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Abstract. Taking into account the fact that space groups are groups of trans-
formations of Euclidean w-dimensional space, non-equivalent systems of non-
primitive translations are defined. They can be brought into one-to-one corre-
spondence with the elements of the group H1 (K, Rn/Zn) or with those of the group
^(K, Z^kZ^jH1^ Zn). (K is a point group of order k.) The consistency of these
findings with the results of Part I is given by the isomorphisms

H2(K, Zn) ^ W(K, Rn/Zn) s IPiK, Z^kZ^IW-iK, Zn) .

Theorems are proved giving the conditions for cohomology groups H« (K, A) to be
zero. These conditions are fulfilled in particular if A = Rn and K is a subgroup of
GL(n, R) that either is compact (then q > 0) or has a finite normal subgroup
leaving no element of Rn invariant (then q ^ 0). This implies that the affine, the
Euclidean and the inhomogeneous Lorentz groups are the only extensions of Rn by
the corresponding homogeneous groups. By way of illustration, the theory of this
paper is applied to two 2-dimensional space groups.

1. Introduction

In a previous paper [1], referred to hereafter as Part I, space groups
were presented as group extensions, and several possible ways of con-
tinuing the investigation in question were mentioned.

One of these ways concerned the application of the theory of group
extension and of the cohomology of groups to generalizations of space
groups. A first generalization is obtained when time inversion is added
to the spatial symmetry elements. The groups thus obtained are called
Shubnikov groups or magnetic groups. These groups have been discussed
in [2] from the point of view of group extensions. However, the generali-
zation principally aimed at is the study of the crystallographic groups
of space-time. Several papers concerning the general aspects of the
problem, the discussion of special four-dimensional cases and of the two-
dimensional case are being prepared.
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Here we continue our investigation of the ordinary (crystallographic)
space groups. This is interesting by itself, since space groups, although
at the very basis of solid-state physics, are not yet fully exploited in that
context. Furthermore, some of the problems one meets when dealing
with the above-mentioned generalizations are already encountered — in
their simplest form — in the study of space groups.

Going as far as we do in the algebraisation of the study of space
groups is meaningful for physics. Let us not forget the impulse that the
publication of Seitz's paper [3] has given to solid-state physics at a time
— 1934 — when space groups were — in principle — perfectly known.
FEDOROV and SCHOENFLIES had determined all three-dimensional space
groups not later than 1891. (For a discussion of the history of this dis-
covery, see [4].) In 1919 already, P. NIGGLI [5] had published "the most
thorough investigation alloted so far to a special domain of group theory
[6]". And yet in 1934 Seitz thought that "in applying the consequences
of the theories of crystal symmetry to mathematical-physical problems
the need is felt for a derivation and expression of these consequences in
terms of a matrix-algebraic scheme". The subsequent development of
solid-state physics showed that he was right.

The advantage of the algebraic methods used in this paper lies not
in its possible elegance (with Boltzmann we leave that to the taylors)
but in the possibility of giving conceptual proofs of theorems, proofs that
involve, for instance, mappings between sets of elements and not the
elements themselves. This way of thinking should also permit to bring
out more clearly the general features of a physical situation without
resorting to the special features of a specific model.

Placed in historical perspective, this series of papers is but a further
step, after the numerous steps that have preceded, in the direction of an
algebraisation of crystal physics.

In Part I it was shown that all space groups G may be presented as
extensions of U by K

where U is free abelian of rank n and maximal abelian in G, and K is
finite. To find all space groups amounts thus to finding all extensions of
U by K. After the choice of an isomorphism X: U>-»Zn (i.e. after the
choice of a free set of generators for U) one has thus to calculate the
second cohomology group H% (K, Zn) of K with coefficients in Zn, where
cp is a monomorphism cp: K>-> GL(n, Z). I t turned out that, in order to
obtain all non-equivalent space groups, it is sufficient to take one repre-
sentative cp (K) of each conjugate class (and there is only a finite number
of them) of finite subgroups of GL(n, Z).

The algebraic structure of space groups as it emerged in the historical
development seems at first sight to be different. Stated in modern
10 Commun.math.Phys.,Vol.ll
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language it appears that to each equivalence class of space groups there
corresponds an element of a first cohomology group H\ (K, RnjZn) and
not an element of a second cohomology group as above. One arrives quite
naturally at this result if one studies the structure of space groups as
groups of transformations of Euclidean w-space. Then it becomes clear
that some of these transformations consist of an orthogonal transforma-
tion followed by a translation that does not belong to U. Such trans-
lations are called non-primitive in contradistinction to the elements of
U that are called primitive translations. The elements of the first coho-
mology groups H^ (K, RnjZn) can be brought into a one-to-one corre-
spondence with the non-equivalent systems of non-primitive translations.

Using the cohomology theory of groups it may be shown that

so that for a given group cp (K) the determination of all non-equivalent
systems of non-primitive translations and the determination of all non-
equivalent extensions yield the same result.

Other properties of space groups can be deduced by means of coho-
mology. Thus we shall prove a generalization of a theorem of Speiser
(appearing in [6] without proof) and several similar propositions.

The idea that proves fruitful in most demonstrations is that (intro-
duced by I. SCHTJR [7] in his proof of Maschke's theorem) of averaging
over the elements of a group.

2. Mathematical Background

It will be helpful to recall or introduce here briefly some of the
mathematical notions and notations used in this paper.

Let K be a group and A a left i£-module. Consider then the following
0-sequence (dq+1dQ = 0) or cochain-complex of abelian groups

0 >C^K,A)^C1(KiA)J^C*{K,A)-*L+C*{K,A) > (2.1)

The elements fq of the abelian groups Cq(K,A) are mappings

/«: Kx • • • x K-+-A q>0 (2.2)
q- times

and C°(K, A) = A. The coboundary homomorphisms dg are denned in
the following way [8]1

(<$</*) (a* • . ., ocQ) = / '(a,,, . . ., a,_x) + ( - l)q+1ocof
q(oclP ...,ocQ)

(2.3)
( W K « )

1 With respect to [9] and to Part I (p. 566) there is a slight change of the
definition insofar as the coboundary dgf

q defined here is (— l)*+1-times the cobound-
ary defined in Part I. This simplifies some of the subsequent formulas.
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The elements of Irndq^ = BQ(K, A) are called g-coboundaries for q > 0,
those of Ker(5c = Za(K, A) are called g-cocycles, whereas the elements
of the g-cohomology groups

W(K, A) = Kevdallmdq.x (2.4)

are called g-cohomology classes. For q = 0, one sets B°(K, A) = 0 so that

) = {a£A\oca = a, V a£Z} . (2.5)

A shorter notation that we shall use is H°(K, A) = AK.
Let now K be a finite group of order &. To prove some theorems about

the order of cohomology groups, we shall introduce a homomorphism
sq : C*(K, A) -> Cz-HK, A) by setting

Although the proofs may be found in the literature, e.g. [8] and [10], we
want to give them here for three reasons. These results constitute the
mathematical core of the paper. The mathematical device used, the
averaging over the elements of a finite group, is already used in Fro-
benius' paper on space groups [11] and in all investigations inspired by
it, e.g. [12] and [13] (the idea goes back to Schur's proof of Maschke's
theorem [7]). We shall be interested in generalization of the mappings s
and these generalizations, although not new, are probably not easily
accessible to physicists.

