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Abstract. The reduction of n-ϊolά tensor products of induced unitary represen-
tations of noncompact groups into irreducible constituents is shown. Clebsch-
Gordon coefficients are then calculated. The technique is applied to the n-ίold tensor
products of the positive mass representations of the Poincare group.

Introduction

Noncompact groups have been used in elementary particle physics in
a number of ways. The classic use of a noncompact group was Wigner's
analysis of the irreducible representations of the Poincare group; more
recently the Lorentz group has been used in connection with Regge poles
and current algebras. Higher symmetry groups containing, for example,
the Lorentz group and some internal symmetry group are also currently
under investigation.

The problem which we wish to discuss in this paper is the reduction
of n-ίolά tensor products of representations of a noncompact group G
into its irreducible constituents. Letting [χ] label an irreducible represen-
tation of θ and {x} denote a set of eigenvalues of a complete set of com-
muting observables chosen from G, we wish to find the coefficients which
reduce the tensor product \[χ±\ x ̂ ) \[χ%] x%) \iXnl xn) ̂ >o irreducible
basis elements | [#]#;??) where η denotes the degenerary parameters
which label irreducible subspaces of the tensor product space with the
same [χ].

The reduction of n-ίolά tensor products is of course not a new problem.
The most obvious way to carry out the reduction is to reduce the tensor
product of two representations and then apply the two fold reduction
n times in a stepwise fashion. For the Poincare group this reduction has
been carried out by MACFABLANE [1] using the two fold reduction given
by JACOB and WICK [2]. The big disadvantage of this stepwise reduction
technique is its assymmetry. For compact groups such as SO(3) it
necessitates introducing 3J, 6 J, etc. symbols which connect different
stepwise reductions.
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What is actually needed is a reduction process which is symmetric
in as many variables as possible. GOLDBERG [3] and WERLE [4] have
begun such a program for the Poincare group while LEVY-LEBLOND [5]
and LURCAT [6] have utilized the special properties of the Galilean group
to effect a symmetric reduction.

HOFFMAN [7] has given a completely symmetric method for carrying
out n-ίolά tensor product decompositions if the two fold tensor product
decomposition is known. What we wish to show in this paper is that for
groups having unitary irreducible representations which can be written
as induced representations, a symmetric n-ίolά tensor product reduction
can be carried out with no knowledge of the two fold tensor product
reduction needed. In Section I a general discussion of the technique used
to obtain Clebsch-Gordan coefficients will be given, while in Section II
the technique will be applied to the Poincare group. In the process of
carrying out the reduction all of the invariants which parameterize the
irreducible subspaces are automatically found and since the reduction is
symmetric, a highly symmetric choice of degenerary labels can be made.

I. General Technique for Obtaining Clebsch-Gordan Coefficients

In this section Mackey's theory of induced representations [8] will be
used to obtain Clebsch-Gordan coefficients resulting from the decomposi-
tion of tensor product representations of a group G. An induced represen-
tation of G is built from a representation 3? of a subgroup § of G and
defined to be U(gQ) f(g) = f(ggQ) [8] where gQ is an element of G and f(g)
are functions which map g, an element of G, into the vector space V(^)
upon which $? acts. The set of functions f(g) is restricted to those
satisfying the condition f(hg) = 3? (h) f(g) for all h in § and g in G. This
restricted set of functions forms a vector space

f (•*) = {/!/(?) ζ r(Jr),f(hg) = 3 f ( h ) f ( g ) V h ζ $ andgrζ Q) . (1)

The induced representations act on the vector space Ϋ(J^). We shall
consider only unitary induced representations which implies that Ϋ(3^)
is actually a Hubert space [8].

Now G can be decomposed into right cosets

G=U$gc (2)

where the elements gc of G label right cosets. With this decomposition
the functions f(g) may be thought of as functions over right cosets f(gc),
since the set of functions / (g) are restricted to those functions satisfying
the condition f(hg) = Jf(h) f(g).

Consider now induced representations on n Hubert spaces
), . . ., Ϋ(3trn) with norms

/(^)l2<oc. (3)



w-fold Tensor Products 233

The tensor product space F^) x Ϋ (J 2̂) x x Ϋ (3fn) is the Hu-
bert space of functions F(gCl, gCz, . . ., gCn) with norm

Witt* ffcz, , gjl* = / dgCl dgC2, . . ., dgcn \F(gCι, . . ., αj|« < oo (4)

and the induced representation on this space is

The tensor product space is reducible, and in fact the problem is to
reduce this space into a direct integral of irreducible subspaces. The
tensor product functions will be decomposed in two steps. Mackey has
shown that a partial decomposition of the tensor product space can be
obtained through a double coset decomposition, since induced represen-
tations defined on the tensor product spaces are equivalent to induced
representations defined on subspaces labelled by double cosets.

