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Abstract. Theorems about the structure of a Lie algebra combining the Poincare
Lie algebra and an internal symmetry Lie algebra are derived by general algebraic
methods. The physical meaning of certain mathematical results is clarified.

I. Introduction

Recently some interest has been devoted to the problem of combining
internal and relativistic symmetries in the theory of elementary particles.
The discovery of approximate internal symmetries, like S U (3) symmetry
for strong interacting particles, suggested the possibility of the existence
of a larger symmetry group combining the internal symmetry group
and the relativistic group in a non trivial way. One of the motivations
was the possibility of obtaining informations about the structure of the
mass spectrum from the knowledge of this larger group. Hopes in this
possibility have been considerably reduced by O'Raifeartaigh's theorem;
nevertheless the "combining" problem is sufficiently interesting in itself
to deserve some further analysis. To be precise, we formulate the problem
in terms of Lie algebras, as follows. Let G be a Lie algebra containing the
Lie algebra P of the Poincare group and an "internal symmetry" Lie
algebra S as subalgebras. Assume that G = P -f- S, direct sum of vector
spaces (i.e. every element of G can be uniquely written as the sum of an
element of P and an element of 8). Then, what can be said about the
structure of G ? To give an answer to this question further requirements
are imposed on G. Usually they are a) a condition on the algebraic
structure of 8 and b) an assumption which states that some elements of
[P, 8] vanish. Under restrictions of this kind several authors [1—6]
have stated "negative results" asserting that G has a trivial direct-
product structure: G = P x8 or, at least, G = Pr xS', where P' and 8'
are ideals isomorphic to P and to 8 respectively. However these results
have been presented in a rather unsystematic way and with proofs based
on calculations with base-dependent structure constants, which often
obscure the connection between the different theorems. In this paper we
shall derive several results of the type described above in a systematic
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way, by making use of the intrinsic techniques of the theory of Lie
algebras [7—8]. Our method will enable to prove some new theorems
and, at same time, to clarify the physical meaning of certain mathe-
matical results.

In section II we first distinguish between two classes of negative
theorems, depending on the choice of the elements of [P, 8] which are
assumed to vanish. Then we give two general lemmas, II1 and II 2,
and we use them to obtain two results, the lemmas II1' and II 2', which
give a useful tool for the derivation of the theorems of the two classes
defined above. These lemmas state that G has a direct-product structure
if one assumes that P or S is an ideal of G. Finally the lemma II 3 gives
some information on the structure of a Lie algebra containing the
Poincare Lie algebra as an ideal.

In section III we give a number of theorems of the first class defined
in section II. Theorem III 1 states that G = PxS under assumptions
which are similar but less restrictive than those of McGlinn theorem [1].
Only the elements of P which generate the pure Lorentz transformations
are assumed to commute with S and the condition of semi-simplicity on
8 is replaced by the more general condition [S, 8] = 8. These assump-
tions can be weakened by introducing the concept of regular element
of a Lie algebra [7]; if we retain the preceding condition on $ and we
suppose that a regular element of the Lorentz subalgebra L of P com-
mutes with 8, we have G — P x $' (with 8' isomorphic to S but not
necessarily coinciding with 8). This is proved by the theorem III 2. The
elements of L which generate the space rotations or the pure Lorentz
transformations are regular elements of L. Thus the result G = P x Sf

under the assumption that one of these elements commutes with 8, can
be obtained as a corollary of the preceding theorem (corollary III 1). A
Lie algebra E containing P as a subalgebra can be written in the form
E = P -f A, where A is a subspace having zero intersection with E. If
we assume that the elements of a set of generators of L or a regular
element of L commute with A, we arrive to the conclusion that P is an
ideal of E. Then by using lemma II 3, we can prove that, under certain
conditions, E has a direct-product structure, with P as a factor. Finally,
theorem III 5 gives a result which can be considered complementary to
the one of McGlinn. It states that G = P' x 8 with P' isomorphic to
P, under assumption that S is semisimple and that the elements of the
translations ideal of P commute with 8.

