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Abstract. The algebra of 8U(3) is developed on the basis of the matrices λ4 of
GELL-MANN, and identities involving the tensors diί1c and fifk occurring in their
multiplication law are derived. Octets and the tensor analysis of the adjoint group
8U(3)/Z(3) of #£7(3) are discussed. Various explicit parametrizations of 8U(3) are
presented as generalizations of familiar 8 U (2) results.

1. Introduction

The aim of this paper is to discuss the algebraic properties of
(I) The Gell-Mann matrices λi9 (i = 1, 2, . . ., 8), [1], which play the

role for $£7(3) that the Pauli matrices play for ££7(2),
(II) The Gell-Mann tensors fijk and dijk> [1], which enter the

multiplication law
2

λiλs = y δu + (dijk + ifijk) λk (1.1)

of the λi9

(III) Octets or real octet vectors a^i = 1, 2, . . ., 8) which transform
according to the adjoint or octet representation of $£7(3),

(IV) Special unitary 3 x 3 matrices, i.e. elements of $£7(3).
The motivation for the paper stems for the need, [2], of results such

as are derived, in theories of elementary particles, including current al-
gebra, in which $ £7(3) or chiral $ £7(3) X $ £7(3) is present as an under-
lying symmetry group. The paper itself is in part a review of existing
knowledge, particularly under headings (I) and (II), and in part an
exposition of new results.

It seems that TARJANNE [3] was the first to give identities amongst
Gell-Mann d and / tensors. Also KAPLAN and RESNIKOFF [2] have con-
sidered such matters and the generalization to SU(n). Our discussion of
the λi9 and of d and / tensors is given in section two, and its claimed
merits, apart from various new identities, are as follows. Firstly, all
results are presented in as symmetric a way as possible with a view to
making manifest their entire content, how previous treatments fail to do
this being explicitly indicated. Secondly, $£7(3) results are shown to
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separate into two classes: identities in one class being those with exact
SU(n) analogues, for all n, identities in the other being peculiar to
$£7(3). We discuss the former, to some extent following KAPLAN and
RESNIKOFF [2], at the $ U (n) level, so that $ U (3) results arise by putting
n = 3. KAPLAN and RESNIKOFF [2] did not consider the second class of

identities at all. When we consider such identities, we follow a general
procedure which could indeed be applied to 8 U (n) for any n, although
results would no doubt be different in form for other n. This procedure
involves the use of the characteristic equation of an arbitrary element
A = akλk of the self representation of the algebra of $£7(3); the im-
portant result (2.22) stems directly from use of this equation.

Our discussion under heading (III) is given in section three. I t can
alternatively be described as an introduction to the analysis of tensors
which can be built out of octet vectors and which transform according
to representations of the adjoint group $ £7(3)/Z(3). This tensor analysis,
in contrast to that used by OKXΓBO [4] in his discussion of $£7(3), is
hardly discussed at all in the literature. Our discussion emphasizes such
tensors, including invariants, as can be formed out of a single octet
vector. Some aspects of our discussion reflect facts that are quite well-
known in other formulations of 8 U (3) theory. For example it is very
familiar that, given a single octet vector, ak say, one can build from it
one and only one octet vector, bk — dij1caiaj say, linearly independent
of it. What is less familiar but useful information is the explicit expression
of other octet vectors as linear combinations of ak and bk.

In section four, we use the results of sections two and three to study
the explicit parametrization of elements of $£7(3), i.e. special or uni-
modular unitary 3 x 3 matrices £7. In other words we attempt to write
such £7 explicitly in the form

U = uo + i ukλk

where uk = ocak+ βdijhasah for some real octet vector ak, and u0, α,
and β are explicitly given functions of the invariants which can be built
out of the vector ak. Using the exponential and Cayley representations
of unitary matrices we obtain two such explicit forms. In the light of
experience with the corresponding problems for 8 U (2) our results may
well seem complicated. It is very probable that the nature of our results
simply reflect the inherent complexity of the 8 U (3) situation, but the
possibility of finding a parametrization of more appealing appearance is
not ruled out. A recent paper by CHANG and GURSEY [5] displays various
parametrizations of £7 ζ 8 £7 (2) featuring Pauli in place of Gell-Mann
matrices. Our discussion has been motivated in part by a desire to extend
the work of these authors on chiral $£7(2) x $£7(2) to chiral $£7(3)
X$£7(3).
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2. Basic Results on d and / Tensors