Let $)' and $>" be subgroups of G. By a double coset is meant the
subset of G consisting of all elements of the form ί) ' g$)" for fixed g in G.
A set of elements gD in G can be found such that the union of a set of
double cosets covers G:

. (6)

In order to define the subgroup which induces representations on
tensor product functions it is convenient to consider the outer product
group of G, the set of ordered pairs of elements {(g^ <72, . . ., gn)}
= (6r1? 6r2, . . ., Gn) with gl9 g^ . . ., gn arbitrary elements of G. Then the
subgroup inducing representations on the tensor product space [Eq. (4)]
is (£ι> §2> . 9n) with §j, §2, . . ., ξ>n subgroups of G [9]; a right coset
decomposition of (Glt G2, . . ., Gn) with respect to (§1? §2, . . ., §J is

(Q19 Ga, . . ., Gn) = CιCUCn (̂ , 3a, . . ., $n) fov <7Ca, . , gj . (7)

If the outer product group is restricted to the diagonal subgroup
(G, G, . . ., G)} the ordered set of elements {(g, g, . . ., </)}, then the
representations induced by the subgroup (§1? §2, . . ., ξ)n) can be reduced
into a direct integral of induced representations which act on subspaces
of the tensor product space (4) labelled by double cosets.

The double coset decomposition of (Gv G2, . . ., Gn) is then

(to,, to., . toj (G, <?,..., β)
with (̂ ^ . . ., ifoj the elements labelling the double cosets; a direct
integral decomposition of F(gΰl, ., gCn) using the double cosets is

\\F(geι, , gjΓ = / dD, dDΛ... dDn \\1Dl...Dn (G!$)D}\\* (9)
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where /^...j^ (@/$)D) are square integrable functions in the subspaces
DI} . . ., Dn. $)D is the subgroup which induces representations on these
subspaces and is defined as [8]

£D = (to,, - •> toJ-Mθi* $z> - •> &») (ftv - toj n (0,0 ... 0) . (10)

The induced representations on these subspaces are generally reducible
the final reduction into irreducible subspaces cannot be further carried
out because the method used is dependent on G.

Assume however that the decomposition of F(gCl9 . . ., gCn) into irre-
ducible subspaces can be carried out and that f[χ,η](g0) ^s an ©lenient of
the irreducible subspaces with norm

Here χ denotes an irreducible representation of G while η is a set of
degeneracy parameters which label mutually orthogonal subspaces
carrying the same irreducible representation labels. The direct integral
decomposition of F(gCl, . . ., gCn) over [χ,η] with weight function
d & Π\ ^ \\F(geι, . . ., fljp =fd[χ, η] \\flx,η] (gc)\\* (12)

Now f ι x , η ] is an element of the Hubert space (11) so the inner product
of f[Xt η] (gc) and /[χ] is well defined :

(ί'lxί (?«)» /fed to.)) = / dff fix] toe) fh, n~\ (ffo)

/ίx1 to.) '
where 8 is the operator which carries F(gCl, , ̂ Cw) to the irreducible
subspaces from the tensor product space F(^f\) x Ϋ(^n)

In order to define Clebsch-Gordan coefficients we want to make
a connection between the functions f[χ] (gc) and basis elements | [χ] ίc},
since Clebsch-Gordan coefficients are the coefficients which reduce the
tensor product of basis elements \[χt] α^) \[χ2] #2> . . . \[χn] #w>; ̂  de-
notes eigenvalues of a complete set of commuting observables chosen
from G. Now the non-square integrable functions over cosets

can be considered as a specific realization of the basis element \[χ], #},
SinCe ϋ(g)DM(gc) = DW(gcg). (15)
Hence, we choose

(16)

and t̂oo,. - , gj - ̂ gitoj 4S,toJ (17)
Eq. (13) can then be written as
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with N a normalization factor. Eq. (18) may be used to calculate the

Clebsch-Gordan coefficients provided S is known and D^x(gc) can be
calculated.