Proposition 2.1. Given definitions (2.3) and (2.6), we have

s Q + 1 d q + d q ^ 1 s q = kI q>0, (2.7)

where I is the identity mapping on Cq(K, A).
Proof. We find on one hand

[(5a-1(5j«)](a0, . . ., aa_i) = (5fl/«) (a0, . . ., aa_2)

+ ( - 1)*
t

and on the other hand

10*
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Here the obvious linearity and left invariance of the sum over the finite
group have been used. Thus

or
Vf£C<(K,A), 8t+1(dtf<) + <5a_1 (89p) = kp q>0 (2.8)

or also

If /* g ^ ( Z ? A), then, according to (2.7)

W = V x (*«/<) 6 £ g ( # , -4) 2 > 0 . (2.9)
Thus we have proved the following result :

Corollary 2.1.1. If K is a finite group of order lc, then

lcH«(K,A) = 0 q>0. (2.10)

Corollary 2.1.2. / / K is a finite group and A as an abelian group is
divisible and torsion-free, then

H«(K,A) = 0 q>0. (2.11)

Put now fq = sQ+1f<t+1 and apply (2.8). The result is

sa+l sa + 2 < W = #a-l sasa+i 4 > ° • (2«12)

For q — 0, direct calculation gives

s^o+N^kl (2.13)
and

s1s2d1 = Ns1 (2.14)

where the K-module homomorphism N : A -> A is defined by

The homomorphism N is called the norm homomorphism and has the
property

V a ( Z , OLN = NOL = N (2.16)
so that

V a £ ^ > Na£H°{K,A). (2.17)

Let now i£ be a compact topological group and T a finite-dimensional
real vector space and a left X-module subject to the additional condition

V<x(:K, Vr£R, Vt£T, oc(rt) = r{oct) .

Then the elements of i£ are linear transformations of the finite dimen-
sional vector space T and hence continuous. Let now /£: K x • • • x i£
->-T be continuous g-cochains. Define S^-.C^K, T)-^ Cl"1 (K, T) by
the Haar integral

• •> ««-a) = / / c
? K 5 • • ., <V-2> ^) ^^ . (2.18)
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(The integral is of course calculated componentwise after the choice of
a basis for T.) Define the coboundary homomorphism dq by (2.3). Note
that dqf% is again a continuous function. Then proceeding exactly as in
the proof of Proposition 2.1 and using the linearity and left in variance
of the Haar integral, one proves the following proposition:

Proposition 2.2

The above relation is valid for any /£ £ C%(K, T). If we now specialize
to ft £Z«(K, T), then we obtain

showing that /* £ Bq
c{K, T), i.e. that

Hl(K,T) = 0 q>0. (2.20)

It is not astonishing that we obtain a result similar to (2.11), for T as
abelian group is torsion-free (since T as i?-module is free) and divisible
(since T is also a vector space over the rationals).

Let now K be any group. We shall utilize later the fact that all
iif-modules A can be imbedded into i£-modules A such that Kq(K,A) = 0
for q > 0.

Given a iT-module A we construct a if-module A, called the co-
induced iT-module. The elements of A are the set theoretical mappings
h: K-^-A from K to A. Utilizing the group structure of A, the set A
may be given the structure of an abelian group by

>fh,h'€A, V a f Z , (h + h')(oc) = hoc + h'oc. (2.21)

By defining the operation of K on A through

Vh£A, Voc9P£K9 {Ph){ot) = h(otp) . (2.22)

A is made a K-module since, as is easily verified,

and

Proposition 2.3. Any K-module A is isomorphic to a submodule of the
co-induced K-module A.

Proof. Consider the mapping # : A-^-A defined by

V f l f i , Ycc(:K, (Xa){oc) = cca. (2.23)

It is a homomorphism of abelian groups:

[%(«+ b)](oc) = oc(a-\~ b) = <xa+ ocb = {%a + %b)((x) .

It is also a monomorphism since ^ (a) — 0 implies for the identity e of K
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But # is even a if-module homomorphism:

ix(HUoc) = a/Sa = [*(«)] (a/3) =

Proposition 2.4. .Le£ A be a co-induced K-module. Then

H«{K,I) = 0 g > 0 . (2.24)

Proof. Consider the g-cochains fa £ CQ(K, A). They are mappings

f«:K x • • • x K-+-Z.

^-times

Since the elements of J. are mappings from K to A, fQ may be considered
also as a mapping

/«: K x Z x • • • x Z-^-,4 (2.25)
(q + l)-times

and we shall write

[fq(ai, • • •, a,)] (ao) = /«(ao, ax, . . ., ocq) . (2.26)

Owing to this new way of writing, the coboundary operators

dq:C«(K, J)->

become very simple. Indeed

becomes by relation (2.22)

Now we introduce mappings sa: C
q(K, A) ~> Cq-X{K, A) that (in con-

tradistinction to the mappings s and s previously introduced) do not
rely on an average over the group K. The definition of s is the following:

(sqf«)(oco, OJL, . . ., a^ j ) = fQ{e, a0, a1? . . ., a ^ ) , g > 0 . (2.28)

Then on one hand

- (dqf
Q){s, oco, oc1, . . ., ocq) = /«(a0, a1? . . ., afl)

- fQ(e,aooclf . . .,afl) + • • • + ( - I)9/g(e, a0J al5
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On the other hand

= ( ^ / a ) ( a o a l 5 . . ., ocg) + • • • + ( -

+ ( - l ) f f f o / f l ) ( o o , < * ! , . . . , < V - X )

= /9(£, a o a l 5 . . ., aQ) -f f- ( -

so tha t

S<+i\+*,-iSt = I (2.30)

where / is the identity mapping on Cq(K, A). If now we suppose that
fQ is a g-cocycle fQ £Zq(K, A), the above relation shows that it is also
a g-coboundary

Hence

as announced.
To a given short exact sequence of iT-modules

0 > A—^B-^C >0 (2.31)

there corresponds an exact sequence of cochain complexes (i.e. the
following commutative diagram):

, A) -^-> Ce-^K, B) - ^ Cv-HK, C) > 0

0 >C*(K,A) —^C*{K,B) —^C^K.C) >0 (2.32)

•I i i
0 > 0«+1(^, A) - ^ C*+1(K, B) - ^ ^ 0 5 + 1 ( ^ C) > 0

! I I
The mappings i* and n* are the iT-module homomorphisms defined for
any occurring q-cochain by

respectively. Each of the occurring coboundary homomorphism is
designated by one and the same symbol d.
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To the short exact sequence (2.27) there corresponds a long exact
sequence of cohomology groups (see e.g. [8, p. 116]):

- ^ H«(K, A) - ^ Hq(K, B) - ^ > Hq(K, C) ~^> Hq+1 {K, A) - ^ (2.34)

with d# the so-called connecting homomorphism, and [L%] and [JZ*] the
homomorphisms induced by t,* and n* respectively. If / is g-cocycle, it
cohomology class will be denoted by [/] and the following relations hold

[*•/]=[**][/] , [ * * / ] = [ * » ] [ / ] . (2-35)

Since later we shall need to know how the homomorphism d* is con-
structed, we recall that construction here.