We are here principally concerned with deriving identities involving
the GELL-MANN [1] 8 ί7(3) tensors dijjc and fijk, which arise in the multi-
plication law (1.1) of the Gell-Mann matrices λt. The identities in question
are of two distinct types, those which are special (n = 3) cases of results
valid for 8U(n), and those which are specific to the SU(3) situation.
We discuss the former class of identities first at the 8U(n) level, in such
a way that the required SU(3) results can be read off directly.

We consider the algebra of SU(n), which consists of all nxn
traceless hermitian matrices, and choose as a basis a set of N = n2 — 1
matrices Viy i = 1, . . ., N, such that

(Vt,Vi) = Tr(VtVi) = 2δii. (2.1)

The normalization fixed by (2.1) means t h a t for 8U(2) the Vi are the
Pauli matrices τ^, and for 8 U (3) the F e are the Gell-Mann At .

Since Vit i Vi9I and ίl together span the space of all complex nxn
matrices 1, it follows t h a t we have a multiplication law of the type

yt VJ = 4 in + (dn* + »fin) V* ( 2 2)

where (2.1) has been used to fix the coefficient of the identity. From (2.2)
we obtain

[Vi,Vj] = 2ifijkVk, (2.3)

{Vi,V,} = ~δij + 2dijhVk, (2.4)

and
4i/, i f c=Tr[F,, V^VK, (2.5)

4:diSΊ6=Tr{Vi9Vi}Vk. (2.6)

It follows easily that fij1c and dijk are respectively totally antisymmetric
and totally symmetric in i, j and Jc, and, since Tr Vk = 0 and F< Vt is
a multiple of the identity, that

diik = 0. (2.7)

The associative property (F$ Vj) Vk= F έ (Vj Vk) of matrix multiplication
gives rise to various d, f identities. To obtain economically a minimal
independent set of such identities, we use

V,\ Vk] + [[F3, Vk], V{] + [[Vk, Vtl Vt] = 0 ,

\.{Vi, V,}, V,] + [{F3 , Vk), Vt] + [{Vk, Vi}, 7,] = 0 ,

[7 fc, [Vit Vj]] = {V}; {Vk, F,}}- {Vi, {V,, Fs}} ,
1 This fact can be expressed by the useful identity

2
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and obtain

film fmjlc + fjlm fimk + fklm fίjm ~ ® > (2.8)

fi Im (^mjkJΓ fj \m ^imk + fk Im ̂ ijm — ® > (2-9)

2
fiim fkim = — (δik δji — &n δίk) + {dikm djlm — djΊcm dilm) . (2.10)

Of these, the last is the generalization of the familiar 8 U (2) result

Siim εklm = ̂ ik &il ~ &il ^ύk (2.H)

An alternative derivation of (2.8) and (2.9) is illuminating. Since (2.2)
to (2.6) are invariant under the change

of basis, it follows that diίk and fijΊc are isotropic tensors. However, in
the case of U == 1 + ia{ F$ for real infinitesimal ai3 this in variance of (2.3)
and (2.4) gives rise directly to (2.8) and (2.9), which are thus expressions
of the isotropy of the / and d tensors.

