a constant to the former E (ί), we obtain :
Lemma 10. There exist positive functions Γ(t),R(t), and a positive inte-

ger N', all depending only on the massesof the theory, such that H( is analytic

at every point π satisfying u+ = v+ = J/z3; 2^ = μf, za = μiί N > -
Imz3 > 0; at such a point

\Hl (π)\ < Γ(t) \\A\\ (1 + α)"(l + \z>\)

exp25α[9|2;3|
1/2+ 16J/Φ] .

2. Application of Lemma 8

Combining Lemma 8 of Section III and Lemma 2 of Section II we
find that, if π and π are as in Lemma 8,

10 M 9(*U) (K* *WK)| < C5 \A\ (1 + α

• exp (a + ~-\ [max {Imu'+ , |Im^!_|} + max

Setting ε = ε0(εQ + 2 \\π[\\ + 2 \\π^)9 we get:

\(K2 *)*H't (π')\ < C5 \\A\\ (1 + a)**e«

expα[max {Im^'+, |Im^L|} + max
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In order to estimate H[ , we note that

a _ _ a i
+ du_\

a IP r a a i o

and that

a _JMP

Let π be such that :

π 1£F+,π 26F+,π? = /u?,πl = μl, and
/ —

% = v+ = yz3 > 2σ0(0, u__- v_>Q .
Let π' verify:

3 > 0; Ee(wL - vL) ^ 0 . (24)

The conditions (24) imply that

where the square root is defined with a positive real part it then has a
positive imaginary part η given by

I

if we denote

Setting

we have 0 < 3α//4 < α; < α;' so that

7

and 7y < 2 Im J/sig . Hence

\lmu'_\ <3

On the other hand

η > ϊm(x' + <y)V« = ImJ/4 - -|4
I 3|

and

\Ίmu'_\, \Imv'_\
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We now assume that πr verifies the following conditions

\uL - u_\ <-Qί(π), '

0
I 1
j - ft (π), |Re u+ -v>+\<- ρ1 (π) .

(25>

Then the polycyclinder centered at n' :

":|w" - uL\ < |Im«L , \v'J. - v'_\ <y |Imι;L| ,

|w+ — u+\ < γ + , + — +

is in the domain of Lemma 8, and for any n" in this polycylinder

0 < Iπm" < 2 Im]/4, 0 < Imv" < 2 ImJ/4 ,

Finally, applying the Cauchy inequalities in this polycylinder, we find
that (23), (24) and (25) imply

\\A\\ μ\\Hl(π')\

Moreover, if π satisfies (23) and if n' satisfies (24), it is easy to see that,
f o r O < τ < M*,

Noting that ρ1 (π) > Φ/9 1/2;3 we obtain :
Lemma 11. Let £(z3, t; ^(0), 4a(0),

(26)

ίZe?ϊoίe ίAe value of E[ at a point π such that u+ = v+ = 23 , ̂  == /i , 22 =
Re (w_ - v_) > 0.
TΛe^, /or every reαZ z3 > 4o|(ί), ^(23, ί; (-4^(0)}) is analytic in the half
disc

{23:Im4>0, \z's -z3\ <τ}

provided 0 < τ < Φ/2500; moreover there exists a positive integer N" and
a constant C7 > 0, depending only on the masses of the theory, such that,
in this half-disc

\G(z'3,t; μ,{0)})| < GΊ \\A\\ (1 + α)"(l + zj

Remarks on Lemma 11. 1°. In case π satisfies u+ = v+ = ]/ζ , Imz3 > 0,

πf — μf(j = 1, 2), ReJ/23 > 0, we have seen that
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For |z3| > \A\, Im(z3 + Zl2/z3 - 2(μ? + μl)) > 0. Hence, imposing Re
(u_ — v__) > 0 defines u__ and v_ as analytic functions of z3 for |z3| > \A\,
Imz% > 0, and θ(z^t £; {^(0)}) is holomorphic in 23 for |z3 |>E(£),
Imz3 > 0.

2°. The constant (77 is, in particular, independent of the choice of
the operators A$ (0) and of the size, characterized by a, of the space-time
region where the A$ (0) are localized. This freedom of choice will be used
later (Section VI).