Let c £Zq(K, G). Then there is an element 6 £Cq(K, B) such that
7i*b = c. Then 7i%db = dn*b — (5c = 0 so that there exists a £ Cq+1 {K,A)
with the property that db = i*a. Since i^ba — di*a = (56 = 0 we find
that a g £«+!(#, A).

If instead of b we choose an element bx £ Cq (K, A) such that n* bx — a,
then n* (bx — b) = 0 so that there is an element d £ CQ(K, A) with the
property 6X = 6 + i*d. Then (56X = db -f- (5̂ ĉ? = ^̂  (a 4- dcZ) = i^a1? with
a± = a + <5dL Thus only the cohomology class of a is uniquely determined.

If instead of a we choose a £ CQ+1(K, A) such that db = i*a, then
k|. (a — a) = 0 and a = a.

Since only the cohomology class of a is determined, we want to see
what happens to an element c ̂ Zq(K, C) which is cohomologous to c.
Then there is a g £ CQ~1(K, C) such that c = c + (5g. Furthermore, an
element / £ Cq~1(K, B) exists such that n*f = g. Then c = 7r#(& + 5/)
= 7i*b with & = 6 -f 5/. Therefore (56 = (56 = £#<x.

Thus the cohomology class [c] of c determines uniquely the co-
homology class [a] of a. The mapping

d* : #«(# , (7) -> H**1 {K, A) q>0
defined by

d* [c] = [a] if c = n*b and db = t*a (2.36)

is a homomorphism.
Note that the commutative diagram

0 0 0

i i i
0 *C{K,A) -^CiK^B) ^

i
I I
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is another exact sequence of cochain complexes that may be deduced
from (2.31). The exact sequence of cohomology groups that follows is

0 > Z«(K,A) - ^ Z*(K, B) -^Z*{K, C) - ^ H^+^K, A) •
(2.38)

Let now co: K -> K be a group homomorphism and A an abelian group.
Then, given <p : K -> Aut A, A becomes a X-module and is also, in
a natural way, a i£-module on account of (poo : K -> Aut A. Then oo
induces a group homomorphism

co*:C±(R,A)-*G±m(K,A) (2.39)
defined by

(co*/) (a1? . . ., afl) = 7(coa2, . . ., OJOCQ) (2.40)

with / £Of(i£, A). The group homomorphism a> also induces a homo-
morphism of cochain complexes

^{K, A) > C«(K, A) > Cq+1(K, A) >

> C^-^K, A) - ^ C«(K, A)-^->C«+1(K, A) >

and a homomorphism of cohomology groups

[co*] : Hq{K, A) -» H«(K, A) (2.42)

which has the property
[<o*ft = [co*] [/] . (2.43)

Consider an extension of an abelian group A by a group K (determining
a homomorphism cp : K -> Aut A and a cohomology class [m] £ H* (K,A))
and another extension of an abelian group A by a group K (deter-
mining a homomorphism ^ : K ~> Aut A and a cohomology class
[m] £H^(K, A)). In Part I (p. 572) it was shown that the existence of
a morphism of extensions

A| "1 'I (2'44^
0 >A- >G >K >1 ^,[m]

implies the following two relations:

and
[h] M = b*] [m] . (2.46)

Given representatives of the cosets of A in G and of J. in G, respectively,
the homomorphism JU is then characterized by

V a f i , y oc (: K } fi(a, oc) = (la -f u(a), vo£) . (2.47)
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Thus there is a one-to-one correspondence between homomorphisms
ju: O-> G and elements u of C\V(K, A). Conversely, if (2.45) and (2.46)
are fulfilled, then a diagram (p. 570)

0 , A > Q > R > I ^ [m-|

0 >A >G >K >l y,[m]
may be completed into a morphism (2.44) by defining /u through (2.47).

3. Space Groups as Groups of Operators

A space groups 0 operates on Euclidean %-space <^asa subgroup of
the Euclidean group E. Later on we shall be compelled to utilize more
economic imbeddings of G (into subgroups of E). But everything is based
(implicitly sometimes) on the properties of the Euclidean group. We
therefore list here some of its properties in an order that is convenient
for their demonstration.

Let T be a n-dimensional real vector space and F : T ->- B a definite
quadratic form on T. A space $ on which the abelian group T operates
faithfully and transitively is called a Euclidean w-space.

The elements of T are called translations, and we shall write

t(x) = x + t £ & x ^ £ , t £ T . (3.1)

Note that a non-zero translation has no fixed point.
To the quadratic form F on T we associate a distance d on $ by

defining
d(x,y)=F(x-y). (3.2)

The group O(T) of automorphisms of T that leave the quadratic
form F invariant is called the orthogonal group of T.

The affine bisections g of $ that leave the distance on $ invariant:

d(gx,gy) = d(x,y) (3.3)

are called isometries of $. They form a group E, called the Euclidean
group.

The abelian group T is of course a subgroup of E.
For any p £ <f, the set

is also a subgroup of E, called the isotropy subgroup of E at p. These
two subgroups have the following property

Vp£<f, T r\Ev=l£E .

Furthermore, for any p £ € and g £ E, there are unique elements
t £ T and oc^ £ Ev such that

g = t*p. (3.4)
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The conjugate tEvt~
x of any isotropy subgroup E^ is an isotropy

subgroup:
tEj-i = J3({p) (3.5)

whereas the abelian subgroup T is a normal subgroup of E:

g~1= T .

To each g £ E there corresponds a unique automorphism a'g £ GL(T)
of T such that

V t(: T , V x ^g , g{x + t) = g(x) + (o'g) t. (3.6)
Then

(o'g) t = gtg-1. (3.60

From this it is easily deduced that the isometries of £ and the auto-
morphisms of T are related in the following manner

gx-gy= (o'g)(x-y) . (3.7)
Hence

a'g£O(T)CQL(T).

