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Abstract. We define "locally isotropic" spaces, as spaces in which there exists, in
the tangent space at each point P, a subgroup A (P) (of dimension at least 1) of the
Lorentz group L£9 leaving the Biemann tensor and its 2 first covariant derivatives
invariant the subgroups A (P) are assumed to be conjugate in L\. These spaces admit
a group of local isometries G.li IP denotes the subgroup of G leaving P fixed, then
dA (P) = Ip. All spaces of petrov type D, admitting local isotropy are determined.

1. Introduction

A 4 dimensional Lorentzian manifold F 4 is a differentiable and orien-
table manifold on which is everywhere defined a regular metric of hyper-
bolic normal type. One generally assumes also that a coherent time
orientation exists; this is equivalent to the existence of a continuous
nowhere vanishing time like vector-field; we make this assumption here.
In general relativity it is customary to consider local coordinate trans-
formations which are defined by functions of class C2, piece wise O4 [1].
We shall need here slightly stronger assumptions: the second derivatives
of the Riemann tensor must be continuous at least piecewise.

F 4 is said to admit an isotropy group at the point P if: 1) there
exists a locally compact effective transformation group G of isometries
of F 4 operating differentiably on F 4 .

2) There exists a subgroup IP of G which leaves the point P fixed.
Ip is called the isotropy group at P. A manifold is said to have local
isotropy if in each point P it admits an isotropy group IP; the I P ' s are
conjugate subgroups of G.

The transformations of IP induce linear transformations in the tan-
gent space TP at P. The set of these linear transformations is a subgroup
Aq(P) of L\. of dimension q ^ 1; the Aq(Pγs are conjugate subgroups
of L%.

I t has been shown that, in a 0 0 0 locally isotropic F 4, Aq(P) leaves
the Riemann tensor and all its covariant derivatives invariant [2, 3, 4].
Two problems thus arise:

1) to determine all locally isotropic F 4 ;

* On leave of absence of the Southwest Center for Advanced Studies Dallas.
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2) to see if the existence of Λq(P) in each point does not imply the
existence of an isotropy group IP and thus of an isometry group.

In view of the differentiability requirements of general relativity, we
shall redefine local isotropy in terms of certain subgroups of L+. If F 4

is a lorentzian manifold of class C2, C5 piecewise, it is said to be locally
isotropic if:

(Γ) There exists in each tangent space TP a subgroup AQ(P) of
dimension q ^ 1 leaving the Riemann tensor and its 2 first covariant
derivatives invariant; all the AQ(Pys are conjugate subgroups of L\.

It is immediately clear that the Petrov type of such a F4 must be
D, N or 0. We shall consider here only the type D. If one assumes that
the Petrov type is constant on F4, it is easy to show that the Aq(PYs
are automatically conjugate subgroups of L+.

We plan to show that the 2 definitions of local isotropy are equivalent
and to determine all locally isotropic F4. The proof of equivalence is in
fact done by explicit construction of the metric.

It is highly probable that the assumption (Γ) is a little too restrictive
and that the in variance of the Riemann tensor and only its first covariant
derivative would be sufficient to derive the equivalence we have in fact
proven this generalised result in all but one exceptional case. We would
have very much liked to stick to the usual C2, C4 differentiability require-
ments; this we could not achieve.

Let us note that G. ELLIS [3] has proved, in the case of spaces
describing a perfect fluid, that the existence of Aq(P) implies the existence
of Iβ(P).

2. Description of Results

The group AQ(P) can be of dimension 2 or of dimension 1. If the
dimension is 2, the group A2 is the product of a space like rotation by
a time like rotation (4-screw) [5]. If the group is of dimension 1, the
ratio of the rate of space like rotation to the rate of time like rotation
is constant. It can furthermore be shown that, when this ratio is not 0
or infinite, the space admits necessarily a group of isotropy A2. There
are thus only 2 cases: space like rotations (Bj), or time like rotations (CΊ).