V. Properties of the "Intrinsic Wave Functions" of Local Operators

Let φι(x) and φΊ(x) denote Araki-Haag fields describing particle 1,
such that φ1 (0) and φ[ (0) be localized in the region

The intrinsic wave functions of these fields (considered as describing
particle 1) are respectively given, on the half-hyperboloid {p:p° > 0,
p* = mf}, by

where a*in(p) is the creation operator associated with the incoming
field of particle 1. Another definition [2, 5] is the following : assumption 3)
of the Introduction implies the existence of a unitary map W3 of ̂  j = Es ffl
onto the space L2(d?pl2pQ) of square integrable functions on the half-
hyperboloid {p : pQ > 0, p* = mf} such that

(Wfϋ(a9 A) Φ) (p) - ett'iWjΦ) (Λ~lp)

for every (α, Λ) £&+ and every Φ ζ 3f?j. With these notations

In accordance with assumption 3) of the Introduction, we assume that
/&! and h{ do not vanish identically. It is well known [2, 5], that these
functions are restrictions of functions (again denoted h^ and h^) defined
and holomorphic on the whole complex hyperboloid {k ζ C4 : k2 = mf}.
The purpose of this section is to investigate the growth properties at oo
of Λj on this complex hyperboloid.

We need a remark on functions holomorphic on {k ζ C4:&2 = mf}.
On this complex manifold the space components of k define local co-
ordinates except where k° = 0. In the neighbourhood of a point where
JcQ = 0 one can take as co-ordinates k° and the first two space components
of k after having performed a suitable real rotation on the axes. Let F
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be holomorphic on the hyperboloid and

ŝ (k) = (F(k«, k) + F(- P, *)) ,

Fa(k) = W' *) - -P(- *°, »))

In each co-ordinate patch Fs (resp. Fa) can be expressed as a holomorphic
function of k and this defines a unique entire function of fe.'We shall
denote it Fs(k) (resp. JFα(fc)) by abuse of notation.

Thus,

and this provides an extension of F as an entire function on C4 .
Let

r(p) = (2π)-4 fe*"(Ω, [#*(0), &(*)] fl) α0 *

o(p) = (2π)-« / e' - ζβ, [#*(0), &(*)] β) [α0

where α0 is the same function as in Section I. All our considerations will
be identical to those of Sections I, II, III, but applied to the much
simpler case of the two -point function.

Let rf (p) = (p2 — mf) r(p), a' (p) = (p2 — mf) a(p). As was mentioned
in [5], r' (p) and a' (p) are the boundary values of a single function Λ',
holomorphic in {k ζ C4, k2 $ M\ + R+}, and the restriction of the func-
tion h' to the complex hyperboloid {k:k2 = mf} is exactly h[ (k) h^ (k).

We leave it to the reader to verify that, either by applying to the
two-point function the methods used in the preceding sections to study
the four-point function, or (more simply) by using the Jost-Lehmann-
Dyson representation, one obtains the following result :

Lemma 12. There exists a positive integer N'" and a constant K depen-
ding only on the masses of the theory such that, for any complex k ζ C4 with real
k2 = p2 and k3 = p3 , satisfying k2 = m\ , the following inequality holds

\h'(k}\ <K\\φ((Q)\\ ||&(0)|| (1 + δr'"(l + W'expy (\lmu\ + \Imv\)

where u = k° + 41, v = kQ - k1, bf = 12 + ̂  .
Note that if k satisfies the conditions of the Lemma, it can be written

* = [<Π Φ> C Φ 0, p = (J/mf + Λ 0, p\ p*), r2 = (p2)2 + (p*)2.

(Here [ζ] denotes the usual transformation: u -> ζu, v -> ζ~1vy k2 and k3

unchanged.)
If, for any ΛζL\., we replace ^(α;) by φ1(x, Λ) = U(x, Λ) ^(0)

ϋ(x,Λ)~'* ί the same estimate holds provided we replace Z2 by a length
12(A) such that φ[ (0) and φ1(Q, Λ) are localized in

\X0\ + M <-k
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In the case when A — [A] for some λ > 0, it is easy to see that
= 12 max (A, I/A) ί£ (A + I/A) Z2 The intrinsic wave function of ^(0, Λ)
is given by hlΛ (p) = /^ (yl"1^). Finally, we get, for any A > 0 and complex

f φ o ,

- (l + (A + y) &')*'" exp (A + y) y |/^T^(|Imf I + |Imf-i|)

(where p is as above, K^ is a new constant).
Since h'ι([ζ] p) is an entire function of ζ, which we assume φ 0, for

any ε > 0, one can find a number τ, 1 ̂  τ ^ 1 -f ε such that this
function has no zero on {ζ: \ζ \ = τ} and, for all real θ

\ h ' ι ( [ τ e i θ ] p ) \ >κ>0.