The mapping a': E -> O(T) is a homomorphism and

kercr' = T .

We thus have an exact sequence

0 > T-^~>E-^-O(T) >l (3.8)

where xr is the injection of the subgroup T into E. Mappings denoting
injections of subgroups will be placed between parentheses, when
appearing in a diagram; in formulas they will generally be omitted. The
mapping cpf: O(T) -> GL(T) too is an injection of a subgroup. The group
O(T) operates, by definition, faithfully on T; thus T is a maximal
abelian subgroup of E.

For p £ i , the mapping &P : S ->- T denned by

0px = x - p (3.9)

is a bijection that associates to each point x £ $ the vector t — x — p £T.
(t is uniquely defined by x — p -1- t — t(p).) Then

This bijection permits to identify T and <D and to give $ (in a non-
canonical way) the structure of a vector space by choice of the point p
as origin in $. The bijection &# induces an isomorphism cp^: E^-^ O(T)
defined by

Vav£Ep, V x e $ , (<PvOiP) (0vx) = &9{*9x) . (3.11)
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It can be seen that (pv is the restriction of a' to EVCE. We thus have
the following diagram

M / \ <
/

with ip the injection of the subgroup EP into i7. The mapping rp:0(T)->E
defined by

r, = h<P? (3-13)
then is a monomorphism having the following property

<*'rv = lom - (3.14)
A mapping rP satisfying relation (3.14) is called a section. We have

just seen that each choice of an origin gives rise to a monomorphic
section rp. This shows also that the extension (3.12) splits.

The image of the section rp — which is a set of representatives of the
cosets of T in E — is the isotropy subgroup EP of E. Thus there exists,
for any ocp £ Ep, a unique oc^O{T) such that

ocp = r p o c . (3.15)

By means of the section rv the group E is presented as semidirect
product of T by O(T). We shall show, for the case of a definite quadratic
form F, that these sections realise exactly all presentations of E as semi-
direct product of T by O(T).

To do this, we shall apply here (2.20) and thus need the notion of
continuity. We choose in E a topology such that O(T) is compact in the
quotient topology. Then a' is an open and continuous epimorphism. The
isomorphism cpv then is a homeomorphism, and rp is by construction
continuous. (In corollary 5.5.1 we shall see that the continuity require-
ment may be replaced by other, often more convenient ones.)

Proposition 3.1. A continuous section r is a monomorphism if and
only if Imr is an isotropy subgroup of E.

Proof. The sufficiency has already been proved; we now prove the
necessity. Let then r be a monomorphism O(T) -> E. According to (3.4)
there exists a unique /(a) £ T such that

roc = / ( a ) QCy

and according to (3.15) we have then

roc= f{oc)rvoc

where rp is a monomorphism. Two continuous sections, r and rpy which
are monomorphisms, differ by a continuous l-cocj^cle. But the orthogonal
group of a definite quadratic form is compact so that relation (2.20)
holds. Thus H}(0(T), T) = 0 and a continuous 1-cocycle is a con-
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tinuous 1-coboundary. This means that there is an element t £ T such
that for any oc£0(T)

f(oc) = (d^oc^tioct)'1 .

(Here it proves convenient to use the multiplicative notation for the
elements of T.) Then using (3.5), we find

roc = /(a) r^a = t(at)-1 r^oc = ffoa)-1 r M v l ^ a ) " 1

= t(rpot) t'1 == rMoc (:Et(v) .

Thus in all presentations of E as semi-direct product r a is an operation
that has fixed point (for all a £ 0(T)).

We are now prepared to investigate the operation of a space group G
on Euclidean w-space S. Let g £ G. As element of an extension of the free
abelian group U of rank n by the point group K the element gr may be
written (after the choice of a fixed section r : K -*— G) uniquely as

= ( a , a ) . (3.16)

Let fi' be an imbedding of G into the Euclidean groups E. (The
existence of the imbedding is ensured by the Zassenhaus imbedding
theorem [13] or by Proposition 5 of Part I.) Then we have, for a suitably
chosen quadratic map F : T -> R, the following diagram

0 >U-^G^K—>1

0 — , T _ _ r ^ _ _

and according to (2.47)

ft'(a, a) = JLI'(a • ra) = a - u(oc) • r^oc = (a + w(a), a) . (3.18)

By definition, the element g = a • r a £G operates on the Euclidean
space $ as element /bt'g of the Euclidean group E. Thus Va;((f:

g ox= (jii'g) x = (a • %(a) • r^a) a? = (r^a) ̂  + w(a) + a ^ ̂  . (3.19)

We recall that here r^ a is a (finite) orthogonal transformation with fixed
point p £ $ and a -f u(oc) = t (a) is a real translation, called non-primitive
translation in contradistinction to the elements of ImA which are called
primitive translations. Applying the mapping 0^ to (3.19) we get
according to (3.11)

<t>v{gox) = &2)[(r2)oc)x]-\-u(oc) + a=: (<pvrpoc) {&px) + u(oc) + a

= (oc)(&vX) + u(oc) + a£E. ( 3 ' 1 9 )

The traditional notation ([11], [3]) for the element g is:

g ox= {a|£(a)} ox. (3.20)
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Thus a is an orthogonal transformation — r^oc — and t(oc) is a non-
primitive translation. When g is presented as element (a, a) of an exten-
sion of U by K, then (o, a) is generally not an orthogonal transformation,
but denotes (after imbedding into the Euclidean group E) an orthogonal
transformation YVOL followed by a non-primitive translation u(a). The
element (a, e) corresponds of course to a primitive translation.

Obviously it is sufficient to study the non-primitive translations u (K)
associated with the (abstract crystallographic) point group K. The
cochain u £ C1 (K, T) will be called a system of non-primitive translations
for the space group G.

The study of space groups as group of transformations of Euclidean
%-space is the study of the different non-equivalent ways in which
systems of non-primitive translations can be associated with the elements
of a point group K.

Let us remark that, after having clarified the situation of G as sub-
group pi G of the Euclidean group E, it will be sufficient to imbed G into
subgroup X of E that is a semi-direct product and contains the image
o f ^ ' : Im/u'CXcE, X semi-direct . (3.21)

We shall discuss two subgroups of E that fulfill these conditions.

4. Systems of Non-Primitive Translations

Henceforth we choose the same fixed basis in the free abelian group U
and the real vector space T, and thus deal with the isomorphic images
Zn, En, 0{n, R), GL(?i, R) of U, T, 0(T) and GL(T) respectively. Note
that here 0 {n, R) is not necessarily a group of orthogonal matrices. We
imbed Zn into Rn always by the natural injection i: Zn -> Rn that applies
Zn onto the integer ^-tuples of Rn; thus iZn generates the real vector
space Rn.