II. Clebsch-Gordan Coefficients for the Positive Mass
Representation of the Poincare Group

In this section we calculate the Clebsch-Gordan coefficients for the
positive mass representations of the Poincare group P. The covering
group of P will be used throughout this section; however we will not
discuss its properties, since they have been discussed in detail else-
where [10].

One can easily check that the matrix form of the covering group
of P can be written as

I A H(a)Λ-*+\

where A is an element of SL(2, C) and

H(a) = (at + a* « -'M (20)v ' \αβ + ιay at-a, J v '

A right coset decomposition of P with respect to the inducing
subgroup

/SC7(2) H(a)Sϋ(2)\
^~\0 'Sϋ(2) )

can be written :
U(8U(2) H(a)SU(2)\Me 0

^ - V l o 8U(2) MO Λ

where Λ = 8 U (2) Λc and Λc is any choice of right cosets of A with re-
spect to SU(2).

Then, square integrable functions over right cosets, denoted by
ψj(Λc), have norm

II<MΛ)II2 = Σ f dΛc |^(Λ)la < °° - (23)

The summation over j comes from the fact that the inducing subgroup
has 2s + I dimensional representations.

The induced unitary irreducible positive mass representations of
P are

TΎ / A \ / Λ \ {/Λe 0 \ /Λ0 H (aθ) ΛQI+\~\
TΊ (Λ . n.Λ m>( Λ \ = m.\\ _ II ^ " II

(24)

A* ° \(Λ0 #KMό1+\~|

0 Λ-u)(o Λ^ )\

~ ~ 1M\
with SU(Z) and A* defined by ΛeΛ0 = SU(2) Λe , and p = I ^ .

\0/
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A nonnormalizable basis element of P with mass M, spin s, mo-
mentum p, and spin component σ is denoted \[Ms]pσy. The trans-
formation properties of \[Ms]pσy under an arbitrary Poincare trans-
formation are

U(ΛQa0) \[Ms] pa} = eiΛ'V"* Σ tyl (p, Λ) IW*} Λ0p, σ'> (25)
σ'= — s

where the SU(2) rotation (p, Λ0) is defined as the rotation 0~*(Λ0p)
• Λ00(p). 0(p) is the Lorentz transformation from the rest frame of the
particle with momentum p to the frame where its momentum is
p— (E,p). In the coset decomposition given in Eq. (22) 0(p) can be
written as

0(p}^Λc(p) (26)
with

Thus, the rotation (p, Λ0) by our definition is

(p,Λ0} = Λ-^(Λap}Λ0Λe(p} . (28)

The D functions can now be calculated using Eq. (14) so that

Further it is not hard to check [10] that D$ftpa(Λc) can be thought of
as a non square integrable function with the same transformation pro-

perties as the function φ^(ΛG) in Eq. (24). Thus, D{^^σ(Λc) can be
thought of as a concrete realization of \[M9 «s]pσ) and simultaneously
as a function ψj(Λc) on which the Mackey induced representation theory
can be applied.

Now we consider the tensor product space of positive mass represen-
tations of P which consists of square integrable functions

with norm

4JII = Σ ••• Σ
«ι=-β, «„= — % (30)

\ΨxiιXz ..... ̂  (ΛCι, . . ., 4J|« < oo .

In order to decompose the tensor product space it is necessary to
consider the double coset decomposition of the outer product group
(P1? P2, - , Pn) with respect to the subgroup (§1? §2> •> %>n) an(^
(P, P, . . ., P). Now §!, §2> •> §n are all tne same subgroup, since we
are considering only tensor products of positive mass representations.
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The double coset decomposition of the outer product group is

(Plt P» ...,Pn) = U (&, . . ., $„) (ΛDι, . . ., ΛDn] (P, ...,
JJi... JJn

ΓM, H(aι)Λ?+\ (A. H(an)Λ-^\-\
Llo A?* j > Ίo Λ?+ n

)1 H(a1)SU(2)1\ ίSU(2)n H(an] SU(2)n\l
~D,. .D»L\o 517(2), ' ' l o su(2)n n

. 174* 0 \ MΛ 0 \ MΛn 0 \
Llo Λ#Mo Λ^J' Ίo Λif j

K Λ H(a)Λ-^\ IΛ H(a)Λ~1+\-\
0 /l-ι+ j ' •' \0 /l-ι+ j j

A convenient choice of double cosets [11] is

ΓMA 0 \ (Λ^ 0 \ // 0\1
L\0 ΛgJ' " \0 ^J' \0 I/J

^ = («ϊ I/A) ^L^ ^-

where

A,-, 0

The parameters _D1? Z>2, . . .,Dn_ι are real positive numbers and the
parameters Q1} . . ., Qn^2

 are complex numbers. The choice of double
cosets is fixed in the sense that for each element in the outer product
group a unique element of the double coset must be defined. A unique
association will exist if the inducing subgroup elements are divided out
of the diagonal subgroup. Eq. (10) defines the inducing subgroup which
induces representations in the subspaces of the tensor product space
labelled by the double cosets. Using this definition and our choice of
double cosets f)D can be calculated :