Hence there is a positive function K% (p) such that, for all A > 0 and
all real θ

exp ~ (A + A-1) (τ + τ-1) J/mf + r2 |sinθ|2

Denoting ^ = [Aτeίθ] p, we have (for a suitable choice of ε)

b'(τ + τ-1) (A + A-1) |sinθ| J/mf + r2 < 36' (rA + -̂ ) |sinθ| |/mf + r2

Thus, for all ^ of the form [ζ] p, ζ being arbitrary Φ 0,

Note that K3(p), as a function of p, depends only on the two last (real)
components of k. It follows that similar bounds hold for

ί (*) = [*ι (fc°> *)

and

As a consequence, the partial Fourier transforms of Λf and Λf with respect
to the variable p1 have their support in

Since, of course, the above argument could be applied after exchanging
the roles of the various spacelike axes, the supports of the Fourier trans-
forms of hi and Λf (in all variables) are contained in {a?:|ίfy| ^ 36',
j = 1, 2, 3} and even in {x: \x\ ̂  3δ'} since one could have rotated the
axes.
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If we define a new field φ{' by

φ" (x) = φ # φ1(x) = f ψ(x — x') φι(x') dx'

where φ is infinitely differentiable with support in {x: \XQ\ -f \x\ < Z2/2}
then the intrinsic wave function h[f of φ[f (0) is given by h'ί — ψ^ (where
ψ is the Fourier transform of 99; it can be chosen to have no real zeros).
φϊ(0) is localized in {x: \x°\ + \x < 12} and

hi8* a are Fourier transforms of ̂ °° functions with support in {a? : \x\ < b"},
b" = 3^ + 2Za). For complex k, \h['s>a(k)\ < const J>"\\h\\ .

We can now exhibit an entire function on C4 which coincides with
h" on {k : k2 = mf } and is the Fourier transform of a °̂° function with
support in {#:||#| < 6"}. We first choose an entire function ψ of one
complex variable z which (for real z) is the Fourier transform of a Ή00

function ψ with support in { t : \ t \ < b"/2}, with, moreover ψ(Q) = 1. For
all complex z} \ψ(z)\ < const exp (b" z\/2) .

The function Ψ defined over C4 by

Ψ(k) =

is entire in k, equal to 1 for k2 = mf . For all &, \Ψ(k)\ < const e & "U*H.
Let Ξ(k) = Ψ(k) [h['s(k) + kQh[fa(k)]. For any integer L > 0, there

is a constant (depending on L) such that, for all real p

\Ξ(p}\ < const [1 + (\p»\ - J/p2 + mf)2]-^(p2 -f mf)~^

< const (p% + p2 -f mf J-1' .

The function 3 has thus been proved to be the Fourier transform of a

°̂° function j? with support in {α?:||a;|| ^ b"}.

If we now convolute the field φϊ (x) with the function 5f*(— α;),
we again obtain an Araki-Haag field, whose intrinsic wave function is
the restriction to the upper sheet of the real mass hyperboloid of Ξ*
(k *) Ξ(k) and is therefore non-negative. We now choose a positive ^^
function ρ on the real Lorentz group L\. with support in {A ζ L\. :\Λ\ < 2}
such that / ρ (Λ) dΛ = 1 and that, for every real Λ and every real rota-
tion R, ρ (RΛ) = ρ (Λ) we define :

ΦΪ'W = f d Λ ρ ( Λ ) U(x,Λ)fdx'Ξ*(x') φ'{(x'} U(xίΛ)~ί

[recall that ϋ(x,Λ) = U(x,l) U(Q, A), here dA is a Haar measure on
L\.~\. φ'ί' (ty is localized in {^:||̂ | < 4δ"}. Its intrinsic wave function is
the restriction to the real hyperboloid of

f ρ ( Λ ) Ξ*(A~lk*) Ξ(A~lk) dA = Ξ2(k)
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and has no real zero. Ξ%(k) is the Fourier transform of

/ ρ(Λ) Ξ*(Λ~l(xf - x)} Ξ(Λ~lx') dx'dΛ = Ξz(x) .

Clearly Ξ2 is rotationally invariant. Finally we define

B^x) = fΞ2(xf - x) φ'ι'(x') dx',

^(0) is localized in {x:\\x\\ < 8b"}ζ{x: α°| + |#| < 166"}. The intrinsic
wave function of the field Bl is the restriction to the upper sheet of the
real mass hyperboloid of an entire function Ξ3 such that ΞB (k) = Ξ2(— k)
Ξ%(k). Since Ξ3 is rotationally invariant, we have Ξ3(k°, k) = Ξ3(— k°, k).
Its restriction to {k : k2 = mf } defines a rotationally invariant entire func-
tion of k. Therefore, by a classical theorem [10] this function can be
written gι(k2) where g1 is an entire function of one complex variable.
Moreover for all z,

\gι(z)\ < const exp 166" |z|Va ;

for positive real values of its argument, gl is strictly positive and of
rapid decrease at σo.