Let now a ^-dimensional space group G be given by a short exact
sequence (4.1). Let 99: K -> GL(n, Z) be a monomorphism, r : K -> G
a section and m £ Z% [K, Zn) the corresponding factor set:

0 >Zn-^G—^~>K >l <ptm,r. (4.1)

We shall imbed G into a group M satisfying conditions (3.21). This group
is exactly the group that we called Mn in the proof of Proposition 5 of
Part I. First we define the action (99: K -> GL(n, R)) of K on Rn by

putting VagZ^, V a ( Z } i[{<poc) a] = ($<*) (la) (4.2)

and extend this definition from iZn to Rn by linearity. The relation (4.2)
means now that 1 is a if-module homomorphism. We shall, for simplicity,
often omit 99 and cp and thus write, instead of (4.2) :

c(oca) = (x(ta) . (4.3)
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Now, by (2.11), Hq(K, Rn) = 0 for q > 0, so that any extension M of
Rn by K splits. We choose to present M as semi-direct product, by which
we mean that the section r: K -» M is a monomorphism and that the
corresponding factor system m is the trivial one :

To construct a morphism between the two extensions, we have to impose
the following relation (according to (2.46))

i*m = du (4.4)
or

m ( a , 0) = u(oc) + otu(p) - u(otfi) (4.5)

with u £ O1(i^, i2n). Then there exists a homomorphism JLC: G -> M such
that the following diagram is commutative

0 > Zn ~^-> G -^-> Z" > 1 cp, m , r

(ol 001 || (4.6)
i I ii

0 > R- -¥-> M -=-> Z > 1 £, 0, r .
The homomorphism ^ is given by

V a g i T , fzroc = fiu((x) -rex . (4.7)

Owing to the Short Five Lemma ([8], p. 13), (x is in fact a monomorphism.
The group M is a subgroup of the Euclidean group E (cf. Proposi-

tion 5 of Part I) because the following morphism of extensions can be
constructed

0 >Rn-^M-^K >l (cp, 0, r)

l
0 >R"-v*E-^0{n,R) > 1 (cp',0, rv)

and the following two relations hold

V a ^ i T , Va(:Rn, (y a) a = (pf (v oc) a , (4.9)

fir = rpv (4.10)

i.e. f is a restriction of the monomorphic section rp: O(n, R) -> E to
iTC O(w, jR). Then, putting p* = /Z^,

jbt'roc = x!u(ot) - r^va

and w(a) is clearly a non-primitive translation. We may now define the
action of an element g £ G on a point a; £ # by

g o x = (fJi'g)x. (4.11)

As defined by (4.4) or equivalently by (4.7), a system of non-primitive
translations is not uniquely determined, since no fewer than three
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arbitrary choices occur. In the latter formula these are the choices of the
cochain u that determines the imbedding JU and the choices of the sec-
tions r and r (which latter however we want to remain a monomorphism).
We shall now eliminate the arbitrariness introduced by these choices. Our
discussion will be based on the following short exact sequence of cochain
complexes

0 0 0

Zn >Rn

0 > C1 (K, Zn) - ^ C1 (K, R") - ^ C1 (K, RniZn) > 0 (4.12)

6 a a

i I
0 > G2(K, Zn) - ^ C*(K, Rn) - ^ C2(K9 R

n/Zn) > 0

i i a\
Here n is the canonical projection n : Rn -> Rn\Zn and X operates on
RnjZn according to

V a £ i?n , V a ^ ir , TC [(^a) a] = (^a) (^ra) . (4.13)

Again ^ (and ^) will be omitted frequently so that, instead of (4.13)
we write

n(oca) = cc(na) .

Thus n is a iT-module homomorphism.
According to (4.4) the 1-cochain u is characterized by

Any other choice of a 1-cochain u' is permitted provided that

L%m — du' .
Hence

As a consequence of (2.11)

u' ~ u £ Z1 (Z, i^n) = 5 1 (iT, i^n)
so that 3 d' ^ Rn:

w' = w + ^^' .

Let us now choose another section r1\ K-$—G. This leads to another
choice of a 2-cocycle m' £Z2(K, Zn) such that

H e n c e 3 c ^ ^ . ^
m' = m + be .
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Then

L%(m -f dc) = du' + dt*c = d(u + 3d'

Finally let us choose a new monomorphie section rx\ K -*• M. Such
a choice leaves the factor sets K x K -> Rn unchanged, viz. identically
equal to zero. Since H1^, Rn) = 0 any two monomorphie sections differ
by a 1-coboundary so that 3 d" £Rn

V a ( Z f i a = [(dd")(oc)]roc

and this change introduces but another zero, ddd", into the expression
of i% m':

i%m' = (3(w -f $^r + <3 "̂ + ^*c) = du . (4.15)

Thus the most general system u of non-primitive translations differs from
an arbitrary one by a 1-coboundary d(d' + d") £ BX{K, Rn) (a "non-
primitive coboundary") and a 1-cochain t^c (a "primitive cochain"):

u = u + dd -f- t^c . (4.16)

Note that both the change from u to itr and the change from r to fx
correspond to a change of origin for the group M (and the group E). To
get rid of the primitive cochains we project by the induced epimorphism
n* : CHK, Rn) -> CL(K, RnjZn) and find

n*u = 71*11 + n*dd , (4.17)
or

n*u=n*u (mod B1(K,EnIZn)) (4.18)

where from (4.14) one finds

TttuZZiiKyBnlZ") . (4.19)

Thus the 1-cohomology class

a = [n*u] - [n*u] $ ̂ ( ^ ^w/^w) (4.20)

of an arbitrary system u of non-primitive translations does not depend
on the choice of an origin for M (and is also free from the arbitrariness
of the choice of r : K ->- G).

Let us summarize what we have found so far.
Proposition 4.1. The element u ^ C1 (K, Rn) is a system of non-primitive

translations for a space group if and only if

TI^U^Z^K^^Z^ . (4.21)

Proof. The necessity has been proved (cf. 4.19). The sufficiency is
easily verified. Relation (4.21) gives indeed

0 =

du
11 Commun.math.Phys.,Vol.ll
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Since furthermore (4.3) remains true, the conditions are fulfilled for the
construction of a monomorphism JU: G -> M such that (4.7) holds.

Note that (4.21) is nothing but a form of the Frobenius congruences:

V oc, p £ K , u {ocfi) ^u{oc) + ocu (P) (mod Z») . (4.22)

ZASSENHAUS [13] calls systems u (K) that satisfy (4.21) ,,zulassige Vektor-
systeme". Our systems of non-primitive translations are then ,,zulassige
Vektorsysteme".