The manifolds admitting an A2 were determined by BERTOTTI and
ROBINSON [6, 7]. The metric can be written:

IΛ d u d υ

(1 - βζζ*)* ^ Λ )

where α and β are real constants. The group G of isometries is the direct
product of 2 "rotation" groups. The Lie algebra of G can be written as:

= — ocX1 [X3, XJ = — Xz

= X6 [X 5 ,X β ]=- / SZ 4 (2.2)
= 0 α = l,2,3; α = 4,5,6.
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The manifolds admitting the isotropy group B1 are of 5 different
types. Let us denote (tt) the 2-plane passing through the origin and
parallel to the orbits of B1 in the tangent space. If this family of 2 planes
is integrable the metric can be written as:

ds* = 2^{x, y) dx dy - 2A*(x, y) d ζ ^ ζ . (2.3)

This metric has also been indicated by many authors. Various subcases
must be considered. They are distinguished by the sign of the square
of the gradient of A.

AxAy S* 0 . (2.4)

If Ax - Ay < 0 one can choose A as a space like variable x, and t as
a time like variable, the gradient of which is orthogonal to grad A and
belongs to the (x, y) plane. The metric can then be written as:

ds* = β*(x, t) dfi - αa(s, t) dx* - (λx + I) 2 , d ζ d ζ

 N2 . (2.3a)

(i-4-cc*)
We have written A in the form (1 + λx) where λ can take the values
0,1 to include the limiting case where A = Cte.

If Ax Ay > 0 one can choose A as a time like variable x and t as
a space like "orthogonal" variable and write the metric as

ds* = oc2{x, t) dx* - β*(x, t) dt2 - (λx -f I) 2 , d ζ t ζ * Xό- (2.3b)

where λ is 1 or 0 the limiting case λ = 0 belongs to the class of metrics
(2.3a).

If Ax Ay = 0 one can, by a scale transformation, reduce (2.3) to:

ds* = 2p*(x, y) dx dy - 2(1 + λxf . dζ*ζ

 χ 2 . (2.3c)

The limiting case λ = 0 is the one we had already encountered twice.
These 3 metrics admit the same group of isometries G, which is a "rota-
tion" group with Lie algebra:

[Xl9 X2] — XQ [X2> X3] = — ϊ " " ^ ί t̂ 3> -̂ 1] = ^2 (2 5)

The two remaining i^-type metrics correspond to the case where the
(t t) family of 2-planes is not integrable. They both admit a 4-parametric
group of motions, the orbits of which are 3-dimensional submanifolds.
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If these orbits are time-like the metric is:

τ & - < • < - > • * * *

The group of isometries G is the direct product of a "rotation" group
and the one-parametric group. The Lie algebra is:

I Ύζ

Γ "V" V ~\ "V Γ V V Ί "^ V Γ "V V 1 V

[A^, A 4 J = U I = 1, Z, o .

When the orbits are space like one has :

12

jζ + τr
C C * ^ " (2-8)

The group of isometries G is again the direct product of a "rotation"
group and the one parametric group. Its Lie algebra is given by (2.7).
The metrics (2.6, 8) are particular cases of the metrics given by D. B.
CARTER [8] (2.6) is a special case of the b+ metrics and (2.8) of the δ_.

There are 2 different types of O1-manifolds. Let us denote by (&, m)
the 2-plane passing through the origin and parallel to the orbits of C1

in the tangent space. If this family of 2-planes is integrable one obtains
the metrics :

ds* = (1 + λxf dUχV

 χ 2 - ct2(x, t) dt2 - β*(x, t) dx* (2.9)

where A is 1 or 0. There exists a 3-parametric isometry group G which
is again a "rotation" group with Lie algebra:

[ X i . X J - Z , [X3,Z1] = - X 2 [*.,*»] = - τ * i (2.10)

When the (1c, m) family is non integrable one finds:

j 9 dudv

/2(#) f^ O^rfw CΊ^rfv "|2 (iα;:

• ^ ! rr

1 --uv 1 - w
4 4
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The group G of isometries is the direct product of a "rotation" group
and the one parametric group; its Lie algebra is given by (2.7). The
metric (2.11) is a particular case of the Carter's metrics [8]; they
correspond to his c case.