From (2.3), it can be seen that the fiίk are the structure constants
of SU(n), and (2.8) is, of course, a well-known general property of struc-
ture constants. Also, since SU(n) is compact, a further general property
of structure constants of compact semi-simple Lie groups2 yields the
result

U^fuk^nδu. (2.12)

Now, from (2.10), we obtain

dijk dzj1c = — - — δiz, (2.13)

and along with these last results, we have the obvious result

< W u * = 0 . (2.14)

From here, we can proceed systematically to results involving threefold
products of d and / tensors, and beyond. We shall however be content
to record the following easily verifiable identities

fviqfqjrfrkv^ ""^fiόk > (2.15)

(
dijk) (2.16)

n2 — 4

( 2̂ 12 \

— 2 τ t — ) d i n ( 2 1 8 )

2 See, for example, G. RACAH [6]. The actual multiple of the Kronecker delta
involved in (2.18) depends on the normalization (2.1) of the F<.
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We now specialise to n = 3 to obtain two important relations that
are peculiar to this case. The method to be used, however, is of con-
siderable generality and can be applied to SU(n), for any n, to yield
results which will correspond to those below but whose form will be
specific to the value of n under consideration.

The method is based on the characteristic equation of a general
element of the algebra of 8U(3). Writing such an element in the form

A =
we obtain its determinant as

det A = -̂ y εκβγ ελμv (α

•^7

2

) ^ {djλj)βμ (akλJΰ)γv

iλjtλj) α Λ αfc (2.19)

using a well-known expansion of εα/Sy ελμv. Similarly we obtain its charac-
teristic equation as

2
Az — atatA — ~^dijk a^a^ = 0 . (2.20)

Since the ai are arbitrary we can equate to zero the coefficients of a^a^
symmetrized with respect to i, j , h, to obtain3

1 11

4- five perms) = y (δuλh + δjkλi +
2
γdij1c (2.21)

We now use (2.2) and (2.8) to grind Eq. (2.21) into the form KijJclλι = 0,
where KijΊcl is an $£7(3) tensor. The linear independence of the λt now
implies that Kijkl~0; the real part of this equation is

d d {δδdjlmdi δjkδiι-\- \ (2.22)

the imaginary part just reproduces (2.9).
Note that the distribution of indices on the left-hand side of (2.22)

is identical to that on the left-hand sides of (2.8) and (2.9). It is to be
stressed that the remaining quantity of this nature,

dilmfmjk + djimfimk + dklmfijm ,

is one for which no simple result exists. That the quantity is non-
vanishing can be checked explicitly its symmetry properties under per-

3 Results equivalent to (2.21) in other formulations of SU(S) theory, but of
less appealing appearance, have occurred in various important contexts. In con-
nection with the mass formula, see OKTJBO [4] in connection with the non leptonic
decays of baryons, and Lee-Sugawara triangle relationship, see OKUBO [7] and
DALITZ [8]; in connection with the Ademollo-Gatto theorem and related matter,
see ADEMOLLO and GATTO [9], and ZAKHAROV and KOBZAREV [10].

6 Commun. math. Phys., Vol. 11



82 A. J. MΔCFARLANE et al.:

mutations of i, j , k, I prevent it from having an expansion in terms of
Kronecker deltas.

Equation (2.22) can now be used, in conjunction with (2.10), to
obtain the relation

Sdijftdyqfr = δivδjq + OiqOjv — δijδ^q + Uvmίjqm + fiqmfjvm > (2.23)

an expression for the product of two extensors analogous to (2.10) for
the product of two /-tensors.

It seems fairly clear that no further identities for d and / tensors
exist that are independent of those given above. We could obtain further
results by considering more complex products but we leave the matter
here, having obtained results sufficient for our own immediate purposes
and hopefully most others.

TARJANNE [3] and KAPLAN and RESNIKOΓI1 [2] have expressed

results in matrix notation with Fό and Dk defined by

(ίj)<* = i fuh , Φy)<* = dijk . (2.24)

Accordingly (2.12) to (2.14) translate into

ι = nδili (2.25 a)

j - 0 , (2.25 b)

u (2.25c)

while (2.15) to (2.18) become

^ (2.26a)

(2.26b)

^ , (2.26c)

^ . (2.26d)

It would appear that considerable simplification has been achieved, but
this is in fact not really so. For example, (2.26b) hardly makes manifest
the entire content of (2.16), which also translates, using (2.24), into the
identities

(2.27)

If one translates (2.8) and (2.9) into matrix notation, obtaining

[J , ,^] = »/„»!'*, (2.28)

[JF<>Dί] = i / < ί ί B t > (2.29)
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then, on the one hand, their symmetric appearance has been destroyed,
but, on the other hand, (2.28) implies the well-known general result that
the matrices Fi are the matrices of the adjoint representation of 8U(n),
and (2.29) implies that the matrices Dj} related to the Fό by (2.27), also
transform according to this representation. Finally, we note that the
important identities (2.10) and (2.23) do not translate into matrix
notation without the introduction of further independent matrices.