In section IV we give some theorems of the second class defined in
section II. The more important results are the theorems IV 1 and IV 4.
In both of them a single element q of 8 is assumed to commute with P
and S supposed to be semisimple. In theorem IV 1 q is required to be
regular in 8. This condition is discussed from a physical viewpoint, with
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reference to the example of the 8 U (3) symmetry. In this way it is
clarified the meaning of theorem IV 4 in which a less restrictive condition
is imposed on q.

II. Some Preliminary Results

We start by introducing some notations and definitions used in this
paper. We use the notation A ^ B for A isomorphic to B. If A is a Lie
algebra and A1 and A2 are subalgebras of A, we write A = Al + A2

(direct sum of vector spaces) or A = A1 -f- A2 (d.s.) or simply A1 + Az,
if the vector space A is the direct sum of the subspaces A^ and Az (this
implies A1 r\ A% = 0). If in addition Al and A% are ideals of A, we say
that A is the direct product of A1 and A% and we write A = A1 x A^. We
denote by der A the Lie algebra of derivations of A and by ad the
adjoint mapping of A if B is a subalgebra of A the adjoint mapping of
B will be denoted by ad5; if B is an ideal and a ζ A we denote by ad^ a
the restriction of ad a to B (so that if b ζ B we have ad5 b = ad£ b). All
Lie algebras will be over the real field and finite-dimensional, unless
explicitely stated otherwise. Throughout the paper G will denote a Lie
algebra containing the Poincare Lie algebra P and an internal Lie
algebra S as subalgebras in such way that :

G=P + 8(d.s.) (1)

The structure of P is well known; P = L + T (d.s.) where L is the Lie
algebra of the Lorentz group and T a four- dimensional abelian ideal.
P is spanned by a set of elements mμv ζ L (μ, v = 0, . . . , 3) and tμ ζ T
(μ = 0, . . . , 3) where the mi3 (ί, j = 1, 2, 3) generate the rotations in the
plane (i, j), the mok(k = 1, 2, 3) generate the pure Lorentz transforma-
tions along the &-axis and the tμ generate the space-time translations.
For these elements we have :

(2)

As explained in the introduction, negative results can be obtained under
assumptions which state the vanishing of the elements of a subset of
[P, 8]. These assumptions can be divided in two classes as follows.

Class 1. [p, 8] = 0 where p belongs to a subset of P.
Class 2. [P, s] = 0 where s belongs to a subset of 8 (or of 8C, the

complexification of 8; see section IV).
The following lemmas give a general tool for the derivation of the

negative theorems which hold under the assumptions of class 1 (lemma 1')
and of class 2 (lemma 2').
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Lemma 1. Let E be a Lie algebra and let E = A + B (d. <s.), where A
is an ideal and B a subalgebra. Let φ be the homomorphism b -> ad^ bofB
into der A. If

φ = ad^ o ψ (3)

where ψ is a homomorphism of B into A, then E = A xBf and Br & B.
Proof. It suffices to prove that there exists an ideal E' C E such that

E = A + B' (d.s.); in fact this implies B' ^ E/A ^ B. Let B' be the
set of elements of the form — ψ(b) + δ, δ ζ B. It is clear that B' is a
subspace such that E = A + B' and B' r\ A •= 0. Next, let x be an
arbitrary element in E; we can write x = a + δ1? a ζ A, \ ζ B, then, for
b ζ B, we have

[x, ~ψ(b) + b] = - [α, ψ(b)] - [δx, ψ(b)] + [a, b] + [δ1? b] .

From (3) one obtains [α, δ] = fα, φ(6)] and [δ1? ψ(b)] = ^([δ1? δ]); thus
6] = ~φ([δι, δ]) + [blf b] ζ J3' and 5' is an ideal.