Conclusion. It is possible to construct four Araki-Haag fields B3 (x)
(1 ^ j ^ 4), with the following properties:

1) for every j, By(Q) is localized in {#: |#°| -j- \x\ < κ/4}, κ being a
certain length > 0

2) for each j , (1 ̂  j ^ 4) the field Bj(x) describes the particle j9 with
an intrinsic wave function of the form

Here g$ denotes an entire function of one complex variable, which
satisfies, for all z ζ C:

For real z ̂  0, gj (z) is strictly positive and decreases at infinity faster
than any power of (1 + H)"1-

We shall denote, for any λ > 0, and any j — 1, 2, 3, 4:

By(O λ) = 17(0, [λ]) J5,(0) C7(0, [λ])-1.

VI. Growth Properties of the Scattering Amplitude

The scattering amplitude has at least the same analyticity domain
as ΈL[ restricted to the mass shell. In particular let T(z3) denote the value
taken by the scattering amplitude at a point of i^(t) such that u+ = v+

= y%a, %ι = μl , z2 = μ%, Re(^_ — v_) > 0. Then the remarks following
Lemma 11 (Section IV) show that T(z3) is an analytic function of z3 in
{z3:|z3 > R(t), Ϊmz3 > 0}. For the same reason, for each λ > 0 and j
(1 ̂  / ^ 4) we can define a function % (23; λ) analytic in ZΆ in the same
domain: <pj(z3', λ) is the value taken at the same point of i^(t) by the
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intrinsic wave function of .Z?5 (0; λ). In other words

- - -

and similar formulae for φ2, φ3, φ^. In particular, for λί = 1 :

Then, with the notations of Lemma 1 1 :

T(z3) Π φs(**> h) - G(**, t\ B^OiλJ, £2(0; λa), £3(0; Λ3), £4(0; A4))
; = ι

and we shall choose λl = λ3) λ2 = λ^.
We shall assume, for simplicity that, for the particular value of t

to be considered in the following, #,-(()) has been so normalized that

Qj(r~ (mf — mj2 + £)2/4ί) = 1 (we have denoted m[ = ms , m'^ = m4, m^ = ml9

m't = m2). Let εί > 0 be such that \ζ\ < ελ implies

Let π, real, and n' be such that u+ = v+ = \/z3 > 2σ0(ί);

g > 0;
^L - vl) > 0; |2g - 28| < r < Φ/2500. Then [see (26) in Section IV]

i όt i , oT i

Let

Then

and since

Ul — μι

— —

2 1
-—-

- + V-

L , <2 36τ2 j ., i
\λ1vl — ~γ~< —2~~ 9 and similarly

Therefore, with τ < 1/6 μjSl9 (j = 1, 2), we have

1

Our choice of A,/ is such that

. . 1 21/21 „ . I 2

36 τ2
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In the formula (Lemma 11) giving a bound for #(z3, £; {̂ -(0)}) we insert
Aj(0) = Bj(Q', λi). In this case we have

and applying Lemma 11, we find that

\T(4)\ < 16 CΊ \\B\\ [1 + *3

But, of course, ^(Zg) is the expression in the variable z3 = (n-^ + π2)
2 of

the invariant scattering amplitude (at fixed t). A similar study could
have been carried out in the crossed channel where the role of z3 is held
by (π-L — π2)

2 = 2 (μ\ -f μ|) — z3 . Finally [abolishing for the future the
special assumption made about the normalization of ^-(0)], we see that:

Lemma 13. T is analytic in

{z3:0< Imz3 < τ(ί), |Rez3| > R(t)}
where it satisfies

\T(zs)\ < S(t) (1 + \z3\

Here S(t) > 0 and τ(t) > 0 are certain functions of t\ the positive integer
N"f and the positive constant b0 are independent of t.

To find bounds on T(z3) in the rest of {z3φ3| > R(t), Imz^ > 0},
we shall apply Lemma 10 of Section IV, choosing ^-(0) = 5y(0),
(1 ̂  j ^ 4). We have seen that

We use the new variable

and define

T(w) - Γ^s); ̂ (

We note that the mapping Z3^z3 + A2z^~l maps (biholomorphically)
the domain {z3:|z3| > |/d], Im2;3 > 0} onto {w.Ίmw > 0}. Since R(t)> 2 |zl|,
the domain {z3:Imz3 > 0, \z3\ > R(t)} is mapped biholomorphically onto
a certain subdomain of the upper half plane, containing in particular
{w.ϊmw > 0, \w > E ( t ) + Δ2IR(t)}. Taking into account that Imz3 > 0,
|z8| >Λ(ί) imply
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we see that:
1) T and G are analytic in

w.Imw > 0, \w\ > R(t) +
Δ2

\G(w)\ < Ψ(t) (1 + \w\yr (l + -j±^y exp ϊ \w\W .