3. Tensor Analysis of the Octet Group

It is evident that tensor indices which take on eight values as do
those of the d and / tensors are tensor indices associated with the adjoint
group $£7(3)/Z(3) of ££7(3) rather than with $£7(3) itself. In other
words, just as ordinary Cartesian tensors, with indices taking on three
values, refer to R(3) = SU(2)jZ(2), and spinors, whose indices take on
only two values, refer to SU{2), so here we have tensors associated with
$ £7(3)/Z(3), which are in fact Cartesian tensors in eight real dimensions,
since $£7(3)/Z(3) is isomorphic [11] to a subgroup of R(8), and tensors
associated with $£7(3). The tensor analysis based on the latter is well
discussed in the literature [4], [12], whereas that based on the former
is not, probably for lack of the algebraic tools. We wish now to employ
the results of the last section to discuss briefly some aspects of the
analysis of tensors belonging to the octet group 8U(3)jZ(3).

We begin by considering the "vectors" of the $£7(3)/Z(3) group,
which are real eight-vectors, called octets, and which transform according
to the adjoint representation of $£7(3). First of all consider the $£7(3)
invariants and octets that can be formed if one has at one's disposal only
a single octet vector a{ and the tensors d and /. It is of course well known
that at most two linearly independent octets can be formed. We shall
take these to be a{ itself and (a * α)^:

(α*α)< = d ^ Λ α i α Λ . (3.1)

It is equally well known that at most two independent $ £7(3) invariants
can be formed, which we take to be

I2(a) = aw , (3.2)

I3(a) = {a * a)t a€ = dijk a^a^ . (3.3)

In terms of the notation
(abcy^di^a^Cf., (3.4)

we write I3(a) = <α3) quite often. While the two statements made answer
the questions of principle, it is clear that other octets and $£7(3) in-
variants can be written down. To exhibit explicitly how such quantities
can be expressed in terms of the selected basis octets and $£7(3) in-
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variants is in fact essential for practical purposes. For octets, we note

fiJkaj(a*a)k=0, (3.6)

Λifc(α*α)i(α*α)* = O, (3.7)

dijk α,(α * a)k = y 7a(α) % , (3.8)

2 1
d<ifc(« * a)j{a * α)fc = y J3(α) α< - y Ia(α) (α * α), . (3.9)

Of these two are obvious, and three require straightforward use of
identities given in section two. Turning to 8U(Z) invariants, we use
results of section two, along with (3.8) and (3.9), to derive

{a * a)i(a * a)i = <αα(α*α)> = y [/2(α)]2 , (3.10)

(a(a * a) (a * a)) = y / a ( α ) /3(«) , (3.11)

It is to be noted that unless Iz{a) = 0 the octets at and (α * a)i are not
orthogonal. For some purposes it is desirable to replace (a * α)$ by Ô
such that α̂ O^ == 0, and it follows from (3.2) and (3.3) that the choice

0, = IB(a) at - I2(a) (a * a),, (3.13)

satisfies the orthogonality condition. We note that

0,0, = /a(α) {y [/a(α)]» - [/3(α)]2} . (3.14)

Now both 0,0, and I2(
α)> ^ e m g the norms-squared of real octet vectors,

are positive definite; hence (3.14) implies4

γ[h(a)?-Lh{a)]2^O. (3.15)

A further consequence of (3.5) to (3.7) that may be worth noting is as
follows. In contexts in which one has a single real octet vector a,, all
3 x 3 matrices are of the form M = α + [βcc, + γ(a * a),] λ, where
α, βy γ are functions of / 2 ( α ) a n ( ^ IΛa)> a n ( i accordingly commutative.
To see this, note [M, M'] involves only terms like βγ' 2 if,jka,(a * a)$ λk

which vanishes in view of (3.6). We now go on to consider the general
tensor representation of 8U(3)jZ(β). In general, a tensor T,jk . . . will
carry an irreducible representation of SU(3)jZ(3) if and only if