3. Sketch of the Proof of Equivalence Between the Definitions
of Local Isotropy

To prove this equivalence we shall show how the definition (Γ) of
local isotropy allows us effectively to build the metrics listed in § 2.
We shall limit ourselves to the metrics (2.1, 3, 6) as the other cases can
be done in much the same way.

In each point P of F 4 we choose in the dual T* of the tangent space
a cobase θα(α = 1, 2, 3, 4) such that the metric is:

ds* = 2(θ1θ*- Θ2Θ3) . (3.1)

The forms θ1 and θ4 are real; θ3 - (θ2)*. The orientation is fixed by:

θ1
 Λ θ2

 Λ θ3
 Λ θ4 - i . (3.2)

If hλ are the components of the θα's in a local coordinate system, hλ the
(α)

components of the base vectors of Tv canonically associated with θα, the
time orientation is fixed by:

W > 0 . (3.3)
(i)

We choose in the space of the self dual 2-forms E% a base Zι (ί = 1, 2, 3)
given by:

te1 = θ3
 Λ θ4 Z 2 = θ1

 Λ θ2

1 Z 3 = ~ ( I 9 1 Λ Θ 4 - Θ 2 Λ Θ 3 ) . ( 3 " 4 )

The connexion form is defined as usual by:

dZ* = - ε*/σfc Λ Z*. (3.5)

Indices are raised and lowered by means of the metric γ of J7J. The
explicit relation between the components σk0ί of the connexion form and
the rotation coefficients γOiβχ= — hρ.σh

ρhσ are given in [9]. The cur-
( « ) ' (β) (λ)

vature form:

Σk = dσk-γ εff σs Λ σt (3.6)

can be expressed in terms of the Z's and the Z*'s:
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The symmetric matrix Ckj is the self dual Weyl tensor; R is the scalar
curvature and the hermitian matrix Ekj corresponds to the trace free
Rieci tensor. Bianchi identities can be written as:

dΣk = - y eg {Σ. Λ σt - σs Λ Σt). (3.8)

To express most conveniently in this formalism the assumption (Γ)
of invariance of the covariant derivatives of the Riemann tensor it is
useful to introduce a new kind of covariant derivative which we will
denote * (also 10, 11, 12). * is an operation, denned on objects with

( / ) ( / ) indices [p contra variant latin indices, . . ., q' covariant greek

indices] having the following properties:
(1) linearity

h
(3) the Leibnitz rule

(4) Ziβΐr = 0

(5) I t coincides with covariant differentiation on L J ί , I .

One can check very easily that the * derivative of a "vector" i^ is:

(3.9)

As the Petrov class of F 4 is D we can choose our cobase θα in such
a way that:

Cit = γ(δ}df + δiδ} + 4ί?$) . (3.10)

The vectors h, h coincide with the 2 eigen-vectors of the Weyl tensor.
(1) (4)

Let us assume that there exists a 2 dimensional subgroup A2 of L\
leaving the Riemann tensor invariant [this is clearly the highest q
admissible]. One has then:

{/=2(c-e) <3 U >
where c and e are arbitrary functions.

If A2 leaves the first covariant derivative of the Riemann tensor
invariant, one finds:

ί , = y,, = (e + e),,=:0 (3.12a)

W = σ2v = 0 . (3.12b)

The conditions (3.12b) are in fact the expression of the invariance of
C13*„ and C23*v respectively; the conditions (3.12a) can be deduced from
(3.12b) and Bianchi identities.
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The metric equations [13] can be integrated to prove the existence
of a coordinate system (x, y, ζ, £*) such that:

θ1 = rdx

: = sdy.

