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Abstract. WEKDEL showed that norm non-increasing isomorphisms between
the group algebras of locally compact groups could be expressed in terms of group
characters and topological isomorphisms. His results are extended to twisted group
algebras. In particular, by applying a generalisation of WENDEL'S main result to
twisted group algebras over the same group, it is shown that the number of such
algebras is equal to the number of orbits in a 2-cohomology group over G under
the action of the automorphism group of Q. An application to the twisted group
algebra denned by WEYL'S form of the canonical commutation relations is con-
sidered.

§ 1. Indroduction

In a previous paper [4] the properties of twisted group algebras over
a separable locally compact group G were studied. Many of these pro-
perties generalised those of the group algebra LX{G) of G. WENDEL [8]
used the theory of centralisers to study norm non-increasing isomorphisms
between two group algebras L1{G)) L^G') and showed that these could
be described in terms of a character of G and a topological isomorphism
between G and G'. In this paper WENDEL'S results are generalised to
twisted group algebras with continuous multipliers. In particular, by
studying the form of norm non-increasing isomorphisms between twisted
group algebras of the same group G, it is shown that the number, up
to isometric *-isomorphism, of twisted group algebras of G with conti-
nuous multipliers is equal to the number of orbits in a certain 2-coho-
mology group over G under the action of the automorphism group of G.

The final section is devoted to the study of an example which is of
some relevance to the quantum theory of a system with one degree of
freedom.

§ 2. Notation and Basic Results

Let G be a separable locally compact group with unit element e and
let m be a left-invariant Haar measure on G; let δ be the modular func-
tion on G\ let LX{G) be the space of equivalence classes of complex-
valued, m-measurable, absolutely integrable functions on G. LX{G) is a
Banach space with respect to the norm \ \x defined for each element
y of 2^(0) by

llvlli= f\ψ(x)\dm{x). (2.1)
o* G



132 C. M. EDWARDS and J. T. LEWIS:

Let T be the group of complex numbers of unit modulus. A conti-
nuous function ρ from G to T such that ρ (e) — 1 is said to be a 1-cochain
and a continuous function ω from G X G to T is said to be a 2-cocycle
if for all x, y, z in G,

ω(e,z) = ω{x,e) = 1 , (2.2)

ω (y, 2) ω (x, yz) = ω {x, y) ω (xy, z) . (2.3)

Let ZL(G, T), Z2(G, T) be the sets of 1-cochains, 2-eocyeles respectively.
These are abelian groups when addition is defined for pairs ρ1? ρ2 in
Z1{G, T) and ωlf ω2 in Z2(G, T) by

(QX + £2) W = Qi(x) Qz(x) > (2 4 )

(ωλ + ω2) (α;, y) = ωx(x, y) ω2(x, y) , (2.5)

for each pair x, y of elements of G. For each element ρ of Z 1 (6r, T) let
dρ be the function defined for each pair x, y of elements of G by

(dρ)(x,y) = ρ(x)ρ(y)ρ(xy)-1. (2.6)

Then 5 is a homomorphism from Z1(G, T) onto a subgroup B2(G, T)
of Z2(G, T). The quotient group H2(G, T) = Z 2 (^, T)/B2(G, T) is said
to be the 2-cohomology group.

The results of [4] show that to each element ω of Z2(G, T) there
exists a multiplication ψ1, ψ21-> ̂ x ω ̂ 2 and an involution ψ i-> ̂ ω on
JLJL (G) defined for each element x of G by

(x) = / %(!/) ψ2(ylχ) co{y, y-χx) dm{y) , (2.7)

^ ω (a;) = ^(a;-1) δ (x-1) ωiX X-1) (2.8)

with respect to which LX(G) is a Banach *-algebra (L^G), ω), which is
said to be the twisted group algebra of G corresponding to the multi-
plier ω.

A right centaliser F on a Banach *-algebra XI is a bounded linear
operator from 11 to itself such that for each pair a, b of elements of 11

V(ab)= V{a)b. (2.9)

Left-centalisers are similarly defined. The set R(1X) of right centalisers
on 11 is a closed subspace of the Banach space J5(!t) of bounded linear
operators from It to itself.