1. its indices have irreducible permutation symmetry,
2. all contractions which can be formed using Kronecker deltas and

d and / tensors, are zero.
4 The fact that the cubic (2.20) necessarily has three real roots for any octet

vector at likewise yields the result (3.15).
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We do not attempt a general discussion, but illustrate using simple
examples. Given a general tensor Tii of second rank, we know, of course,
on the basis of

what irreducible tensors can be built from its components. Explicitly we
find, using the results of section two in the consideration of contractions,
that the irreducible constituents of the symmetric part of TiS are

Tu J (1 component),

Y (Tu + TH) dij1c , (8 components),

1 3 1 1
~2~ (Tfj + Tji) ~β'd>ijl dχm k-^ {TmJc -f- Tkm) — -g- δij Typ ,

(27 components),

while those of the antisymmetric part are

y (Ti j - T5 i) fah9 (8 components),

~2~ (Tij — TH) — γfiji fimk'Tjr (Tmli — Thw) ,

(20 components) .

It is noteworthy that the last tensor cannot be split up into two parts
(corresponding to the 10 and 10 in the antisymmetric part of 8 X 8)
without discussion of a conjugation operation, a matter not taken up
here. In the special situation wherein there is only a single octet vector
at one's disposal, so that T€j = a^, only the symmetric part exists and
we have

I2(a) , (1 component) ,
(α * a)i, (8 components) (3.16)

3 1

In further illustration, we consider a question which arose in the authors'
study [2] of chiral SU(3) X 8U(3) dynamics: how many independent
symmetric second rank tensors can be built when only a single octet
vector at is at one's disposal. It is not hard to convince oneself that the
following are a minimal set of such tensors :

δw dίjJcak, a^j, dijh(a * α)fc ,
(3.17)

at(a * a)j + %(α * a)it(a * a)i(a * a)j .
Tensors such as

diQk djqlc UpUq, fivkfjqk %aq >

etc. can be expressed as linear combinations of those in the set (3.17),
using identities given in section two. Similarly, one may show that a
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minimal set of antisymmetric rank two tensors built out of a single real
octet vector is

Unak> fijΊc(a * α)fc> aΛa * a)i - aΛa * a)ί> dίΊ)qaJjqr(a * a)r. (3.18)

4. Special Unitary 3 x 3 Matrices

We wish here to give generalizations to 8 £7(3) in terms of Gell-Mann
matrices of certain familiar representations of elements of SU(2) in terms
of Pauli matrices.

It is well-known that any special unitary matrix £7 can be written
in the form . , ,. , x

U = etA (4.1)
with A hermitian, to make £7 unitary, and traceless, to ensure det U = 1.
In the 2 x 2 case, writing

A = a x , (4.2)

and putting a = θ n, where n 2 = 1, so that α2 = θ2, one easily develops

U = cos θ/2 + i sin θ/2 τ n . (4.3)

An alternative description of any unitary matrix is the Cayley or rational
representation. This allows almost any unitary matrix U to be written
in terms of a hermitian matrix B in the form

J7= (l + iB){l-ίB)~1 (4.4)

the two factors being commutative. In the two by two case, the corre-
sponding U is unimodular if and only if B is traceless. In this case
writing B = b τ one converts (4.4) into the form

(4.5)

At the SU(2) level, relationships between different parametrizations are
easily seen, and we may alternatively write any U ζ SU(2) in the form

U=co + ic-τ (4.6a)

in terms of real quantities c0, c subject to

co2 + c 2 = 1 . (4.6b)

We wish here to consider the problem of parametrizing special unitary
3 x 3 matrices, i.e. elements of S £7(3). The problem is very much harder
than the $£7(2) problem in view of the fact that the algebra of Gell-
Mann matrices, involving ^-tensors, is much more complicated than that
of the Pauli matrices.