where

Here Ψ(t) > 0 is some function of t ; I = 1350(κ -f ^) is independent of £;
2) in the intersection of the above domain with the strip

3
Imw

we have

\T(w)\ < K(t) (1 + \w\ + (27)

3) q>j(w) can be continued as an entire function of w which satisfies

We denote L = 1 + max^', N'") and:

w~LT(w) = f(w); w~LG(w) = G(w) .
4

φ(w)=
j

satisfies [for some γ(t) > 0]:

\φ(w)

Let ^(ε) be the contour (pictured in Fig. 3) composed of an arc of
a circle {w:|w| = E (t) + \Δ \ -f ε, Imw ^ ε} and of the two half lines
given by {w.ϊmw = ε, \w\ ̂  R(t) + \Δ\ + ε}. Here ε satisfies 0<£< (3/4) τ.

-plane

Fig. 3. The contour

Define

1 r dw'
2πi J w' — K

U+ (w ε) if w is above

U~ (w ε) if w; is under
( ε ) ,

(ε).

21 Commun. math. Phys.,Vol. 13
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Clearly U+ (w ε) and U~ (w e) are holomorphic in their domains of
definition and U±(w,ε) = U±(wt

ίε
f) wherever they are both defined.

Hence U+ (w ε) and U~ (w ε) are respectively restrictions of two func-
tions :

U+ holomorphic in {w.ϊmw > 0, \w\ > R(t) + \Δ\} ,

Ό~ holomorphic in |w:Imw < -j- or \w\ < R(t) + \Δ\ + ~-τΛ .

In the intersection of these two domains

ϋ+(w)- U~(w) = T(w).

Hence T(w) — U+(w) and — U~(w) coincide with the same entire func-
tion which we denote E(w). Note that, if 0<ε g 3τ/8 then U+(w)
= U+(w; ε/2) is bounded in {w.Imw ^ ε, \w\ ^ B(t)+\Δ\ + ε}, while
U~(w) = U~(w:2ε) is bounded in {w:Imw ^ ε or |w| Ξ£ 12 (t) + \Δ\ + ε}.
We can now estimate the entire function φ (w) E (w) : there is a constant
(depending on t) C(t) such that

1) if Imw^ 3τ/8 and \w\ - B(t) - \Δ\ ̂  3τ/8,

|y(w) JB(w)| - \Q(w) - φ(w) U+(w)\ < C(t) [ezN1/'+ e4«W/2].

2) if Imw g 3τ/8 or |w;| ^E(t)+\Δ\ + 3τ/8

|y(w) JS(w)| - \φ(w) TΓ(w)\ < C(t) e4 κH l y 8.

In other words the product of the two entire functions E and φ is
bounded by

while
|φ(w)| < γ(t) exp 4κ l^j1/2.

Applying theorem A 3.1 of Appendix 3 we obtain the existence of two
constants C" (t) > 0 and κf > 0 such that

\E(w}\ <0'(Oe*Ή1/a.

But since |.E(ttJ)| is bounded along the line {w.Imw = 3τ/8} it follows
from the Phragmen-Lindelόf theorem that E is bounded in the whole
complex plane, i.e., E is a constant. Since U+ is bounded in {w'.Hmw ^ ε,

H S B(t) + \Δ\ + ε}forO < ε ̂  3 τ/8, T is bounded in the same domain.
This, combined with (27) shows that

for

and \w\ > R(t) + Δ + — .

This is easily translated in terms of the variable

β = % + -47 (w% - n% + ml -
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and we finally obtain
Theorem. In a theory of local observables, the scattering amplitude F(s, t)

is holomorphic, at fixed negative t} in a domain {s:\s\ > R(t), Ims Φ 0}
where it satisfies

Here R(ί) and C(t) are certain positive functions of t, and L ^ 0 is a
positive integer.

VII. Conclusion

For certain favourable values of the masses [11], F (s, t) is analytic
in s (for fixed t, tQ ̂  t ^ 0) in a full cut-plane. The theorem just proved
then shows that F(s, t) satisfies a finitely subtracted dispersion relation.
This result is well known to hold (for the same favourable values of the
masses) in a theory where each particle may be described by a Wightman
field [11]. The present paper has thus extended this property to theories
of local observables. It is easy to verify that the methods used here can
be straightforwardly generalized to the case when the fields
instead of being bounded operators, are given by

where φ^ is a test function with compact support, and φl , . . . , φn are
Wightman fields (or even Jaffe fields) whose vacuum expectation values
have polynomial growth at infinity (in x space).

Thus, all relativistic and "strictly local" theories (in which the com-
mutator of two fields exactly vanishes at sufficiently large spacelike
distances) have as a common feature the polynomial behaviour of the
scattering amplitude and its consequences ([12]): number of subtrac-
tions ^ 2, Froissart bounds, etc.