Let M(G) be the set of regular complex measures on G of bounded
total variation. M(G) is a Banach space with respect to the norm || ||
defined for each element μ of M (G) by

Wl = v a φ | (2.10)

where \μ\ is the element of M(G) defined for each ^-measurable subset
E of G by

\μ\ (E) = variation of μ on E , (2.11)
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(for details, see § 19.12 of [5]). For each element ψ of L^G) and each
element μ of M(G)7 let μωψ be the function defined for each element

y {μωψ){x)μ ψ μ (2.12)
G

The Lebesgue-Fubini Theorem shows that μωψ defines an element of
(LX(G), ω) and a simple computation shows that

Wμωψl g; \\μ\\ HvΊU ( 2 !3)
Let W(μ) denote the mapping from (L^G), ω) to itself defined for each
element ψ of LX(G) by

Wr(iw)ψ = iwωvί. (2.14)
We will prove

Theorem 1. 27&e mapping μ\~> W(μ) is a linear isometry from M{G)
onto B((LL(G), ώ)).

Let MV(G) be the subset of M{G) consisting of point measures. We
then prove

Theorem 2. The mapping μ\-> W(μ) maps MP(G) onto the set of
isometries in R^L^G), ω)).

Let G' be another separable locally compact group, e! the unit ele-
ment in 6r'j m' a left-invariant Haar measure on G' and δf the modular
function on Gf. Let ω' be an element of Z2(G\ T), let ρ be an element
of Z1 (G, T) and let r be a topological isomorphism from G onto G'. (A topo-
logical isomorphism between topological groups is an algebraic isomor-
phism which is also a homeomorphism.) Then, for each element ψ of
L^G), let Γψ be the element of Lt{G') defined for each element τx of
Q' b y (Γψ) (τx) = c(τ) ρ(x) ψ(x) (2.15)

where c(τ) is the positive real number such that for each m-measurable

subsets of G m{E) = c(r)m>(rE). (2.16)

[The mapping E \~> m' (τE) is a left-invariant Haar measure on G and
so there exists a real constant c(τ) such that (2.16) holds.]
We will show that, provided that for each pair x, y of elements of G,

ρ{xy) = ρ(x) ρ{y)ω{x,y) ω'(τx,τy), (2.17)

Γ is an isometric ^-isomorphism from (Lλ(G), ω) onto (Lx (G'), ω').
Further, using Theorems 1 and 2, we will prove

Theorem 3. There exists a norm non-increasing isomorphism from
(L1(G)9ω) onto (L1(G'),ω/) if and only if there exists an element ρ of
ZX(G, T) and a topological isomorphism between G and G' such that for
each pair x, y of elements of G, (2.17) holds. In this case Γ is defined for
each element ψ of Lt(G) by (2.15).

An immediate corollary of this theorem is
Corollary 4. Every norm non-increasing isomorphism from (L1(G)} ώ)

onto (2/2 ((?'), ω') is an isometric *-isomorphism.
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Let Aut(G) demote the group of topological automorphisms of G.
Then Aut(G) may fce regarded as acting on Z*(G, T) if for each element
ω of Z2{G, T) and ^ a c h element τ of Ant (G), rω is defined for each pair

ίc, y of elements of Q fov

(τω) (α, i/) = ωiτ^x, x~xy) . (2.18)

Since B2(G, T) is invariant under the action of Aut(β), there exists an
induced action of Aut(G) on #*((?, r ) d e f i n e d f o r Ό a c h e l e m e n t [ ω ] o f

H*(G, T) and each element τ of Aut(G) by

τ[ω]=[τω] (2.19)

([ω] denotes the ele m β nt of # 2 (G, T) containing ω). Applying Theorem 3
to the case in whic^ g a n d g' are the same group, We prove

Theoremδ. TΛe number, up to isometric ^isomorphism, of twisted
group algebras over g ιvith continuous multipliers is equaι to the number
of orbits in H2(G, 2>) unfor the action of Aut(β).

§ 3. Centralisers on (I/X (G)9ω)

Proof of Theorem 1, For each element μ of M (G), the mapping W » :
(L1(G),ω)~>(L1(G)> ω ) defined by (2.14) is clearly i m e a r . Moreover
(2.13) shows that it i s bounded and

W(μ)\\^\\μ\\ (3.1)

A simple computation shows that for each pair ψΛ w of elements of
LAG), l9ψ*

μω(ψ1ω ψ2) - (μ ω ψj ω ψ2 (3.2)
and hence that W(U) i s a n element of R^L^G), ω)).