One can obviously choose tetrads such that r = s, α = α*. In these
tetrads the conditions (3.11, 12) imply that:

and furthermore the 2 surfaces (x9 y), (ζ, ζ*) have constant curvature.

dxdy _ dζdζ* ( 3 J 3 )
Thus the metric

~ (1 - <xxyf (1 - βζζ*)*

which has been given in (2.1). I t is to be noted that in this case only the
invariance of the first covariant derivative was used and an assumption
of differentiability C2

} C4 piecewise would have been sufficient. The group
A2 operates in the tangent space by:

If we assume the existence of a 1-dimensional subgroup Bι of L+

leaving the Riemann tensor invariant one finds:

(Eq = gδ\δ} + aδfδf + 2(c + e)

[R = 2 ( c - e ) .

The invariance of the first covariant derivative of the Riemann tensor
implies that:

R2 = Bo = Vo = y* — (c + e)2 = (c + e)« = 0

(3.15)

— OΛ Q = (Ti Λ = 0
lό 1 *

_ α
a2 — 2~ l σ32

(a))

(b)

(o)

(d)

(e)

(3.16)

The crucial relations (3.16, b, c) come again from the invariance of
C 1 3*, and C2Z%. Bianchi identities reduce to the 4 equations:

— y RA - 2y4 + (c + e)4 = - 3/σ1 2 + (c + e) σfi

"g~ -^1 ~~ Ύl ^4 = = ~ 2 ~ ̂ 2 3 "ι~ ~2 (^34 *• ° 3 4 ~ ^13/

1
—•z-R1 — 2γ1 + (c + e)x = 3 y σ 2 3 — (c + e) σ̂

firσ23

ασ
1 2

(a)

(b)

, (c)

(d)

(3.17)
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We have now to consider separately 3 cases:

1) σ12 — o*3 = (T23 — (7*2 ̂  0' ̂ n a ^ *s ̂ n e ^ v e c ^ors ft a n d ft are parallel
(i) (4)

to gradients. I t is then clear that there exists a coordinate system and
a family of tetrads such that:

θ1 = pdx

=qdζ (3.18)

= pdy .

The conditions σ n = σ2 4 = 0 imply that p = p(x, y). From the vanishing
of the 0 1 3, O 2 3 components of the Weyl tensor one deduces that:

q = A{x,y)B{ζ,ζ*). (3.19)

Finally combining linearly (3.16a) one shows that the metric B2dζ dζ*
has constant curvature. Thus the metric:

dβ* = 2p*(x, y) dxdy - 2A*(x, y)

It is worth noticing that once again we used only the invariance of the
first covariant derivative of the Riemann tensor and that we did need
the continuity of only the first covariant derivative of the Riemann
tensor.

2) σ12 — <7*3 = 0; σ23 — σ*2 Φ 0. If one now assumes the existence
and continuity of the second derivatives of the Riemann tensor one can
compute commutation relations between the conditions (3.16a). This
gives the alternative:

^ < τ 2 3 - σ * 2 = 0 or b) j R 4 = y 4 = ( c + e ) 4 - 0 . (3.21)

The first part of the alternative brings us back to case 1). In the second
part b) we deduce from (3.17b) that:

+ (c+ e ) c r l a - gσ22 = 0 .

The imaginary part of this relation is:

3(7* - γ) σ12 = g(σ2S - σξ2). (3.22)

The explicit expression of C12 allows us to compute (γ — y*) and thus
obtain a value for g:

9 = γσl2. (3.23)

From the expression of g we get, in a tetrad for which σ34 + σ*4 = 0:

*ia/4=-*ί2 (3.24)

The vanishing of C13 and the rality of σ12 allows us to compute the
commutation relation σ12[23] which again gives the alternative σ 2 3 — σ*2
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= 0 or ori2/4:==^ The second half contradicts (3.24) as σ1 2 may not
vanish. Thus this second case is reduced to the first. To obtain (3.21) we
used second covariant derivatives of the Biemann tensor but not their
in variance under B1.