We discuss in turn the use of the exponential and Cayley representa-
tions of U ζ 8 £7(3) and the (not completely successful) search for a result
analogous to (4.6).
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First consider the exponential form (4.1) with A traceless and
written as

A = akλk . (4.7)

We wish, in as close analogy as possible with (4.3), to express U in
the form

U = uQ + i ukλk (4.8)
where

uk = xak + y(a*a)k (4.9)

with uQ, x and y given explicitly as functions of the invariants 72 = akakJ

73 = (azy. A direct approach, based on manipulation of the series expan-
sion of eiΛ and use of the characteristic equation

A*-I2A-γI3 = Q (4.10)

of A, quickly becomes unmanageable. An alternative approach consists

of two steps, first, computation of u0 = -Q- Tr U as a function of 72 and

/3, and second, calculation of x and y in terms of u0. The first step is easy
to perform but leads to a complicated result. Let φ^oc = 1, 2, 3) be the
three real latent roots of A, i.e. solutions φ = φx of

γIa=0, (4.11)

given explicitly [13] in terms of I 2 and 73 by means of

φ = 2(72/3)V2 c o s y (χ + 2πα) , α = 1, 2, 3 , (4.12a)

cosZ = j/3 73(72)-3/2. (4.12b)

It then follows that

To compute # and /̂ of (4.9), we develop

ΔΔ

1 3

2 dak

1_ yi ί

2 f
and using (4.7) get
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Hence the quantities x and y of (4.9) can be identified as

i - h ) - 1 , (4.16)

h)-1, (4.17)
α

and, in virtue of (4.12), the desired expression for U of form (4.1) with
(4.7) has been obtained. While the result with u0) x, y given as complex
and complicated functions of I2 and 73 may seem disappointing as
a generalization of (4.3) for S U(2), it seems clear that there is no explicit
parametrization of 8U(3) which will not involve the solution of a cubic
(if not even a sixth order) equation.

Turning now to the rational or Cayley representation (4.4) of a 3 X 3
unitary matrix U, we do not assume B to be necessarily traceless but
rather set

B = t>o + λkbk , (4.18)
and see what the restriction det U = 1 implies. If any 3 x 3 unitary
matrix U is written in the form (4.8) with u0) uk in general complex, then
directly one obtains

det U = V + uQu2 - y i <>3> . (4.19)

Applying this to the consequence

det(l - %B) = det(l + %B)

of detU" = 1, we deduce that b0 must be a function of the invariants
J 2, 7 3 which can be built out of bk9 which obeys5

bo

3 = bo(Iz+Z)-~I3, (4.20)

and that det (1 - i £ ) = 1 + / , - 3 & 0 » (4.21)

From (4.20), it follows that det U = 1 and b0 = 0 require I3 = 0. In order
to make practical use of the Cayley representation we need to be able
to obtain (1 — iB)-1 explicitly in the form

(l-iB)-* = co + ίckλk, (4.22)

c^abt+βdtHbfa. (4.23)
Directly one obtains

α = (l-ίft o)fl-i, (4.24)

β = i β - 1 , (4.25)

c0 = [~ (1 - 3ib0) + y β] β" 1 , (4.26)

δ The condition that (4.20) have three real roots can be directly shown to he
2

satisfied, since the condition that xz = I2x + y J 3 have three real roots is satisfied.
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where Ω = det (1 — ίB) = 1 + J 2 — 3bQ

2. Now, since

Ϊ7 = 2(1 — iJB)-1 — 1

it follows that

Thus again we are lead to a parametrization of S £7(3) based on a single
real vector bk wherein scalar quantities involved are given explicitly in
terms of the invariants formed from bk only after a cubic equation has
been solved. I t would seem however that the Cay ley approach leads to
a more manageable final result than the exponential form. Result (4.27)
shows clearly how restrictive on U is the condition b0 = 0 in (4.14), since
b0 = 0 implies Tr U real.