The mapping ψ:μ->W{μ) is clearly linear from M(G) onto
Λ((A(ff), ω)) and ( 3 > 1 ) s h θ w s that it is bounded. I ^ t μ be an element
of M(G) such that for e a c n element ψ of ̂ ( β ) ,

0. (3.3)
In particular (3.3) holds for each element ψ of the s p a c e Oooί^) of conti-
nuous functions having compact support in G. I t f 0 π O W B that for each
element α; of G,

f ψiy^x) ω(y, y-λx) dμ(y) = 0 % (3.4)

In particular (3.4) W d s when x = e. Clearly the mapping which sends
each element ψ of Coo(£) i n t o the function ψ~ defiued for each element
y of G by

ψ~(y) = ^(^Z"1) ω(y, y-1) (3.5)

is one to one onto O00(£). It follows that for each dement ψ of C00(G),

fψ(y)dμ(y) = O. (3.5)
G

Let (70((r) be the B^nach space of continuous compl<3X_vauied functions
on G which take arbitrarily small values outside comp a ct subsets of G.
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Then Theorem 14.10 of [5] shows that M(G) may be regarded as the
Banach space dual of C0(G). Moreover, C00(G) is dense in C0(G) and so
(3.5) shows that μ = 0. Hence W maps M (G) one to one into ^ ( ( ^ (G),ωj).

Let V be an element of RζζL^G), ω)) and let {χi'.iεΛ} be an appro-
ximate identity for (L^G), ω). (For the definition of approximate
identities for Banach *-algebras see [2] and for the proof of the existence
of such an approximate identity for (L^G), ω) see [8]). For each element
i of A let r\i — V%% Now {ηi'.i ζΛ} is a sequence of elements of LX(G)
such that

Hli = IIVχil^WVW \\χi\\1 = \\V\\. (3.6)
An argument identical to that given in the proof of Theorem 1 of [8]
shows that there exists an element μ of M (G) which is a limit point of
the sequence {ηfΛ ζA} in the weak *-topology of M(G) when regarded
as the dual of C0(G). It follows from (3.6) that

Again, following the proof of Theorem 1 of [8] with slight modifications
involving the multiplier ω it may be shown that for each element ψ

Vψ=-μωψ (3.8)
and hence that V = W(μ).

Finally it follows from (3.1) and (3.7) that \\W(μ)\\ = \\μ\\ and hence
that W maps M(G) isometrically onto E^L^G), ω)).

Before proving Theorem 2, it is useful to consider the image of various
subset of M(G) under the mapping W. Let Ma(G) be the closed subspace
of M(G) whose elements are absolutely continuous with respect to m.
To each element μ of Ma(G) there corresponds a unique element φ of
Lλ{G) such that cZμ = φdm and the mapping μ ι-> φ is an isometry from
Ma(G) onto L^G) (for full details see § 19.18 of [5]). It is clear that for
each element ψ of L^G), W{μ) ψ — φωψ. We have therefore proved

Corollary 3.1. W maps Ma(G) isometrically onto the left-multiplication
operators on (L^G), ώ).

Let x be an element of G and let vx be the element of M^ (G) concen-
trated on the point x. Then, for each element of L^G),

W(Vχ) ψ^<?(x)ψ (3.9)

Λvhere JSf (x) ψ is the element of Lx (G) defined by

(2(x) ψ) (y) = ω(x, x^y) rp{χ-λy) . (3.10)

It was shown in [4] that the mapping j£f (x) is a linear isometry from
LX{G) onto itself. J£(x) ψ is said to be the twisted left-translate of ψ
by x corresponding to ω and the mapping ψ \-> 3? (x) ψ is said to be the
twisted left-translation operator by x corresponding to ω. A simple
computation shows that for each pair x, y of elements of G and each
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element ψ of L^G),

£(x) &(y) ψ = ω(x, y) &(xy) ψ . (3.11)

It therefore follows from (3.9) that the following result has been proved.
Corollary 3.2. W maps MP(G) ίsometήcally onto the set of hoisted

left-translation operators on (L^G), oS).
So far we have only concerned ourselves with the norm topology

of E(^(L1(G)> ω)). In the proof of Theorem 3, several results about the
strong topology of R(^(L1(G), ωj^ are required. In particular, it follows
immediately from Theorem 1 that