Proposition 4.2. Any system of non-primitive translations for a space
group G = (K, Zn, (p, m) determines the same element of the first cohomology
groupH1(KfE

nIZn).
Such systems are called equivalent systems. Thus two systems u and

u are equivalent
u~ u if [TT*^] = [TT#W] . (4.23)

Condition (4.23) means 3 / £Rn\

u^u+ df (mod C^K.Z^))
or

V oc(:K , u (a) = u (a) + (e ~ oc) f (mod Zn) . (4.24)

Systems u fulfilling condition (4.24) are called „stark aquivalent" in
reference [13].

So far, we have shown that the relations

<y = \_7t#u~\ , du = i%m

determine a mapping A : H2(K, Zn) -> H1^, RnjZn) such that for any

A [m] =\n*u\ = o£m{K, En/Zn) . (4.25)

To show that this mapping is an isomorphism, we first prove the fol-
lowing proposition.

Proposition 4.3. Given the K-modules Rn and Rn\Zn we have

H*(K, Rn\Zn) ^ HQ+1{K, Zn) q > 0 . (4.26)

Proof. Consider the exact sequence of ^-modules

0 >Zn—r^Rn-^Rn/Zn > 0

giving rise to the long exact sequence

and take into account that, according to (2.11),

H«{K9B
n) = 0 f o r q>0.

Proposition 4.4. The mapping A : H2(K, Zn) -> H}(K, Rn\Zn), defined
by A [m] = [n*u] ^ HX{K, RnjZn) and du = t*m, is an isomorphism, and

A = a^1 . (4.27)
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Proof. We first show tha t
d*A=I (4.28)

where I is the identity mapping on H2(K, Zn). We have to calculate [a]
given by

d*A [m] = d* [a*u] = [a] . (4.29)

But [a] is given, according to (2.36), by the pair of relations

TI%U = Ti%b , db ~ L%a (4.30)

and [a] is independent of the particular choice of the elements b and a
t ha t fulfill these relations. Therefore we may choose b = u. Then

8b = 8u = i*m = i* a (4.31)
and

m = a . (4.32)

Thus (4.28) is proved. The connecting homomorphism 3# is an iso-
morphism, according to the preceding Proposition. Then

and A is an isomorphism, the inverse of the connecting isomorphism 3^.
In Par t I we have seen tha t two isomorphic ^-dimensional space

groups G and G determine the same arithmetic crystal class and tha t
therefore one may assume, without any loss of generality, tha t they
determine the same (arithmetic crystaliographic) point group cp(K).
Hence G and G determine elements [m] and [m] of the second cohomology
group H2(K, Zn), and generally [m] 4= [m]. The necessary and sufficient
condition for G and G to be isomorphic was shown to be (cf. Pa r t I ,
Proposition 7) the existence of isomorphisms # : Zn -> Zn and co : K -> K
such tha t

V a £Zn , V a ^ ^ L , %[(<poc) CL\ = (<pco<x) {%&) (4.33)
and

LZ*J LmJ = iw' ] LmJ d-ti \K,/jn) . (4.34)

Note that by (4.33) # determines co:

V a ^ i C , ^o)a=^((pa)% - 1 (4.35)

and this shows that % is an element of the normaliser N of (p{K) in
GL(n, Z). Relation (4.34) may be translated into a relation between equi-
valence classes of non-primitive translations.

Proposition 4.5. Two n-dimensional space groups G and G are iso-
morphic if and only if it possible to choose systems of non-primitive trans-
lations u and u for G and G respectively, an automorphism % of Zn and an
automorphism co of K such that for any a £Zn and any oc £K one has

%[(<p<z) a] = (<pcooc) (%a) , %u(oc) = u(coix) . (4.36)
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Here the automorphism % has been extended by linearity to Rn.

Proof. We only have to show that (4.34) is equivalent to

(4.37)

where a and o are the equivalence classes of u and u respectively.
The homomorphism [#*] : HQ{K, Rn\Zn) -> H9(K, RnjZn) is induced by
the automorphism # of RnjZn defined by

x\ x\ \x (4.38)
4- y v

The equivalence between (4.34) and (4.37) is proved by straightforward
diagram chasing. To the particular choice of u and u satisfying %u(oc)
= u(cotx) corresponds the particular choice of m and m of Proposition 7
of Part I satisfying %m{oc, /?) = m(cooc, cofi). Note also that condition
(4.37) means the same as

V / ^ J ? n , Voc£K, %u{a)^u{oocx) + {s - cooc)f {modZn)

or
-1^) + { o c - s)f (modZn)

which is Zassenhaus' ,,gewohnliche Aequivalenz" [13].

5. Some Properties of Non-Primitive Translations

The properties of non-primitive translations concern mainly the
limitations imposed on the order of these.

Proposition 5.1. Let G be a space group with point group K of order h.
Then it is possible to choose the origin for G in such a way that k-times
a system of non-primitive translations is primitive.

Proof. A system of non-primitive translations u obeys to (4.4): t*m
= dxu with u $ CX(K, Rn). Furthermore, according to (2.8)

s^u + SQS-LU = s^u + hdQ-j^s^ — hu . (5.1)

Since Rn is divisible, we may introduce the centre of gravity (u} of the
system of non-primitive translations u by

{u)^\SlutRn- (5.2)
Then

i*stm = s2i*m = s2dxu = 1c(u — $0 (u}) = ku . (5.3)
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Clearly u is a system of non-primitive translations and the change of
origin is that from an arbitrary one to the centre of gravity (u}. Note that

u-do(u) = u-±doN(u) = u (5.4)

where the norm homomorphism N is denned by (2.15).
Corollary 5.1.1. Suppose that G is a split extension of Zn by K presented

as semi-direct product. Then by a suitable change of origin it is possible to
eliminate all non-primitive translations.

Proof. By hypothesis m = 0 so that ^^ = 0; hence u = 0 (since Rn

is torsion-free).
Corollary 5.1.2. For a given a £ K with period ku we have

& a £(a)=0 (mod£w). (5.5)

Proof. Proceed as in Proposition 5.1., but introduce the centre of
gravity (u)a only relative to the cyclic group {a} generated by a.