Lemma 2 is an elementary result of the theory of Lie algebras
(ref . [7] Ch. I proposition 3).

Lemma 2. // K is a complete ideal in the Lie algebra E then E = K x H
where H is the centraliser of K.

We now use the preceding lemmas to obtain two results on the struc-
ture o f O — P+S.To this aim, we need some information on the structure
of der P. On can prove [9] that every derivation D ζ der P is of the form

D = &άp(D) + oc(D)π (4)

where p(D) ζ P, oc(D) is a real number and n is the projection onto T
with kernel L. Further if DI} D2 £ der P then

+ αίD,)
(5)

α , « = .

Lemma I7. // P is an ideal of G = P + S and 8 coincides with its
derived algebra i.e. [S, S] = S, then G - P xS' with S' ̂  S.

Proof. By lemma 1 it suffices to prove that the homomorphism
φ : x -> adp# of S into der P is of the form (3). Since adp# ζ der P}

can write φ(x) = &άpp(φ(x)) + oc(φ(x)")π. But [S, S] = S implies that
every x ζ S can be written in the form x = Σ[xi9 y^, xi9 yt ξ 8. Hence
from (5) it follows that oc(φ(x)) = 0 and this shows that φ is a homo-
morphism of 8 into adpP. Since the center of P is zero, adp is an
isomorphism of P onto adpP. Hence (adp)-1 exists and is an isomor-
phism of adp P onto P. Then ψ — (ad15)"1 o φ is a homomorphism of S
into P; thus φ = adp o ψ. This completes the proof.

Remark 1. Lemmas 1 and 1' are equivalent to two results of M. Flato
and D. Sternheimer [9], which are stated in terms of Lie algebras ex-
tensions.
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Remark 2. The condition [$, 8] — 8 includes 8 semisimple, but is
more general for instance one has [P, P] = P.

Lemma 2'. // 8 is a semisimple ideal of G = P + 8 then G = P' x 8
with P' ^ P.

Proof. A semisimple Lie algebra has zero center and its derivations
are all inner, hence it is complete. Then from lemma 1 it follows G = P' x 8
and from P & GjS, P' ^ Θ/S, it follows P' ^ P.

Lemma 2 asserts that a Lie algebra containing a complete ideal has
a direct product structure, with this ideal as a factor. Now P has zero
center but it not complete, as for instance π in (4) is not an inner deriva-
tion; for a Lie algebra containing P as an ideal we can only give the
following weaker result, which we shall use in section III.

Lemma 3. Let P be an ideal in a Lie algebra E, then E = P -f A (d.s.)
where A is a subalgebra.

Proof. For every x ξ E adp# ξ der P; hence adp# = adp#> + ocπ
where p ζ P, α is a real number and π is defined as in (4). Let A be the
set of elements a ζ E such that adpα = ocπ for some α. It is clear that A
is a subalgebra. Next, let y ζ A r\ P; then y = I + ί, I ζ L, t ζ T and
[yy u] = ocu for every u ζ T\ this is impossible unless α = 0 and I = 0.
Then y is in the center of P which is zero. Thus A r\ P = 0.

Now let x be arbitrary in E. Then adp(# — p) — ocπ for some p ζ P.
This implies a = x — pζA, which completes the proof.

III. A First Class of Negative Theorems

In this section we derive a number of negative theorems, which hold
under the assumptions of class 1 described in section II.

Consider the following elements of L : J'k = mojc (k = 1, 2, 3) where
the mok are defined as in section II. Then the following theorem genera-
lizes the result of McGlinn [1].

Theorem 1. //, in G = P + S, [8, 8] = 8 and

[Jί,S] = 0, i = l , 2 , 3 (1)
thenG= PxS.

Proof. From (11.2) it follows that the J% are a set of generators for L.
Then [Jfc, S] = 0 implies [L, S] = 0. Again from (11.2) it follows that
every t ζ T can be written in the form t = [I, u], I ζ L, u ζ T.