It is somewhat surprising that the proof given in this paper does
not need operators localized in arbitrarily small space-time regions (as
one might expect from certain examples in potential scattering). This
is due to the fact that, applying Lorentz transformations to a given region
in spacetime, one can render it arbitrarily thin in certain spacelike direc-
tions (without, however, changing its volume!).

Finally, we note that, although we have restricted our attention to
neutral scalar particles, there are no essential complications in the case
of particles with arbitrary spin and charge.

Acknowledgements. We wish to thank Professors H. ARAKI, H. BOUCHERS,
K. HEPP, Drs. J. BROS, R. STORA, and F. RIAHI for very useful discussions. After
the completion of this work, Dr. R. SENEOR informed us that he has independently
obtained similar results by different methods.
21*
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Appendix 1

Lemma Al. Let /x be a junction of two complex variables z± = xλ + *2/ι
and z2 = x2 -f iy^ holomorphic in {zl7 z2:yλ > 0, y% > 0} and such that,
for a certain b > 0,

for every (11, 12) with 0 ̂  lλ ^ w -f 2, 0 ̂  Z2 ^ n + 2, and

ι, /or Zj ^ 1

|£Ma/ι(z)| ^ (6 + 1)2^+2) (2

Proo/. Let

(0 ̂  ^ ̂  w + 2, 0 ̂  Z2 ^ 7i + 2) .

We have, for 0 ̂  ̂  ̂  1, 0 < y2 ^ 1

0 ̂  ?j ̂  n + 1
0 ̂  ?2 ̂  n + 1

1

Hence

^ 22 w+3 + 2 .

But actually, a similar evaluation yields, for ̂  ̂  1,

which is the desired result.

Appendix 2

We consider, in the topological product of n copies of two-dimensional
complex Minkowski-space the two tubes

ft = ± {k = (k,, . . ., kjilmk, 6 V+,j = 1, 2, .... n}

and the set /n of Jost points, given by : /n = ̂  \j /%

ty > 0, β, < 0,? = 1, 2, . . ., n}.
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Here, and in the following, us = kf -f kj , vj = kf — kf, (j = 1, . . . , n).
Let

A Φ O

where [λ] is the transformation us ~> λuj, Vj -> λ~IVj) I ^ j < n.
Lemma A2.1. Let G be a function, holomorphic in J7~+ \j 3~ΰ > ana

that in these tubes

\θ(k)\ < expZ Σ llm^pl $ > °)
i = ι

Suppose that the two boundary values of G at the real points, from
(in the sense of distributions) coincide in /n . Then

1) G has an analytic continuation in 3~'n\
2) foranykζΓZ

\G(k)\ < expZ Σ max(|Im^|, |Imi/|)
; = 1

Proof. The statement 1) is well known [13]. It will be reobtained in
the course of proving 2). To do this, consider, the function G of n -f- 1
complex two-vectors defined by

6(K, klt . . ., Jcn) = [e-"* - G(klt . . .,kΛ)r1-

This function is analytic in

ί n

Δ=\k= (&1? . . ., kn), K'.Imkj ζ V+,j =!, . . . ,»; ΊmK -
{ ? =

ίk KiImkjζ V~,j= 1, . . .9n;ImK+ Σ Imft, £ vΛ
I 3 = 1 )

\j

u {A:,^:ft6/

Δ is a (generalized) semi-tube since : (k, K) ξ Δ and (K — K') real
= » ( & , # ' ) € A Moreover, if (4,^)6^ and Im(^ - K') ζ V+ then
(k, K') ζ Zl. It follows that the envelope of holomorphy A of A has the
same property. We now proceed to determine zf.

For this purpose we introduce redundant variables ζj ζ C2, ζ" ζ C2,
Z ξ C2, (j = 1, . . .,n) and set

K — Σ (ζ? + ζj) + ̂

We use the "characteristic co-ordinates" u$ = ζjQ + ζ j 1 , v'j — ζjQ — ζ j 1 ,

u'.' = ^"o _|_ ^'ι? v'.' = ζ^'o _ ^'ι? (1^?'^ n). We seek the envelope of



310 H. EPSTEIN et al. :

holomorphy of

{£', ζ":Imu > 0, Imv/ > 0, Imu ' = Imv ' = 0, 1 ̂  ? ̂  n}

w {£', £":Imify' = Imv/ = 0, Im^ ' > 0, Imv" >0,l ^j ^ n}

\j {ζf and ζ" real:^/ > 0, ty' < 0, u' < 0, v" > 0} .