We recall that

= x, V oc£K}~AK. (5.6)

AK is a i?jK"-submodule of Rn and, according to Maschke's theorem ([14],
[6, p. 156], [10, p. 253]) there exists a i2i£-submodule A'CRn such that

Rn = AK + A1 . (5.7)

This induces a corresponding decomposition of the jRiT-modules CQ(K,Rn)

C*{K9 R
n) - C«(Jf, AK) + C*(K, A') . (5.8)

Thus any g-cochain / $ Cq(K, A) may be decomposed

/ = /* + /' (5.9)
with

fK£C«(K,AK) ocfKeCHK,AK) (5.10)
and

f'£C*(K,A') ocf'£C*(K,Af). (5.11)
It follows that

Nqf g C«(Z, AK) r\ C«(K, A') = 0 (5.12)

where NQ : Cq(K, A) -> C*{K, A) is denned b y

(Nqf)(a1,...ixq) = N[f(oc1,...,ocq)] (5.13)

and N is denned by (2.15). Thus

Naf = NQfZ + Nqf' = kfZ. (5.14)

For the following it will be sufficient to limit ourselves to 1-cochains.
Proposition 5.2. Seitz' Theorem. Let u be a system of non-primitive

translations for a space group, then

(oc)^O {mo&Z"). (5.15)
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Proof. According to (5.14) we have

kuK{oc) = Nu(oc) . (5.16)

But from i%m = ^ w e have

Z !>™>{p, a) = S MP) + Pu(oi) - u(fioc)] = Nu(oc) (5.17)
P P

showing that Nu(oc)~ 0 (modZn).
Corollary 5.2.1. For a given oc £ K with period kx we have

kau
K(oc)=O {modZn) . (5.18)

The above corollary may be found in [3] with a wrong proof. (The
operator £ + • • • + oc7coc~1 does not necessarily equal 0.)

Let H be a finite normal subgroup of finite order h of a (not neces-
sarily finite) group K and 4̂ a ^"-module. Define the homomorphism

2JPa. (5.19)
is a ^-module homomorphism since

NH{oca) = 2J ^a = £ tzar1 ft oca = xNHa . (5.20)

Furthermore Nn induces a homomorphism Nq
H : HQ(K, A) -> Hq(K, A)

defined by
JVfr[/«(*!, • • .,««)] = [NHf«(av • • •» «9)1 • (5-21)

Proposition 5.3. With the above definitions we have

Nq
H=hI q ^ 0 , (5.22)

I being the identity mapping on Hq(K, A).
Proof. The proof will be by induction on q. For q == 0 the theorem

is trivially true since H°(K, A) is the submodule of elements invariant
under K. Suppose now that the proposition is true for q — 1. Let A be
the co-induced X-module associated to A and A' = ^4/̂ 4. Then the
following diagram of iT-modules

\) jui JJL XX. U

NH\ \NB UH (5.23)

0 > A x > A n > A' >0

is commutative and induces the following commutative diagram of
cohomology groups:

> Hq^{K, A') -^-> Hq(K, A) > Hq{K, A) >

Na
H\ NQH\ (5.24)

^(K, A') -7— Hq(K, A) > Hq(K, A) > .
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But HQ(K, A) — 0 since A is co-induced, so that the connecting homo-
morphisms d* are epimorphisms. Thus

V x£Hq(K,A), 3y ^Eq-X(K, A'): d*y = x. (5.25)
Then

N*Hz = J \ r ^ y = d+N^y = a*/̂ /̂ = £ 3 ^ - Aa: . (5.26)

Corollary 5.3.1. If NHa = 0 for any a £A, then

hHq(K,A) = 0 q^O. (5.27)

Corollary 5.3.2. Let A be divisible and torsion-free. If NHA — 0 for
any a £A, then

H*{K,A) = 0 q>0 (5.28)

since Hq(K, A) is torsion-free.
Proposition 5.4. (Generalization of Speiser's theorem.) Let K be a

(not necessarily finite) group, Zn a K-module, and H a finite normal sub-
group of K of order h that leaves no non-zero element of Zn invariant, then
forq^O

(5.29)

Proof. The hypothesis amounts to

H°(H,Zn) = 0 (5.30)

which, since NnZ
n £ H°(H, Zn), implies

NHZn = 0 . (5.31)

If the action of K on Rn is defined by way of the natural homomorphism
i: Zn->En according to (4.12), and the action of K on RnjZn by (4.13),
then we have also

NHBn/Zn - 0 (5.32)

and application of Corollary 5.3.1. yields the desired result.
Corollary 5.4.1. (Speiser's theorem) [6, p. 229]. Let Gbea space group

with point group K. If K has a normal subgroup H of order h that leaves
no non-zero vector invariant, it is possible to choose the origin for G in such
a way that h-times a system of non-primitive translations is primitive.

In particular, if K contains the inversion — ln, then h = 2.
Proposition 5.5. Let K be a group of n-dimensional real matrices con-

taining the inversion — ln. Then

(The same is true in the complex case.)
Proof. Take for H the group generated by — ln. I t is a finite normal

subgroup of K and NJSR
n = 0. Furthermore, Rn is divisible and torsion-

free.
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Corollary 5.5.1. Any extension of Rn by GL{n,R), O(n,R), or
O(n — 1,1) — the n-dimensional Lorentz group — is split.

Note that we had already deduced from (2.20) that Hq
e(O {n,R),Rn) = 0

for q > 0. Now this result has been extended to q = 0 and arbitrary
cochains. However, (2.20) also yields

R),Rn) = O q > 0 , (5.33)

a result that cannot be obtained from proposition 5.5. when n is odd.

6. Imbedding of a Space Group into a Symmorphic Space Group

We now choose another group, G, satisfying conditions (3.21). The
group G will be the split extension (symmorphic space group) belonging
to the arithmetic crystal class <p(K).

Proposition 6.1. Any space group G is a subgroup of the split extension
G belonging to the same arithmetic crystal class as G.

Proof. Consider the diagram

0-*Zn->G->K->l cp,m

*1 || (6-1)
O-+Z«-*G->K->1 <p,0.

The two conditions (2.45) and (2.46) are fulfilled since obviously

h[{<poc)a] = (cpoc) (ka) (6.2)
and since

k* [m] = 0 (6.3)
by Corollary 2.1.1. Thus there exists a monomorphism jl\ G -> G defined
by

ft (a, a) = (ha + v (a), a) , v £ C1 (K, Zn) (6.4)

that makes the diagram commutative.
Furthermore, the index of G in G is kn.
If the group K fulfills the conditions of Proposition 5.4, then the

mapping k can be replaced by a mapping h.
Since G can be presented as semi-direct product and can be imbedded

into the Euclidean group E, v is clearly a system of non-primitive trans-
lations. The question now arises how this system is related to a system u
determined by (4.4).

First we remark that (l/£)* L* V ~ u in the sense of (4.23). Here
(I/ft)* : Cq(K, Rn) -+ Cq(K, Rn) is the mapping induced by I/ft : Rn -> Rn.
The equivalence we want to prove is a simple consequence of
[ft*] H*(K, RnjZn) = 0. Indeed

[ft*] [TE*^] ~ 0 — [TZ
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so that

A second remark is that, according to (2.9), k%m = drs2m, so that s2m
is a possible choice for the system of non-primitive translations v. As in
Section 4, an arbitrary system v may differ from this particular one in
three ways. First, another monomorphism / / : G -> 0 may be chosen; this
would add a 1-cocycle b'^Z1^^71) to v. Second, another 2-cocycle
m' £ [m] may be chosen to represent G; this adds a 1-cochain lc*c to v.
Third, a term b" ^ZX(K, Zn) may be added, corresponding to the choice
of a new monomorphie section rx\ K -> G. Thus the most general system
of non-primitive translations v is given by

v = s2m + b + Jc*c (6.6)
with

dv= h*(m-\- dc) (6.7)
where

«) , c^G^K^^). (6.8)

The difference with (4.16) is that b is not a coboundary. Therefore we
shall construct equivalence classes in a slightly different manner from
that adopted in Section 4.