If s ζ 8 from the Jacobi identity and from [L, 8] = 0 we obtain
[«§, t] = ~[l, [u, s]]; now [u, s] can be decomposed in the form: [u, s]
= lλ + tl + sv It ζL9t^ T, *! 6 /S. Hence [5, t] = - [Z, y - p, ̂ ] ζ P.

Thus P is an ideal in G and G - P x/S", S' ̂  /S by lemma II1'.
Next, let s be arbitrary in S; then 5 = #> -f s'9 p ζ P, s' ζ $'; from
[i, 5] = 0 and [P,S'] = 0 we have [p, I] = 0 for every Z £ £. Hence
p = 0 and «s ξ S'; thus £ ςfl', but S ~ S' so that £ = /S' and G = P x/S.
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One can prove that G has a direct product structure with P as a
factor under the weaker assumption [r, S] = 0, where r is an element of
L, provided that r is regular in L. To obtain this result we require the
following

Lemma 1. Let rbea regular element of L. Then there exists in L a basis
{e1? e2, e3, eΊ, e^, e's} such that r = e3 and;

K , βj] = εijkek, [eί} ej] = εijke'k) [e{, ej] = -sijjcek . (2)

(where εijlz is the totally antisymmetric symbol and the sum convention over
repeated indices is adopted).

Proof. We recall that an element x of a Lie algebra E (over an arbi-
trary field) is called regular if the Fitting null component of E relative
to ad x, i.e. the subspace {y ξ E\ (ad x)ky = 0 for some k} has minimal
dimension. Let E be a complex Lie algebra. We shall denote by ER the
real Lie algebra obtained from E by restriction of the base field (for this
notion see [8] Ch. III). It is not difficult to see that an element x ζ E is
regular if and only if it is regular in ER. Now it is well known that L is
isomorphic into si (2, C)R\ hence if φ is an isomorphism of L onto
sl(2,C)R, then h = φ(r) is regular in sl(2,C)R and in sl(2,C). By
definition k = 2ih is also regular in si (2, C). Then k belongs to a basis
{e, /, k} such that :

[k,e] = 2e, [k,f] = -2f, [e,f] = k.

Now we set er = ie} /' = if, kf = ik and

' ' '

δί = γ(β'-/'), δί = γ(β + /), «8 = γ*.

One can verify that the elements et and ej form a basis of si (2, C)R and
satisfy (2). Then L has a basis e^ = φ~1(ei)) e^ — φ~1(eί)) ( i , j = 1, 2, 3)
with multiplication table (2) and e3 = r as required.

We are now in a position to obtain the result mentioned above.
Theorem 2. //, inG= P+S, [S, 8] = 8 and

[r} S] = 0 (3)

where r ζ L is regular, then G = P xS', S ̂  S'.
Proof. By lemma II 1' it suffices to prove that P is an ideal in G. Let

{e1> e2, e3, eΊ, e^, 63} be a basis of L with multiplication table (2) and e3 = r.
We shall first show that if s £ S then [s, ek] ζP,(k = 2, 3) and [s, e'k] ξ P.
By (2), (3) and the Jacoby identity we have: [s, ej = [s, [ea, e3]]
= — [es> [θί eal] 5 since we can write [s, β2] = p + sl9 p ζ P, ^ ζ S, by (3)
we have [s, e^\ ζ P. In a similar way we obtain [5, e2], [s, eΊ], [s, e^] ζ P;
hence [s, e's] = [ej, [β, ea]] + [[β, e[], e2] ζ P. Thus [S, L] ς P; since
every t ζ T can be written in the form t= [19 u], I ζ L, u ζ T, it follows
[θ, ί] ζ P for every 5 ζ /S and £ ζ jΓ. Then P is an ideal.
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The concept of regular element is purely mathematical in view of this
it will be worth to give a result similar to the preceding one, but formulated
in terms of elements of L, which have a more direct physical meaning.