3) (#12 ~ σίz) (σ23 — 0*2) + 0 Let us consider certain tetrad trans-
formations leaving (3.10, 15, 16) invariant:

There always exists a function p such that:

0 1 2 - < 7 i s = ^ ( ^ 2 3 - 0 * 2 ) s 2 = l . ( 3 . 2 5 )

Commuting the relations (3.16a) one gets:

εB1 + B± = εγλ + y4 = ε(c + e)x + (c + e)4 = 0 (3.26)

which shows that these components of the curvature depend of only one
variable.

The reality of EίΊ gives:

(*i2 ~ tfiU = Y (^f 2 - of I) + T (̂ 34 + 3̂*4) (eτia - σf8) . (3.27)

On the other hand if one computes O21 — Of x one gets:

y - y* == - (σ23 - σ|2)4

1 1 (3.28)
( - CΓ22σ'l2) ~ f (^34 + ) ( )

Substituting (3.27) in (3.28) by virtue of (3.25) one finds a value of
y — y* in terms of the akoc. A similar calculation using the reality of
E^ and the imaginary part of O1 2 gives another expression for (y — y*).
The equality between these 2 expressions implies that:

*8i + 08i=e(ff84+<#*)• (3-29)

The second covariant derivatives of 0 ^ are given by:

<7«?ρσ = Cu*tQ/a - Csj*>ρ σ*iσ - C4*Q <ήβ + Gifo γ\σ .

The conditions expressing their in variance in B1 imply that:

012/2 = T 012(03 2 + 0*2)

1 (33°)
023/3 = — "4~

and give the values of certain second derivatives of y in terms of the σfcα.
The vanishing of Clz and O 2 3 gives us:

012/3 = X 012(032 + 0*2)
1 (331)

σ23/2 = T 023(03 2 + 0*2)



Local Isotropy 65

Commuting the equations (3.30) and (3.31) we obtain:

V - -β- - ε9 = y #12 #22 - y #12 ~ y (σ3i + #*i) σ12 (a)

Λ 1 β ( 3 3 2 )

7 --Q-- ε a = Y σ 13 #23 - Y #23 ~ y (#31 + #3l) #23 (*>)

The difference of these 2 equations is:

( 3 3 3 )
Φ ~ 9) = y (#12#22 - #13 #23)

1
~ y (#12 - #23) - y (#31 + #fi) (#12 - £#2 3)

The imaginary part of this equation and (3.25) show that:

#12 = £ # 2 3 ( 3 3 4 )

and thus also:

a = g. (3.35)

Comparing (3.30, 31, 34) one gets:

#32+ #32 = 0 . (3.36)

The crucial coefficients σ1 2 and σ 2 3 are thus functions of only one
variable. The metric equations show that:

Θ1+εθ* = du (3.37)

and the various quantities are functions of u alone. One must separate
the 2 cases corresponding to a space like or a time like variable u. I t is
then possible by a straightforward, although somewhat lengthy integra-
tion, to obtain the 2 metrics:

(3.38)
and

dζdζ*

(3.39)

These B1 metrics all admit a group of isometries G and an isotropy

group A1. In the tangent space the transformations have the form

In the case C1, a similar construction can be made. The explicit form of
the metrics show that the definition (Γ) of isotropy always implies the
existence of a group of isometries G which is multiply transitive on its
orbits.
5 Commun.math.Phys.,Vol.ll
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It is maybe worth remarking that in the non integrable case an
alternative derivation of the metric can be done, which does not use the
invariance of the second covariant derivative of the Riemann tensor in
Bv This approach however seems to fail in one exceptional case.

4. Properties of the Locally Isotropic Spaces

a) Metric (2.1)

, 2 _ dudv dζdζ*
a s ~ (l - *uvγ (i - βζζ*γ ' {q:Λ)

The change of variables leaving this form of the metric invariant are:

a) u-

This space contains a non singular constant electromagnetic field:

t. i 7r . Γ du ί\ dv dt Λ dζ* 1 y ̂  Λ χ

F = V^2{oc+ β) e»* h i — - — r i - - /Ί ^ L 2 (4.3)

K v i K/ [ ( 1 - α ^ v ) 2 ( l - ^ ^ ί * ) 2 J v J

The cosmological constant is:

Λ = 2(*-β). (4.4)
The components of the KilUng vectors are:

\Xί = [«, 0, 0, - t>] (a)

_ r 1

^ 3 = [ - 1
(C^ (4.5)

*4 = [0,<f,-if*,0] (d)

Z 5 = [0, 2(1 - i β ^ ) j 2(1 - βζ**)9 0] (e)

Xβ = [0, - 2<(1 + ^C2), 2<(1 + ifff*2), 0] . (f)

The pair of surfaces u = v = cte, and ζ" = cte are orbits of the isometry
group GQ\ the second fundamental forms of these surfaces vanish iden-
tically. It is worth noticing that the Riemann Christoffel tensor of (4.1)
is covariantly constant and that (4.1) is thus a symmetric space.
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b) Metric (2.3a)

ds* = β*(x, t) dt* - o?(x, t) dx* - {λx + l ) a , d g i g

 X 2 • (4.6)

The admissible coordinate transformations are:

t->φ(t) (4.7)
and (4.2 c).

The components of the curvature tensor are:

B λ \ βλ
I n — I

1

oc2[l+λx]2 [1 + Aa;]2

— λ λ oit

— λ λ α.

]- - aβ(l + λx) ~k

aβ)t β) ψ

1 α2(l + λx)2 ' (1 + λx)2 *

The components of the Killing vectors are given by (4.5d, e, f). The
orbits of the group of isometries are given by:

X — XQ f t = ΪQ .

The surface x = t = c t e is an orbit of the isometry group G its 2 second
fundamental forms are:

ta=-4«+M (4.9)

If one assumes (4.6) to be a solution of the field equations:

one finds in the case λ — 1 [x -j- 1 -> x]

The case A = 0 is impossible.
If one considers the equations:

5*
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one finds in the case λ = 0 [x + 1 -> x]

Cosmological models with perfect fluid and vanishing cosmological con-
stant are solutions of

Up to now we have been able to determine only particular solutions of
(4.12). Cosmological models with dust are characterized by (4.12) and

2^33 + R = 0. (4.12')

Spaces (4.6) admitting a non singular electromagnetic field solution of
the source free Maxwell equations are determined [λ = 1 x + 1 -»- #] by:

P
The electromagnetic field is

F = -^Z*. (4.14)

There are no spaces of this type containing a null electromagnetic field.

If oc — oc(x)t β = β(x) the space admits a 4-parametric isometry group
which is the direct product of the ' 'rotation" group by a one parametric
group; if α = oc(t), β = β(t) [which then can be made equal to 1] and
λ = 0 one also has a 4-parametric isometry group.

A five parametric isometry group occurs for the metric:

ds* = x2Bdt*-~- x*dζdζ* (4.15)
cc

where B is a constant. If B = 1 this space is a solution of:

with R = — 5, γ = — 1/3. There are no models with dust, perfect fluid
or electromagnetic field and no empty space. The components of the
Killing vectors of (4.15) are:

Xi = [x, - ζ , - ζ*. - Bt]

X2 = [0, - 2iζ, 2iζ*, 0]

X, = [0, - 2 , - 2 , 0] (4.16)

X 4 = [0,-2t,2»,0]

Z 5 = [0, 0, 0 , 1 ] .
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The group of isometries is solvable its Lie algebra is:

[Z 1 ,Z, ] = 0 [Z 1 ,X 3 ] = Z 3 [X1,Xi] = Xi [Z l f X,] = J3X,
[X2,X3] = 2X 4 [X2,Xi]=-2XΆ [X2,X5] = 0 (4.17)

[X3, X±] = [X4, X5] = [X5, X3] — 0 .

The metrics (2.3 a) have been studied by PLEBANSKI and STACHEL [14].

c) Metric (2.3b)

ds* = oc2{x, t) dx* - β*{x, t) dt* - (λx + I) 2 , ^ C ^ ; * v2 (4.18)

As previously the admissible coordinate transformations are:

t->φ(t) (4.19)
and (4.2c).