Consider the short exact sequence of i£-modules

0 > Zn - ^ Zn - ^ - * ZnlkZn > 0 (6.9)

and the corresponding exact sequence of cochain complexes

0 0 0

0 > G1 (K, Zn) — ^ Gl (K, Zn) -^ -» C1 (K, Zn\kZn) > 0

\ \ \ ( 6 ' 1 0 )

0 > G* (K, Zn) -^-> (72 (K, Zn) ~^-> G2 (K, Zn/kZn) 0 .

From (6.6) we deduce
P*v = p*s2m + p*b (6.11)

and
p*dv = dp*v = 0 = dp*s2m = p*(d*s2m) . (6.12)

Thus
P*v, P*s2m £&(K,Z»lkZ«) (6.13)

and
== p*s2m (mod p*&(K9Z«)) . (6.14)
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Thus the particular system s2m and the most general system v determine
the same equivalence class a modulo p^Z1^, Zn):

a = (p*s2m + p^(K, Zn)) £Zl(K, Z™\kZ^\p^(K, Z») . (6.15)

We want to show that the mapping

F: H*(K, Zn) -> Z^(K, Z^kZ^lp^iK, Zn) (6.16)

is an isomorphism. We consider the exact sequence

obtained from (6.10). Since

[
we find that

defined by
, Zn) (6.17)

K, Zn)

(6.18)

, Zn) ̂  H2(K, Zn) . (6.19)

Let ip be that isomorphism. Let c ̂ Z1^, ZnjkZn), then

ip(c + p*Z\K, Zn)) = d*c= [a] (6.20)

and [a] is given, according to (2.36), by the two relations c = p%b and
Sb = k%a, and is independent of the choice of b. We calculate

y)F[m] = yj(p^s2m + p*Z^{K, Zn)) = d*p*s2m = [a] . (6.21)

Now a is given by
p^s2rn = p^b, db = k*a; (6.22)

choosing 6 = s2m we find, using (2.9)

ds2m = k%m = k*a (6.23)
or

m = a. (6.24)
Thus

yr=/ (6.25)

where / is the identity mapping on # 2 (K, Zn). Thus jTis an isomorphism:

r^yj-1. (6.26)

Since p* J B ^ Z , ZW) = ^ ( Z , Zn/ifcZn) it follows that

Z^Z, Zn\kZn)\p^(K, Zn) ̂  £P(Z, ZnlkZn)\\$*\ IP(K, Zn) .

Using (2.34) and the fact that [&*] ̂ ( Z , Zn) = 0, one sees that [p*] is
a monomorphism, so that

Z1 (Z, Z^kZ^/p^Z1 (Z, Z*) ̂  i^1 (Z, Z*lkZ»)lW(Z, Zw) .
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7. An Illustration: The two 2-Dimensional Space Groups pm and pg

(i) Definition of <p(K). Let K be the cyclic group of order two gen-
erated by the element oc. Let ex and e2 constitute a basis of V. This

determines an isomorphism X : U ̂ Z2 through lex = LI and Xe2 = LI .

As was done in Chapter 4, we identify XU and U. Define the mono-
morphism cp : K -> OL(2} Z) by

or

__ (l °
Any finite subgroup cp (K) of GL(n, Z) is isomorphic to a finite subgroup
of O(n, R) and thus leaves a positive definite metric invariant. In our case

((poc)TG(<poc) = G

(where {(poc)T is the transposed of the matrix ((pa)) gives

(9u ° \
W 922/

The lattice generated by ex and e2 and left invariant by cp (K) is thus
rectangular. We shall write a instead of (pa and 1 for (pe.

(ii) N on-equivalent extensions. For the normalized 2-cocycles
m^Z2{K,Zn), we find

(1 — a) ra(a, a) = 0
giving

»(«,«) = {g)|*^}.
The 2-coboundaries dc are determined by

(<3c)(a,a) = c(a) + ac(a) - c(a2)
giving

Therefore we have two inequivalent cohomology classes, [m-J and [m2],
defined by

[m1](a,oc) = \[ ft )\z€Z\, [ m 2 ] ( a , a ) = n Q

H2(K,Z2) is thus the cyclic group 02 generated by [m2]. To represent
the cohomology classes, we may choose the two cocycles, mx and m2,
defined by

mx(a, a) = LI , m2(a, a) =
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Recall that the 2-cocycles m and the sections r are related by

(roc)2 = xm(ct, oc)
so that

( r i a ) a = 0 , (r2o>)2 = e x .

The corresponding space groups are generated by ev e2, and roc ac-
cording to

pm = {e1; e2> r ^ l (^a)2 = 1} = (Z2, Z , cp, m^

pg = {el5 e2, r 2a | (r2a)2 = e j = (Z2, K, <p, m2) .

(in) Non-equivalent systems of non-primitive translations. For the
normalized 1-cocycles s ^ZX(K, Rn/Zn), we find

giving

s (a) = ih) 2s1~0 (mod R\Z) ,

The 1-coboundaries dg are determined by

(%)(a) = ( l -a )<7 = {(2°J
Therefore we have two inequivalent cohomology classes, [sj =
and [s2] — [7t*u2], defined by

, R2/Z2) is thus the cyclic group C2 generated by [s2]. To present
the cohomology classes, we may choose the two cocycles, s± = n*ux and
s% = 7i*u2, defined by

so that

Again we may choose the following two inequivalent systems of non-
primitive translations,

The connecting homomorphism d% acts as follows:

The corresponding space groups are

£>m = (Z2, K, (p, u±)
and

pg = (Z2, Z , 99, w2) .
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(iv) Action of the element rcc on S\ According to (3.19) the action of
r a on a point x £ $ is given by

roc ox = (fi'roc) x = (u(oc) • rvoc) x = (rpoc) x + u(<x) £ $ .

Thus, by (3.19')

0v(ra ox) = ^ [ ( r ^ a ) x] + u{oc) = OL^X) + u{oc) £ T .
Putting

0 ^ = kei + he2
and extending the isomorphism X by linearity to X : T ^ R2, we find for
2?m, after identification oi XT with i?2:

0 B ( r i a o x) = (a) ( 0 ,

Therefore rxa is a mirror "m" on the ej-axis. For ^^, we find

o x) = (a) (0,x) + «a(«)

The element r2a acts as a glide "gr" where the mirror component is the

same as in pm but is followed by non-primitive translation -z- e±.
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