!̂, $2, ., $Λ) (4ιv •> ΛDn) n (P, . . ., P)

Γ/I H(a)\ (I H(a)\-\ (33)
- L l o i J Ίo / J

Eq. (33) is valid for n ̂  3. For the case, n = 2,

Γ/Z7(1) JΪ(α)Z7(l)\ /Z7(l) H(a)ϋ(l)\l
VD ^ [\0 U(l) ) ' \0 ϋ(l) )\ >

where £7(1) is the one dimensional unitary group [12]. Dividing the
inducing subgroup $)D out of the diagonal subgroup, the double coset
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decomposition of (P19 P2, . . ., Pn) is:

(o1 Λ?+ ^ )' ' " (o" A* n }

SU(2)1 H(al)8U(2)1\ (SU(2)n H(an) SU(2)n\\
)\

\ίΛD 0 \ MΛ 0 yi TfΛ 0 \ M 0
' L\0 Λ%) ..... lθ Λ%)\ Llo Λ-^J - >\0 Λ- »

A right coset decomposition of P with respect to $)D is:

(A H(a)Λ-^\ . / I H(a)\IΛ 0
lθ Λ-» j y(θ J

so that square integrable functions in the subspaces of the tensor pro-
duct space labelled by [a^-D ]̂ = {a1? . . ., aw, D1? . . ., Dn, Q^ . . ., Qn}
are defined as

99αι...α(/tCι, /lca, . . ., ΛJ . (37)

From Eq. (37) it follows that under an arbitrary element of P the
functions F^.D.Q.} (Λ) transform as

U(Λ0a0)F[XiDiQi](Λ) = e^'Λ«*F{«iDiQύ(ΛΛQ) (38)

with pD = Λp* P! + Λp2

l ί5a + + Λp^ pn, and thus the subscripts
[<XiE>iQi\ label the degenerate subspaces since they remain invariant un-
der the transformation.

Hence, the first step of the tensor product decomposition is com-
pleted. The direct integral decomposition of φait^Kn(ΛGι, . . >Λ.C^ into

= Σ fdQ.dD,... (39)

Here the measure dQidDj, has not been calculated because it is not
needed [8].

In order to complete the direct integral decomposition of the func-
tions φXiftf(Xn(ΛCι . . . ΛCJ into irreducible subspaces, the functions
F[Άiχ).Q.ι(Λ) must be expanded in a series of irreducible functions of P.
Since the irreducible functions of P are functions only over Λc and
A = S U (2) Λc, it is clear that F^KiD.Q.^(Λ) must be expanded in the
orthonormal Wigner functions Dffl(SU(2)).

However a difficulty appears since pD in Eq. (38) is not of the form
of p in Eq. (24). If we wish to induce with the representation eipD'a, then
we must find a set of transformations, denoted by SU(2)D) such that
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8U(2)D H(pD) 8U(2)+ = H(pD). Now H(pD) = Λc(pD) H(p) Λ+ (pD)

I IM\ \
I where p = ° I and M*=p%\ and H(p) = Sϋ(2)H(p) SU(2)+

\ \ 0 / /

so that
Λ7 1 (PD) S ϋ (2)D Λe(Pj)) = SU (2) . (40)

Hence the expansion in terms of the Wigner functions is actually written
as Ds

jΊ(Λr1(pD)8U(2)ΰΛc(p1))) where Λ~ 1 (pD) 8 ϋ (Z)D Λc (pD) is an
SU(2) element as seen from Eq. (40).