The components of the curvature tensor are those given in (4.8) with
a change of sign in (4.8 a) and in the first four terms of (4.8 b and c).
The components of the Killing vectors are unchanged. Also unmodified
are the second fundamental forms of the orbits x = t = c te. In empty
space (Rxβ = 0) one has:

j9« = i = 2Γ + 5-. (4.20)

If there is a cosmological constant

The equations for a perfect fluid or dust are again (4.12) or (4.12 and 12').
There is no possibility of having a null electromagnetic field. For

a non singular electromagnetic field one finds:

There are as in (2.3 a) two possible cases of having a 4-parametric iso-
metry group, and one case of a 5-parametric isometry group. When there
is a G5 the metric is:

d s 2 = = ^ _ χ2B dt2 _ χ2dζ dζ* # (423)

The group structure is the one denned by (4.17).

d) Metric (2.3 c)

ds2 = 2p*(x, y) dxdy - 2(1 + λxf . dζ^ζ . . (4.24)
( ^ )
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The admissible coordinate transformations are:

(4.25)

and (4.2c). The components of the curvature tensor are:

E =
R K

(1 + λxY
K

(4.26)

^ 3 3 - {l + λxf ' ί

There exists a 4-parametric isometry group which is the direct product
of the "rotation" group by a one parametric group. The orbits of the
group are the null surfaces x = x0.

There are no empty spaces. If one adds a cosmological constant one
finds the Bertotti-Robinson metric. There are no perfect fluid nor dust
models. Non singular electromagnetic fields give again rise to BERTOTTI-

ROBINSON. Singular electromagnetic fields do not exist.

e) Metric (2.6)

dτi2

The allowable transformations are:

ζ- σζ

K Mn-S

The components of the curvature tensor are:

12γ=- -τ-ff

dζdζ*

(4.28)

(4.29)

κ

q*
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The components of the Killing vectors are:

(Σ1=[0,iζ,-iζ*,0]

(4 301

U,- [0,0,0,1].

The orbits of the group are the time like surfaces u = u0. Their second
fundamental form is:

('-τ:c*)
The eigen directions of Ω lie in the 2-plane (£, f *) and there is one other
eigen direction orthogonal to this plane.

The empty spaces are the Taub-Nut spaces [15]:

μ ( u ) -

In the presence of a cosmological constant one has:

'(u) = u2 + Cl (4.33)

The dust models have been found by ELLIS, G.F.R. [4]. There are three
cases corresponding respectively to A < 0, A > 0, and A = 0. One has:

A > 0 1) /2 = Jfca; q* =

2K2K
A < 0 /2 = P ; g2 = ^ + α cosμu

In the case /I = 0, it is not difficult to show that the only solutions are
the ones given by (4.34). A. H. TAUB pointed to us that, in the limit of
a vanishing density, the space becomes flat; one does not recover the
metrics (4.32).
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In the case of a perfect fluid one ends up with one differential equation

There is no possibility of having a null electromagnetic field. In the non
singular case however one has:

( 4 3 6 )

This metric is equivalent to one of the Carter's metrics [8]. There are
two metrics of the type (2.6) which admit a 5-parametric group of iso-
metries which is the direct product of the group (2.7) by a one parametric
group

, 2 1 / , , , . ζdζ*- ζ*dζ\2 dζdζ*
ds2 = Ύ dt + i w \ ~du2-— w ry (4.37)

( )
and:

^ ^ (4.38)

The first of these metrics has been found by I. OZSVATH [16]. If:

2 α 2 > Z Zα 2 >2Λ. - Zα 2 + 2Λ + 4α2 > 0

this metric contains a perfect fluid, a non singular electromagnetic field
and the cosmological constant.

f) Metric (2.8)

^ 1 M,..,/JΛ , ;ζdζ*~ζ*dζ\*__^u)_ dζdζ*

(4.39)