Corollary 3.3. R{(Jj1(G),ωsj) is closed in the strong topology of

£(&((?), ω)).
Also by closely following the proof of Theorem 4 of [8] with the usual

modifications involving ω, it may be proved that
Corollary 3.4. The set finite linear combinations of twisted left-trans-

lation operators is strongly dense in R(j^L1(G), ω)).
Proof of Theorem 2. Corollary 3.2 shows that W maps M^(G) iso-

metrically into the set of isometries in R{iLx{G), ω)). Let V be an
isometric element of RζiL^G), ω)) and let μ be the unique element of
M (G) such that W(μ) = V. Then, using the fact that the mapping
ψ \—* ψ~ defined by (3.5) maps C00(G) isometrically onto itself, a slight
modification of the proof of Theorem 3 of [8] shows that μ is an element
oiM9(G).

The detailed proofs of the results of this section are given in [3].

§ 4. Isomorphisms of Twisted Group Algebras

Proof of Theorem 3. Let τ be a topological isomorphism from G onto
G' and let ρ be an element of Z1 (G, T) such that for each pair x, y of
elements of G,

ρ(xy) == ρ{x)ρ{y) ω{x, y) ω'(τx, τy), (4.1)

For each element ψ of Lλ(G) let Γψ be the function defined for each
element τx of G1 by

(Γψ)(τx) = c(τ)ρ(x)ψ(x). (4.2)

Since ρ is continuous, Γψ is m-measurable and

J\(Γψ) (τx)\ dm'{rx) = f c(τ)\ ρ(x) ψ(x)\ c{τ)-Hm(x) = \\W\\X . (4.3)
G G

Hence Γψ defines an element of Lλ{Gf). Γ is clearly a linear mapping
from Lt(G) into Lλ{G') which (4.3) shows to be isometric. Let ψ' be an
element of LX{G') and let ψ be the function defined for each element
τ-λx' of G by

yj(T~xxf) - c ί τ ^ ρ C r - V J - V f c ' ) (4.4)

Then ψ defines an element of L^G) such that Γψ — ψ''. Hence Γ is a
linear isometry onto L^G'). Using (4.1) a simple computation shows
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that Γ is a homomorphism. For each m-measυxable subset E of G and
each element x of G,

δ'{τx) m'(τE) = m'{τEx) = c(τ) m(#.τ) - δ(x) c{τ) m{E)
(4.5)

= δ(x)m'(τE)
and so for each element x of 6?,

<5'(τa) = δ(x) . (4.6)

Using (4.1) and (4.6) a simple computation shows that for each element
ψ of Lλ(G), Γ(ψω) — (Γψ)ω> from which it follows that P i s an isometric
* -isomorphism.

Conversely, let Γ be a norm non-increasing isomorphism from
(LX{G), ω) onto {Lx(Gf), ω') and let F be an element of Rφj^θ), ώ)).
Then Γ F Γ - 1 is clearly an element of R((LX(Q% ω')) It follows that
for each element zoίG, V (z) = ΓJ£? (2) Γ" 1 is an element of B {{Lλ (G'),ω')).
Using the same argument as that used in the proof of Lemma 1 of [8]
it follows that for each element ψf of L^G'),

l |F(z)vΊl i^ l lvΊl i ( 4 7)
However, it follows from (3.11) that

Viz)'1 = ^φΓF1) Viz-1) . (4.8)
Replacing z by z~x in (4.7) it follows that V(z) and V(z)~λ are both norm
non-increasing and therefore isometric. It follows from Theorem 2 that
there exist mappings x from G to G' and ρ from G to 21 such that for each
element z of G,

V(z) = rj?(z)r-i = ρ(z)£"(τz), (4.9)

where &'(xf) denotes the twisted left-translation operator on L^G')
corresponding to the element x' of G'. Let x, y be elements of G. Then,
using (3.11) and (4.9),

ρ(xy) J?'(rxy) - ΓX(xy) Γ'1 ^~J

= ω(α;,y) ρ (x) ρ (y) J?f (τx) 2' (τy) (4.10)

== co (x, y) ρ (x) ρ (y) ωf {τx, ry) ££' (τx, τy) .