Corollary 1. Let mμv ζ L (μ, v = 0, 1,2, 3) be defined as in section II.
If , in 0 = P + 8, [S, 8] = 8 and

[mμψ, 8] = 0 (4)
thenG= Px8', 8' ^ 8.

Proof. Let us pose J i = mjk (i, j , k cyclic permutation of 1,2, 3) and
Jί = m O Λ ( i=l ,2 ,3) .

It suffices to prove that these elements are regular in L. By (II 22)
we have :

Let φ be an isomorphism of L onto si (2, C)R and J^ = φ(Ji)> J'i =
If we pose e = J^ -f iJ^ f = — J± + iJ% and Ji — iJ3, then {e, /, h} is a
basis of sl(29 C) and:

[A, e] = e, [A, /] = -/, [β, /] = 2h . (6)

If x ξ <$Z(2, (7) we can write x = oce + βf + γh. Hence by (6) (ad h)mx = 0
implies oce + (- l)mβf = 0; thus α = 0 and 0 = 0. This shows that the
Fitting null component of si (2, (7) relative to adΛ is one-dimensional;
then h is regular in si (2, C) and consequently in sl(29 C)R. The same
holds for J3 = — ίA, hence J3 = φ~l(JB) is regular in L. The regularity
of the other elements can be proved in a similar way.

If one examines the proofs of the theorems 1 and 2, one can observe
that, to obtain that P is an ideal in G, the assumption "S is a subalgebra
of G" is not necessary; the result holds as well if 8 is assumed to be a
subspace of G. This remark can be applied to the study of the problem
of imbedding the Poincare algebra into a larger Lie algebra. This can be
considered as a slight generalization of the problem discussed in the
introduction. We are concerned with a Lie algebra E containing P as
subalgebra. Obviously E can always written in the form:

E = P + A (7)

where A is a subspace and P n A = 0. Under assumptions on the
elements of [P, A], which are similar to those of theorems 1 and 2, we
can derive the following results (compare reference [2]).

Theorem 3. Let P be a subalgebra of a Lie algebra E and A a subspace
of E such that (7) holds. If

[J/, A] = 0, ί = 1, 2, 3 (8)

then a) P is an ideal and E = P + A' (d.s.)} where A' is a subalgebra.
b) A r\ P = 0 and A is a subalgebra. c) if A = [A, A] then G = P xA.



224 V. BERZI:

Proof, a) follows from the remark above and lemma II 3. Next, (8)
implies [L, A] = 0, hence A r\ P = 0. If a, b ζ A [[α, 6], L] = 0 and we
can write [a, b] = p + c, p ζ P, cζ A. Hence [p, L] = 0, which implies
p = 0 and [a, b]ζA. This proves b). Finally if [A, A] = A all the hypo-
theses of theorem 1 are satisfied and c) follows.

Theorem 4. Let Pbea subalgebra of the Lie algebra E and A a subspace
such that (7) holds and A r\ P = 0. //

[r, A] = 0 (9)

where r is a regular element of L, then a) P is an ideal and E = P + A'
(d.s.)} where A' is a subalgebra, b) let oc be the projection onto A with kernel
P: then A equipped with the composition law (a, b) -> α [«, b] becomes
a Lie algebra isomorphic to A; c) if [A',A'] = A' then G = PxA",
A" &A' ™A.

Proof. That P is an ideal can be proved with the method used for
theorem 2. Then a) follows from lemma II3. The mapping (a, b)
-> α[α, b] is clearly a bilinear mapping of (A, A) into A and α[α, α] = 0
for every a ζ A. Let us pose {α, δ} = α[α, δ] for α, b ζ A. Since P is an
ideal and (1 — α) [δ, c] ζ P we have α[α, (1 — α) [δ, c]] = 0 (a, δ, c £ -4).
Hence {α, {δ, c}} = α[α, α[δ, c]] = α[α, [δ, c]]. Then the Jacobi identity
for { } is a consequence of the Jacobi identity for [ ] thus the first
assertion of b) is proved. Next, let π be the projection onto A' with
kernel P. The restriction of π onto A is clearly an isomorphism of the
vector space A on the vector space A. Since πP = 0, we have:

πoc[a, b] = π[a, δ] = π[πa+ (1 — π)a, πb + (1 — π)b]

= π[πa, πb] = [πa, πb]

which implies A ^ A'\ this completes the proof of b). Finally c) follows
from lemma II1'.