A right coset decomposition of P with respect to the inducing
, ,, /SU(2)j, H(a)SU(2)3+\ '

subgroup ξ> = !„ SUW-1* I can 'written as

/S?7(2)Λ H(a)SU(2)-J+\ (Λe 0 \
f-y\0 BOW? MO Λ-^J W

with A = SU (2)DΛC so that we can proceed with the expansion of
) - FιXίDlQi](SU(2)1)Λc ). Let

(42)

with

•FlaιDiQί](SU(2)DΛc). (43)

In order to prove that the function ΦJ^^Q^K] C^c) ^s an ©lenient of
an irreducible function space of P, we must check its transformation
properties under an arbitrary Poincare transformation :

U(A0, a0) ΦjίaiDlQίSK} (A.) = l - / d 8U(2)D

S ϋ (2)D Λe (PD)) έ™ Λ** FlX(DiQί] (ΛΛ0) (44)

= jn A.* r Dw (Λ-ι
j'=-S

We have used the fact that J>$g*(Λ)= Σ &£*(&)
f ^

R = R'R"-ι and have defined Aj and SU(2) by A0A0 = SU(2)A0 .
Now Eq. (44) agrees with Eq. (24) which means Φ/ [«,!)<&*.£] (4?) ^s an

element of an irreducible function space of P; the subscripts [oCfD^sk]
label the degenerate subspaces since they have not been transformed.
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Now that the complete direct integral (and sum) decomposition of
the tensor product space into irreducible subspaces is known, we can
use Eq. (18) and (29) to calculate the Clebsch-Gordan coefficients. We

choose ΦJ(Λ) = Df^σ(Λc) = 6*(pD - Λcp) Dfσ(p, Λ0) and

so that the Clebsch-Gordan coefficients are :

K^M^p^σ^ . . .; [Mnsn]pnσn}

- Λp) DMfCA-1^) Sϋ(2)J)Λc(p1)))

Π P(Pi -ΛDlSU (2)0 AcPi) D^ai(Pi, ΛDί SU(2)D Λc) .

The delta function normalization factors have been absorbed in the
normalization constant N.

The Clebsch-Gordan coefficients tell us how n single particle basis
states |[Jf^ ] Piβ^y form a single particle basis state |[-Ws] po\η^) where
η is a set of 4% — 6 degeneracy parameters;

\[Misi]piσiy...\[Mnβn]pnσny

= Σ fdD1fdQ1...fdQn_JdDn_1f^ (46)

• {[Ms}pa\ octDiQiK] [M^}p^ . . .; [Mnsn]pnan}

\[Ms]pσ;ociDiQiKy.

The 3^+3 integrations in Eq. (46) are performed using the n+l
three dimensional delta functions. An investigation of the delta func-
tions leads to the following conclusions:

(1) δ*(pD — Λcp) is equivalent to ό3 IΣ Pi ~ P\» i e conservation

of momentum.
(2) p2 = M* with p defined as the total four momentum of the n

particle system.
(3) The 3 τ& — 6 continuous degeneracy parameters Di9i= 1, 2... n — 1,

Qj,j = 1, 2, . . . n — 3, and \Qn-2\ are fixed by scalars constructed
from the momenta pif but the set of scalars which fix the parameters
Di9 QJ is not unique.
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Proof (1). The n delta functions imply

241

so that

Therefore,

which implies conservation of momenta.

Proof (2). M* = \H(p)\ =

D -A.p) =

D\ + D\ +

A"*1 '

-Γ—^-jf
L Dl

Ml

Ql

• + Mn

Qt

Also

+ •••+.

E*"

^Mn

(47)

(48)

The scalars p{ p3 can be calculated using the delta functions.

2Pi ps = |£Γ(^ + ft)| - μΓ(P<)| - |H(P/)|

+AtfHtfi)Λtf+\ - Jf? - Mf (49)

JL D" 4- i^ i2 j. i^i2 (o^ + o*<
+

With the substitution of Eq. (49) into Eq. (48) we see that Eq. (48) and
Eq. (47) are equal.

Proof (3) . Eq. (49) gives us - scalars in terms of the

degeneracy parameters. A set of n — 3 pseudoscalars denoted by
ε«βγs Pn Pn—i Pn—z PJ can also ^*e written in terms of the degeneracy
parameters as

"* ?"_! 2^-s Pi = MnM»-ιMn-*M< \ \ _ D2_1] Ift-il ImQ«

i=l,2, . . . ,»-3. (50)
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Now the question arises whether the 3 ^ — 6 parameters Dit Qj can be
solved for in terms of the scalars and pseudoscalars given in Eq. (49)

nfn _ j \
and (50). From the set of - ~ -- ft ps scalar invariants (49) consider

the 2n — 3 scalars pi pn, i = 1, 2, . . ., n — 1, and ft ^n_1? ?' = 1, 2, . . .,
n-2.