[Clearly, if (ζ', ζ") is a point of the envelope of holomorphy of this
set, and if ϊmZ ζ V+, then 6 is analytic at (k, K) for kj = ζ - ζ'/, K

= Σ(ζ} + ζ'i) + Z l
The above set is transformed into a (flattened) tube by setting

z = logu , w = - log(- v/) ,

'̂ = - log(- u'/), w = logif (j = 1, 2, . . . , n) .

Here the function log is defined, in the complex plane cut along R~",
as having its imaginary part between — π and π.

The above set becomes :

{z', w', z", w":Q< Imzj < π; 0 < Imw < π; Im^ ' == Imw'/ = 0}

w {zf, w', z", wff:Imz = Imw/ - 0; 0 < Imz/ < π; 0 < Imw;/ < π}

\j {all real points} .

Its envelope of holomorphy is its convex hull it is given by

(z', w', z", w":Q< Imz < π 0 < Im^ < π 0 < Imz^ ' < π; 0 < Imw/ < π}

{*'' ̂ '5 ^ / / J w": - 0 < Imz/ <π-θ;-θ< Imw <π-θ;

θ-π< Imz" < θ; θ - π < Im^' < 6} .

That is, in the variables uj , u", v'j , vfjf :

{u', v', u", v" '.Imu'j > 0, Im^ > 0, Imu ' > 0, Imv'/ > 0}

r\ U -jV, v', ̂ ", v" rlmJU/ > 0, ImA"1^' > 0,
Λ ζ (C

Imλ>0

' < 0, ImA-1^' < 0} .

We have obtained the domain

ΛU, {Γ, ζ", Z : c; 6 ̂ + A [λ-1] «^+, ?;' 6 ̂ + n [A-*] ̂ ",
Imλ>0

Using now real points of coincidence where Uj < 0, v'j > 0, u'/ > 0,
Vy' < 0, one can suppress the restriction Imλ > 0. Finally we see that,
for every λ φ 0, 2 contains

Λ = it, K .k, = c; - ζ'i, κ= Σ(ζί + Φ + z,
\ /-i

[λ] ̂ +, ζ'^^+r\\λ\ 3~, (l^j^ n) ,Zί3-+\ .
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We now show that Δλ = 2λ, with

2λ = lk, K .ki-ξ; - #', j = i, ...,n ,κ= Σ(ξ} + c;r);
I ? = ι

311

It is obvious that Aλc2λ. To prove that 2λζ A^, we consider vectors
£/,$' verifying:

# 6^ #' 6^+, c; - c" e m ̂  (i^j^n),
and try to determine ζj , f" , such that

[A] ̂ +, Cί' ζ tr+ n [λ] ̂ ~,

If Imλ H= 0, we can take as independent unknowns :

Ίm(ζ} - f/) = ρt, Ίmtλ-1] (ζ} - ξj) = τ,

We must now find ρ, and τ$ such that :

n
27 e^

The two first conditions can be satisfied by taking QJ ζ F~ very small;
the two last conditions can be satisfied by taking τ$ = — 1/2 Im [A"1]
(ζj + ζj}- We have proved:

Lemma A2.2.

= fc, K:k, = C; - C/, (1 ̂  ? ^ n); JΓ =

{*, ^Γ:^ ζ ;̂> .

(Indeed we have proved that 2 contains the right-hand side; but the
latter is a domain of holomorphy, since &~'n is a domain of holomorphy
in the case of two space-time dimensions [14].)

Let kζ^r^kj^ (Uj, vj), (l^j£ n). The set of K = (Z7, F) such
that (&, K) ζ 2 is given by

Im U = £ (γ'f
= 1

V =
j = 1
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where γ'j, γ'j', <5; , ό" are positive numbers such that γ'j — γ" = Im% and

This is equivalent to

ImU>Σ _
?=ι ?=ι

(These conditions are clearly necessary. To see that they are sufficient,
take γ'j = Im%, yj = 0 if Im^ > 0, or γ'j — 0, y" = — Im% if Im% < 0.)

Lemma A2.3

n n
, Im F > Σ

? = ι

We have thus proved that, if k ζ 3T'n, kf + k} = uj} kf - k} = vj9

n n -ί±-(ϋ + V)
(Im U > Σ |Im%|, Im F > Σ |Im^|) =^ e 2 ^(^) H= 0 .

This implies :

For, if the contrary were true, we could find

Im Z7 > Z llmtd and ImF>

such that \G(k)\^ellπί^u + v^} then determine Re(ί7+F) so that
G(k) = e-

il(u + v»2. Since

|Im^| + |Im^.| = 2 max(|Im*j>|, |Im^|) ,

Lemma A 2.1 is proved.

Appendix 3

Though we need only a theorem about the ratio of two entire functions
of order 1/2, we shall consider a somewhat more general case.