We conclude this section by giving a theorem which is in some sense
complementary to the one of McGlinn [1]. To obtain this result we
require the following lemma 2, due to C. Itzykson [3]. The proof we
shall give is much simpler than Itzykson's proof and can well illustrate
the power of the intrinsic methods in dealing with Lie algebras.

Lemma 2. Let P be a subalgebra of a Lie algebra E and A a subspace
of E such that E = P + A and A r\ P = 0. //

[T,A] = 0 (10)

then a) T is an ideal of E: b) let φ be the natural homomorphism of E onto
EjT, then φ (A) is an ideal of E/T and if it is semisimple one has E = P' x A',
where P' & P and A' is a semisimple ideal.

Proof, a) Let x be an arbitrary element of E we can write x — I
+ u-\-a, IζL, uζT, a^A\ hence [a?, t] = [I, t]ζT for every tζ T
and T is an ideal, b) We prove first that A + T is an ideal of E. It will
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suffice to show that [x, a] ζ A + T for a ζ A and x ζ E we write
α = Z + tt+δ, Z ζ L , M ζ Γ , δ ζ ^ s o that [a;, α] = [Z, α] + [&, α]. By the
Jacobi identity we have [t, [b, a]] — 0 for every t ζ T. Hence if [b, a]
= c + m with c ζ J. + T and m ζ L we obtain [m, ί] = 0; this implies
m = 0 and [&, α] ζ ^L + T.

In the same way, since [ί, [I, a]] — — [I, [α, t]] — [a, [ί, ?]] = 0 for
every tζ T, we obtain [Z, α] ζ J. + Γ. Thus J. + 3Γ is an ideal of E; then
φ(A + T) is an ideal of E/T. But φ(A + T) = φ(A), hence y(4) is an
ideal of E/T. Now let us suppose that φ (A) is semisimple. We observe
that T is the radical of the Lie algebra A + T. In fact T is an abelian
ideal, so that if R is the radical, then E^T\ the restriction of φ onto
A + T is a homomorphism of A + T onto 9? (-4), hence φ(B) is an ideal
of φ(A)\ but 99 (Λ) is solvable as homomorphic image of a solvable Lie
algebra. Hence the semisimplicity of φ(A) implies φ(R) = 0; it follows
E ζ. T and R = T as required. Then by Levi's theorem A -\- T contains
a semisimple subalgebra A' such that A + T = A' + T (d.s.); from
[A, T] = 0 it follows [A'9 T] = 0 since if a' ζ A' we can write a' = a + t,
a ξ A, t ζ T. Now we recall that if F is a subalgebra of a Lie algebra J£,
then a derivation D oίF into ̂  is a linear mapping of jP into E such that

•D [/ι> /2] = [£>/ι, ΛJ + [/ι> £>/2] for every /1? /2 ζ .F. As 4 + T is an ideal
of E, it follows that ad^, 1,1 ^L, is a derivation of A' into J.' + T.
Since .4' is semisimple this derivation can be extended to an inner deriva-
tion of A' + T (reference [7] Ch. Ill Theorem 9). This means that there
exists an element x ζ A' + T such that [Z, a] = [x, a] for every a ζ A'.
Since [ A f , T] = 0 this implies [I, a] ζ A. Thus A' is an ideal of E and
by lemma 112 E= P'xA', where P' ̂  P.

Theorem 5. // the subalgebra 8 in G == P + S is semisimple and
[8, T] = 0, then 0 - Pf x8, P' ™ P.