The admissible change of variables are the translations along t and the
transformations of the ζ variable given by (4.28). The components of the
curvature are:
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The 4 Killing vectors have components given by (4.30). The orbits of the
group are the surfaces u — u0. Their second fundamental form is given by:

. (4.41)

The eigen directions are the t direction and the directions of the ζζ*
plane. Various solutions analoguous to the ones corresponding to the
metric (2.6) can be exhibited:

a) Empty space:

2KC\

This anti-Nut space was given in [17].
b) With A term:

K

- A -

(4.42)

K , 2g*u °U (4<4

f[Ύ+ZOlU ~1ΓJ+ ι 2 + c ι u*
c) There does not exist a model with singular electromagnetic field.
d) Non singular electromagnetic field

2KC\ mu k*
u* + Of ^" w2 + C\ ^ 2(u2 + C?)! - Ά

e) There are 2 models which admit a 5-dimensional group of motions:

ds2 == du2--j- Idt + i ^ \ ^ — . (4.45)

This metric was determined by OZSVATH [16]. Also:

^ ^ ^ . (4.46)

The group structure is the same as the one mentioned earlier.

g) Metric (2.9)

- α2(ί, a;) ^ί^ - /?«(», x) dx*. (4.47)

The admissible coordinate transformations are:

t-> φ(t) x -> ψ (x)

and the homographic transformations on (u, v).
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The components of the curvature tensor are:

κ

K

«β

ft \2 / αx \2 / ? , \

LjkJi L (JbΛ — A (Jk-Y Λ.Σh. _̂ ί
- « q jjt 2β\qβ)x 2\qβ) ^ 2 q aβ

(4.48)

J 1/ 1 ^ . ^
2jS U i S ^ ^ 2 \ ? i 3 / ^ 2 qβ aβ •

There exists a 3-parametric group of isometries. The components of the
Killing vectors are:

x = [0, 0, u, - υ]

a = [θ, 0, i (l + •$• «*) , - 4 (l + £ v

The orbits of the group are the surfaces x = Cte, t = Cte. Their 2 second
fundamental forms are [# -> 1 +

(4.50)

(4.51)

= 0 .

Certain particular metrics of this family are worth mentioning:

a) Empty spaces: q = x

b) With A term: q = x

2 1

- r - - - F + iΓ. (4-52)

c) There are no dust model, no model with perfect fluid, no model
with a null electromagnetic field.

d) Non singular electromagnetic field: q — x

(453)

e) There is a 4-parametric group of isometries if α and β are func-
tions of x only or if q is a constant and α and β are functions of t only.

f) There is a metric admitting a 5 dimensional group of isometries:

dx*
= x2dudv- x2Bdt2 -• (4.54)
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h) Metric (2.11)

dudv f{x) I udv-vdu\2 dx*
— Idt+C1——E _ - _ . (4.55)

^ l - u v j

The admissible coordinate transformations are given by:
u + 4:K~1βeλ

The components of the curvature tensor are:

(457)

The 4 Killing vectors have components

X1 = [0, 0, u, - «]

„ « + « 1 /Λ K \ I (Λ K

Z 4 = [0,1,0,0].

The orbits are the surfaces α; = x0. Their second fundamental form is:

o qqx dudv f Γ ^dt; - ^^^ I

We have considered the following particular cases [17]:
a) Empty spaces:

[g = x* + C\
2KG* A m xU - v - A.

C? •*" a:2 + Of '

b) With/I term.•

s -a + σf

' - A x» + C? + β» + Oί + a;a + C? I 3 + Λ^x ~ T) •
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c) There are no perfect fluid model, no dust model, no model con-

taining a null electromagnetic field.

d) Non singular electromagnetic field:

q2 = x% + C\

μ - K - 2 K C 4- m x -4- σ o r * (A f\2)
I - Λ

 x* + c{ ^ x* + G\ -*" 2(*2 + Of) ι*'° }

e) There are 2 models having a 5-parametric isometry group:

ds2 = ^~dudv- ^-{dt- vdu + udv)- - ^ ~ - (4.63)

and: 1 dudv / udv — vdu \2
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