(52)

[ 7)2 7)2 I/) 1 2 Ί

157 + ̂  + 1̂ ] (53)
Eq. (51) to (53) can be used to calculate D19 D2, . . ., Dn_l9 \Q^ 2, . . .,

Ifti-sl2* |βw-2l» ̂  terms of the 2^ — 3 scalars ft £>n and ft ^n_i. The
imaginary part of Qi} ί = 1, 2, . . ., w — 3 can be found using the n — 3
pseudoscalars (50), and the real part of Qi} ί = 1, 2, . . ., n — 3 can be

found using the w — 3 scalars ft 2>n_2, i = 1> 2, . . ., n — 3 where
? i -̂2 i lft'a i IQ-2|a 2i^-^iRe^1

2 2 + ^ +££.2

+ Dϊ A^«-. J '

(54)

Thus, we have uniquely determined the 3n — 6 parameters D19 Z>2, . . .,

A»-ι» GiJ 62? •> Qn-3J an(i |βn-2l ̂  terms of 4n - 9 invariants. Obvi-
ously, there exist other sets of invariants which could just as well be
used to specify the 3n — 6 parameters. (The extra n — 3 invariants,
Eq. (50) serve to fix the sign of Imζ^.)

Then performing the integrations in Eq. (46) gives

SU(2)D Λc Λ,(p)) Π Dj&fa, ΛDi Sϋ(2)D At) (55)

with μ denoting the set of continuous scalar invariants.
It is not difficult to show that the rotation Λ~l (pD) 8 U (2)D Λc Λc (p)

in the center of mass of the ^-particle system rotates all of the momenta
through the same angles, so that if one visualizes the momenta as being
fixed in a rigid body (i.e. fixed with respect to each other), then the
rotation rotates the rigid body.

In order to prove this statement we define a momentum vector pi to be

with pDi defined- as pD^Λ^pi. Recall that pD = Σ ΛD} Pi so
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pDi is just one of the n momenta which combine to give pD. Λ^(pD) is
IM\

the unique transformation which carries pD to p = I Q I so that/I"1 (pD)

\ 0 /
carries pD. to a well defined momentum vector in the center of mass
system. Now the delta function δ3(pi — ΛDi SU(2)I)Acpi) implies
Pi = ΛD.SU (2)DΛcpi, and the delta function ό3 (pD — Λc p) implies
pD = Λcp or Λβ = Λc (pD] A~l (p), since p = A"1 (pD) pD = A~l (p) p
therefore

Pi = A~l (pD] pDi

= Λ^(pD)Sϋ(2)I)ΛeΛc(p)pίcm

where pίcm = /I"1 (p) pt is a vector in the center of mass system. Thus,
A~l(pj)) SU(2)DAcAc(p) is the rotation which carries the vector pίcm

into the vector p'i} as was first discussed by WEKLE [4],
Finally the remaining n rotations (pi} AD. SU(2)I>A^) are defined by

Eq. (28) and are uniquely specified by the n momenta p^

Conclusion

It has been shown that, for induced representations, Clebsch-Gordan
coefficients can be obtained if it is possible to decompose an n-ίold tensor

product space and if it is possible to calculate the D-functions

The decomposition of the n-ίolά tensor product representation con-
sists of two steps, the decomposition into invariant subspaces labelled
by double cosets and then the further decomposition of these subspaces
into irreducible subspaces. This last decomposition depends on the sub-
group inducing representations on the subspaces labelled by double cosets.
This subgroup must be at least the identity subgroup which would then
generate the regular representation. Thus, we have shown quite generally
that if the decomposition of the regular representation of the non-
compact group is known, then it is possible to decompose an τ&-fold
tensor product representation into irreducible representations.

The method applied to the Poincare group leads naturally to a set
of equations relating Poincare scalars to invariants parameters labelling
the irreducible subspaces of the %-fold tensor product space. However,
the number of equations relating the Poincare scalars to the invariant
parameters is much larger than the number of invariant parameters.
Thus it is possible to solve for different sets of Poincare scalars which
17 Commun.math.Phys.,Vol.lO
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uniquely determine the invariant parameters. If two of the particles'
momenta are restricted to a z-axis, then the number of invariants
necessary to completely specify the reduction is 3n — 10 in agreement
with ROHBLICH [13].

In a subsequent publication we will treat the problem of a generalized
partial wave analysis for "2 in, n out'' reactions.
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