Proof. Let φ be the natural homomorphism of G onto Θ/T. Then
φ (S) is isomorphic to 8 hence semisimple. Then the proof of the preceding
lemma shows that 8 is an ideal in G. Hence by lemma II2' G = P' x S
with P' ^ P.

IV. A Second Class of Negative Theorems

In this section we give several results on the structure of G = P + S,
which hold under assumptions of class 2 defined in section II. We shall
use the concept of complexification of a real Lie algebra. For a definition
we refer to reference [8] (Ch. Ill § 6) we shall only give here a number
of consequences of this definition. Let E be a real Lie algebra. We shall
denote by EG its complexification E can be identified with a subset of
E°. With this identification the elements of EG can be written in the form
x + iy, x, y ζ E\ x + iy = 0 implies x = 0 and y = 0. If E1 is a sub-
algebra or an ideal of E, then Eξ is a subalgebra or an ideal of EG. If
E = E1 + E2, direct sum of vector spaces, then EG = E% + Eξ, direct
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sum of vector spaces. The Lie algebra 8 is semisimple if and only if 8G

is semisimple. Finally an element x ζ E is regular in E if and only if it is
regular in Ec.

Theorem 1. // the subalgebra 8 in 0 = P + S is semisimple and

fc p] = 0 (1)

where q is a regular element of 8, then G = P x 8.
Proof. We have θ° = P° + Sc (d.s.) and q is regular in 8°. Hence

the Fitting null component of S° relative to adg is a Cartan subalgebra
K containing q and Sc can be decomposed in the form

8G = K + Σ s« (2)
<xζR

where E is the set of non-zero roots of K , and 8X is the root subspace
relative to α. If eκ is a non-zero element of 8χ) by definition we have
[q3 eκ] = oc(q)eκ and α(g) Φ 0 for every α ζ E. Hence we can write:

and by the Jacobi identity and (1) :

for every p ξ PG. Then if one writes [eα, 39] = p' + s, p' ξ Pσ, s ξ $α,
one sees that [p, ex] ξ S°.

Now we recall that if K* denotes the dual space of K3 we have an
isomorphism ρ -> Λρ of £"* onto ./£, where hρ is defined by the condition
B(lc, hρ) = ρ (k) for every k ζ K, E being the Killing form of SG.

Further, the elements Λα, ocζ E Q K*, span K and one can choose
eκ ζ 8X so that hκ = [eβ, e_J. Then [p, Aβ] ζ ̂  for every p£Pc, ocζE.
Since the elements Λα, ex, ocζ E span /Sσ we conclude that $α is an ideal
of Gc. Then by lemma II 2 we have Gc = ̂  x P7 with P' « P .̂ Hence
every p ζ P° can be uniquely decomposed in the form p = pf + s with
/ ζ P7 and β ζ Sσ. Since [P', Sσ] = 0 and [g, P] - 0 we have ad g (s) - 0,
so that s ζ K . Now let n be the projection onto 8G with kernel P' since
P' and $α are ideals π is a homomorphism of GG onto $α; further
π P° Q K . It follows that the restriction of π onto the subalgebra LG of
PG is a homomorphism of .L^ into K. Since .Lσ is semisimple and K is
abelian πL° = 0, so that LG g P' and [Sσ,£σ] = 0. This implies
[£, /S] =0 . Hence by theorem III 1 G = P xfiί.

By the preceding theorem, or by using similar methods of proof, one
can obtain several related results, for instance all those of reference [4].
We shall give only two examples

Theorem 2. // the subalgebra 8 in G = P + 8 is semisimple and

[P,#] = 0, (3)

where K is a Cartan subalgebra of 8°, then G = P x 8.
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Proof. Every Cartan subalgebra of a Lie algebra over an alge-
braically closed field of characteristic zero contains a regular element
(reference [7] Ch. IX theorem 3, remarks). Hence K contains a regular
element q such that [q, P] = 0. Thus by theorem 1 it follows G = PxS.