Theorem A3.1. Let E (z) = N (z)/D (z) where E, N and D are entire func-
tions, N and D being of order less or equal to ρ, 0 ^ ρ < 1. Then E is of
order at most ρ. If N is of order ρ and of type τN, E is either of order less
than ρ or of order ρ and type rE :

f
- τNj

xγ
0

Proof. We remind the reader that the order ρ of an entire function F
is given by

lim log log M(r)/logr = ρ , (A3.I)
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where M (r) is the maximum modulus of F in |z| ^ r. If the function is
of order ρ the type is given by

r = ΠmlogJf(r)/rβ (A3.II)

(notice that τ may be 0 or infinity).
A function F of order less than unity is of genus 0 [15], i.e., it can

be written as an absolutely convergent product over its zeros. From
now on all the functions we consider have no zeros at the origin and take
the value unity at this point :

Now we shall need two important inequalities
a) Jensen's inequality. Define n(r), the number of zeros for \z\ < r.

Define

- (A3.IV)
0

then
logJf(r) ^ N ( r ) . (A3.V)

b) We need an inequality which goes in the other direction, i.e., which
controls the maximum modulus when the radial distribution of zeros is
given. Here we assume that n(r) < Or1"6, an assumption which is always
satisfied by functions of order strictly less than unity. We can write [16]

log \M (r)| < Σ log (l + -,̂ τ) = flog (l + ~) dn(r')ί=ι \ i2*!'' y \ r i

In the last two steps we have used integration by parts. In that argument
n(r) < Crl~ε is essential.

Consider now the function

N, D and E are entire and N and D are of order 0 ^ ρ < 1. Then we
are allowed to write

W = /7(ι -IT),

£(z) = tf(l-f-), (A3.VII)

where, clearly, the z/s form a subset of the z/s.
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It is clear that E (z) is also a function of genus zero since the products
in (A 3. VII) are absolutely convergent. Hence the order of E(z) is less
or equal to unity.

Now we define nN(r), nD(r), nE(r), number of zeros of N, D and E
for \z\ 5* r, with nN(r) = nD(r) + nE(r).

Similarly, we have
NN(r) = ND(r) + NE(r) .

Let us now apply (A 3. VI) to E. It is legitimate to do so even though
we have not yet established that E is of order strictly less than unity.
Indeed E is of genus zero and NE(r) < NN(r) which by JENSEN'S ine-
quality and the definition of the order implies

NE(r)
for r big enough. So

° °N(r') dr'

(r' + r)!

o o

If we now use JENSEN'S inequality for N we get

log |Jf,(r)| <; r dr' . (A3.VIII)
0

If N is of order ρ we have

log\MN(r)\ ^ cεre+* + c'ε

for ε positive arbitrarily small, and therefore

log \ME(r)\ < cεKQ+er*+* + c'ε , (A3.IX)
where

CO

' (A3.X)

Since (A 3. IX) holds for ε arbitrarily small it means that E is of order
less or equal to ρ.

If, more specifically, we know that N, being of order ρ, is also of
type Tjy , we can make a more accurate statement : then we have

and hence
| < (τy + ε) Kβr* + c'e (A3.XI)

where KQ is defined by (A3.X).
So if E is of order ρ, it is of type τE ^ KQrN, which concludes the

proof of our theorem.
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In particular, if ρ — 1/2 (our case)

τE<^τN. (A3.XII)

We want now to take this opportunity to extend our considerations to
the case of functions of exponential type (order 1),

Theorem A3.2. // the ratio of two entire functions of order 1, E = N/D,
is an entire function, it is of order 1, at most. If it is of order 1 its type is
majorized by

TE ^ -£- (ΓN + Trj) ,

where τN and τD are the types of the numerator and the denominator.
Proof. Consider

- = - D(z)D(-z) -

= n+(y)
d+te)

n+ and d+ are of order 1/2 in the variable y, and the type of n+ is τN + τD .
Hence, by application of Theorem A 3.1 h+(y) is of order 1/2 at most,
and, if it is of order 1/2, its type is at most

fav +
Similarly, we can consider

and get analogous results.
If one reconstructs E from h+ and h_ one gets that
i) E is at most of order 1

ϋ) if E is of order 1 its type τE satisfies

Notice that this result may not be the best possible one. However,
there is an obvious example where τ# = tN -+• t^ :

E(z) = exp(τ^z)/exp(- τDz) .

Finally, one can restate Theorem A 3.2 in a new way:
Theorem A3.3. The type τ12 of the product of two entire functions of

order one and types τx and τ2 is such that

. 2_
T12 = π

 Tl ~ T2 ?

r >-r rT12 ^ π

 T2 ~~ τl '

If rx and T2 are sufficiently different, this is a non-trivial and possibly
new result (according to Ref. [15], p. 126).
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