Finally we consider the possibility of expressing a matrix U ζ 8 £7(3)
in the form

U = fo + igo + ih(h + igjc), (4.28)
where

gi = xfi + ydijkfjfk (4.29)

and expressing fo,go,x and y in terms of the invariants J 2 , J 3 which can
be built out of fk. To handle this problem, we write unitary U as

U = vo + ivkλk (4.30)
and, as for (1 — iB)*1, find

Putting det £7=1, and equating C7-1 to

ί/ΐ = V - ivk*λt

yields the equations

V = V + y ^ Λ > (4.31 a)

^ * = ^ ( Λ - i dί5k *>i i>j (4.31b)

When we put v0 = /0 + ίgr0, vk = fk + ίgk, with ^fc given by (4.29), (4.31)
yields in fact six equations for /0, ^0, x ,y in terms of J 2 = /fc/fc, J 3 = <(/3}.
Of these four are independent:

2
l = /o~flro» + y y Λ »
0 = - g*y + 2 χ >

2 (4.32)

- a; = fox + ô + y ( J J)
2
y (& J a
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and the other two are consequences thereof. No better result than the

following was obtained: x and y are given by

* = ?o(l + 3/c)-1, V = 2(1 + 3/,,)-1 (4.33)

in terms of /0, g0 which are related to J2, J% by

(l + 3/ 0 ) ( l -/ 0 ) = y J 2 - 9 - 0

2

) (4.34a)

3flΌ(l + 3/β) = - 2 [g0

3 - J2g0 + γJ3] (4.34b)

Elimination of f0, g0 from (4.34) leads to equations of sixth order for

/o o r 9o ( a n ( i hence for x, y). It is of course possible that a more attractive

answer exists — various other possibilities have been considered. Eq.

(4.33) provides a useful check on results for the exponential or Cayley

representations.

References

1. GELL-MANN, M.: The Eightfold way. California Institute of Technology Report
CTSL-20 (1961), unpublished; reproduced in: The Eightfold Way, M. GELL-
MANN and Y. NE'EMAN. New York: Benjamin Inc. 1964.

2. CUTKOSKY, R. E., and P. TARJANNE: Phys. Rev. 132, 1354 (1963); - DUL-
LEMOND, C : Ann. Phys. 33, 214 (1965); - KAPLAN, L. M., and M. RESNI-

KOFF: J. Math. Phys. 8, 2194 (1967); - LEVY, M.: NUOVO Cimento 52, 23
(1967); — MiTTER, P. K., and L. J. SWANK: Preprint (1968); — MICHEL, L.,
and L. A. RADICATI: Preprint (1968); — MACFARLANE, A. J., and P. H.
WEISZ: NUOVO Cim. 55 A, 853 (1968), Preprint (1968).

3. TARJANNE, P.: Ann. Acad. Sci. Fenn. Ser. A. VI Physica, No. 105, (1962).
4. OKUBO, S.: Prog. Theoret. Phys. (Kyoto) 27, 949 (1962).
5. CHANG, P., and F. GURSEY: Phys. Rev. 164, 1752 (1967).
6. RACAH, G.: Lectures on group theory and spectroscopy. Princeton: University

Press 1951, reprinted as CERN 61-8, 1961.
7. OKUBO, S.: Phys. Letters 8, 362 (1963); — OKUBO, S.: Lectures on unitary

symmetry, University of Rochester report, 1964, p. 83 and p. 170.
8. DALITZ, R. H.: Proc. Intern. School of Physics Enrico Fermi, Course 32, p. 206,

1964. New York: Academic Press 1966.
9. ADEMOLLO, M., and R. GATTO: Phys. Rev. Letters (1964).

10. ZAKHAROV, V. I., and I. Yu. KOBZAREV: SOV. J. Nucl. Phys. 1, 749 (1965).
11. MACFARLANE, A. J. : Commun. math. Phys.
12. MUKUNDA, N., and L. K. PANDIT: J. Math. Phys. 6, 746 (1965).
13. LITTLEWOOD, D. E.: University Algebra, p. 188. London: Heinemann 1958.

A. J. MACFARLANE

A. SUDBERY

P. H. WEISZ

Department of Mathematics
and Theoretical Physics
University of Cambridge
Cambridge, Great Britain