It follows that for each element ψ' of L^G') and m'-almost every element
z' of G',

ψ' CO = ρ (»2/) ρ (a?) ρ (y) ω (a;, y) ω r (τα;, τf/)

( ') (»') » ( 4 1 2 )
where / is a continuous function from G X G to T. Therefore,

/ Ψ'(z') dm'(z>) = /(«, 2/) / ^((T^-MταO-Mτay) .') d m ' M
G' G'

= /(»»y) f ψ'{*') dm'(z') ,
G'
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from which it follows that f(x, y) = 1 and hence from (4.12) that for
each element ψf of L^G') and ra'-almost every element z1 of G',

ψ'(z') = ψ'(iτy)^{τx)^τtxy) z') . (4.13)

In particular (4.13) holds for each element ψf of O00(6?'). In this case
both sides of (4.13) are continuous functions of z' and so (4.13) holds for
every element %' of G1 and in particular when z' = e'. Since C0Q(G')
separates points in G' it follows that

rxy = τxry . (4.14)

Hence τ is a homomorphism from G to G'. It therefore follows from
(4.10) that ρ(e) = 1 and that for each pair x, y of elements of G, (2.17)
holds. It must be proved that ρ is continuous and that τ is a topological
isomorphism. Let x be an element of G such that rx = e'. I t follows
from (4.9) that for each element ψ of Lx{G)y

£>(x)ψ = ρ(x)ψ (4.15)

and a similar argument to that above shows that x = e.
In order to prove the continuity of ρ and r the following Lemma

whose proof will be given at the end of the present proof, is required.
Lemma. The mapping x ι—> Sί? (x) is continuous in the strong topology

of B(&((})).

Continuing the proof of Theorem 3, it is clear that the mapping τ
is composed of the three mappings

Arguments similar to those used in the proof of Lemma 2 of [8] show
τ 2 and τ 3 to be strongly continuous and the lemma above shows that τx

is strongly continuous. Hence r is continuous from G into Gr. Moreover,
for each element x of G and each element ψ' of 1^(0'),

ρ(x) ψ' = ω'{τx, τx~λ) (Γ&(x) Γ^^'iτx'1) ψf)

and so the continuity of τ shows that ρ is continuous. Arguments similar
to those used in the proof of Lemma 3 of [8] and Corollary 3.4 show
thatτff =<?'.

I t remains to prove that Γ has the form (2.15). Let Γ' be the iso-
metric *-isomorphism from {Lλ (G), ώ) onto (L2 (Gf), ω') defined for each
element rx of G' by

(Γψ)(τx)^c(τ)ρ(x)ψ(x). (4.16)

Then a simple computation shows that for each element y of G,

(4.17)
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Let Γ " = Γ^Γ'. Then Γ" is a bounded automorphism of (L^θ), ω)
such that for each element y of G,

A simple limit argument using Corollary 3.4 shows that for each element
Fof B^L^G), ω)).

Γ"VΓ"-* = V. (4.19)

In particular Corollary 3.1 shows that (4.19) holds when V is the left-
multiplication operator defined by an element ψ of LΎ{G). Hence, for
each pair ψ, ψ1 of elements of Lλ{G),

ψωΓ"ψx = Γn{\pωψι) = Γ"ψωF"ψl.

It follows that for each pair ψ, ψ2 of elements of LX{G),

Γ"ψωψ2 = ψωψ2. (4.20)

Let {xi'.i ζΛ} be an approximate identity for (L^G), ω). Then, for each
element ψ of Lx (G),

\Γ"V - Wl <L | | Γ > - Γ"ψωXil + \\Γ"ψωχί - ψωχ^ + \\ΨωXl -ψ\\v

It follows from (4,20) that Γ"ψ^ψ and hence that Γ = Γ'. This
completes the proof of the theorem.

Proof of Lemma. Let ψ be an element of Lx (G) and let x, y be ele-
ments of G. Then, by (3.11),

\2(xy) ψ-&(x) vlli = \\ω{x, y) &(x) &(y)ψ- &(x) ψl

£ \ω(x, y) - 1| Mi + \\&(y) ψ - ψl, ( 4 ' 2 1 )

since ££(x) is isometric. I t follows that the continuity of the mapping
χ\-+ S£ (x) ψ at e implies its continuity at every point y of G.

Let ε > 0 and let φ be a continuous function of compact support F
in G such that

\\ψ ~ φl < ε/4 . (4.22)

Such functions exist since C00(G) is dense in LX{G). Since ω is continuous
on G X G, there exists a neighbourhood Eλ of e such that

lω^^-^-ll^ίεMHΛ) (4.23)
for each element y oί F and each element x oί E1. Therefore,

\\&(x) ψ - ψl ^ \\&(x) ψ - &(x) φl + \\X(χ) φ - φl

+ \\Φ - Vi < Φ + I IΦi^V) - Φ(y)\ dm(y) (4.24)
G

+ f \ω(x, x^y) - 1| \φ(y)\ dm{y) .
G

It follows from § 20.4 of [5] that there exists a neighbourhood E2 of e
such that for each element x of E2,

V) - Φ(y)\ dm(y) < ε/4 . (4.25)

It follows that the mapping x \-> ££{x) ψ is continuous at e.
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Proof of Theorem 5. Let ( ^ ( ( J ) , ^ ) , ^ ^ ) , ^ ) be isometrically
*-isomorphic twisted group algebras over G. Then, applying Theorem 4
when G = G', there exist elements ρ of Z1(Gi T) and r of Aut(6r) such
that for each pair x, y of elements of G,

<*>i(v> V) = Q(x) Q(y) ρ{xy)~1ω2{τx, τy) (4.26)

which implies that
ω1=dρ + τ-1ω2. (4.27)

It follows that [ω2] = τfω-J and hence that [ω2], [ω-J are in the same
orbit of H2{G, T) under the action of Aut(G).

Conversely, let [coj, [ω2] be elements of H2(G, T) in the same orbit
under the action of Aut(6r). Then there exist elements ρ of Z1(G, T)
and τ of Aut(G) such that (4.27) holds. It follows that the twisted group
algebras (L1{G)iω^),{L1{G)i ω^) are isometrically *-isomorphic. This
completes the proof of the Theorem.

§ 6. Example

Let G be a connected, simply connected nilpotent Lie group. Then,
using techniques of HOCHSCHILD [6] and BARGMANN [1] Theorem 5 can

be extended to show that up to isometric *-isomorphism the number of
twisted group algebras over G is equal to the number of orbits in a
2-cohomology group of the Lie algebra g of G with coefficients in a one-
dimensional real vector space, under the action of Aut(6r) (for details
see [3]). In particular when G = R2 the direct product of the additive
group R of real numbers with itself, the theory shows that there are
precisely two orbits. These may be represented by the element 1 of
Z2 (R2, T) which is equal to 1 at all points of R2 x R2 and the element
ω of Z2(R2, T) which is defined for each pair x = (xv x2), y — (yly y2)
of R2 by

ω{x, y) = exp((ic/2) {x1y% - x2yx)) (5.1)

for some real number c. In effect therefore there are only two twisted
group algebras over R2, the group algebra (L^R2), *) where * denotes
the usual convolution, and the twisted group algebra (L^R2), ω).

VON NEUMANN [7] showed that up to unitary equivalence there is a
unique irreducible *-representation π of (L^R2), ω) defined on the
Hubert space L2 (R1) for each element ψ of Lx (R2) by

L (5.2)
Zπ R

where eic(XiP + Xi® is the unitary operator defined for each element φ
of L2 (R1) and each element s of R by
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When c is replaced by 2 πjh where h is PLANCK'S constant this is the

well-known "Weyl mapping" [9]. When ψ is the Fourier transform of

a real-valued function on the classical phase space R2 of a system with

one degree of freedom, Weyl proposed that π(ψ) be the self-adjoint

operator representing the corresponding quantum-mechanical observable.

Every irreducible * -representation π of (L^R2), *) is of the form

π(ψ) = ψ~{a1,a2) (5.4)

where ψ~ denotes the inverse Fourier transform of ψ and (ax, α2) is a

point in R2.

It folioΛVS from our results that there are only two possible ways of

quantizing a classical system with one-degree of freedom, by WEYL'S

method. The first gives the usual "Weyl mapping" (5.2) whilst the

second associates with each classical observable its value at a point of

phase space and in this sense reverts to the classical situation.
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