Theorem 3. Let S be a semisimple subalgebra of G = P + S, K a
Cartan subalgebra of SG and Sx the root subspaces. If the condition;

[r,-8.1 = 0. (4)

Where r is a regular element of L, holds for every root α then G = P xS',
S'~8.

Proof. Let hκ ζ K be defined as in the proof of theorem 1. We can
choose eκ ζ Sκ such that hκ = [eα, e_α]. By (4) we have [r, hx] = 0. Since
the elements eκ and hκ span $α, it follows [r, 8C] = 0 and [r, S] = 0.
Then by theorem III 2 G = P xS' with S ̂  Sf.

Remark. Under the assumption that the $α commute with the
elements of a set of generators of L (for instance with the J$) one obtains
in a similar way the stronger result G = P x 8.

Condition (1) of theorem 1 has not an easy interpretation from a
physical viewpoint as q is restricted to be regular. This is illustrated by
the following considerations. Suppose S is isomorphic to $ί7(3). Then
S° is a complex Lie algebra of type A%. Consequently as is well known,
8C contains a basis {ej (i = 1, 2, . . ., 8) with multiplication table

[ei)ej] = fijkek (5)

where the fijk are odd under permutation of any two indices and the non
zero elements are:

/ -1 / -- / - - i -- f --/123 — x> /147 — 2 ' '156 ~~ ~~ 2 ' '246 ~~ 2 ? 'a57 ~~ 2

/ --i / - i / -V* f -&- (^/345 ~ 2 ' J 3 6 7 ~ ~~ 2 ' /458~~~~2~? /678 ~ 2 "

We note that the set of linear combinations of the et with real coefficients
is a real Lie algebra which can be identified with S. From (5) and (6) we
see that the elements iek have the same commutation rules as the
elements {F^ (i = 1, 2, . . ., 8) of the charge octet in the unitary sym-
metry scheme of Gell-Mann and Ne'eman [10—11]. In this scheme

.F3 +-pjP8 is the electric charge operator for the strongly interacting
I/3

particles. Since the electric charge is conserved in all known interactions,

the assumption e3 + —=? e8, P\ = 0 is physically a very interesting

one. Now by (5) and (6) it is easy to verify that e3 is regular in SG (and
J_

1/3
in S) and e3, eB span a Cartan subalgebra of S°. But e3 + -^j=- e8 is not
16 Commun. math. Phys., Vol. 10
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regular in 8 (or in 8°) since

Γ 1 1 1 1
I3 + W6*' 66J = " ~2~e? + "2"6? = ° '

These remarks clarify the physical meaning of the following
Theorem 4. Suppose S is a semisimple subalgebra of G = P + 8 and

let q be an element of S such that:
a) q belongs to a Cartan subalgebra of 8°
b) q has non vanishing component on each of the simple ideals of SG. If;

[g, P] = 0 (7)

then G= P'xS when P' « P. If S is compact then G = P x8.
Proof. We prove first that 8C is an ideal of Gc = PG + 8C. Let K*

be the dual space of K. We define the mapping ρ -> hρ of K* onto K as
in the proof of theorem 1. We recall that K* can be equipped with a
bilinear symmetric form (ρ, σ) such that (ρ, σ) = ρ(hσ) = a(hρ). Now let
{α1? αa, . . ., oci} be a simple system of roots of K. We can choose the root
vectors±κ. e so that:

[hxj, eκi] = (α,, α, )eαί (», j = 1, 2, . . ., Z) . (9)

The elements e±αί generate $c; hence to prove that 8C is an ideal it
suffices to show that [p, e± αj ζ 8G for every #> ζ P°. We have: [#, eαj
αz (g)βαί where the numbers αe (g) can not all be zero; otherwise, since
the ex. generate 8G, q would belong to the center of 8°, but this is im-
possible because q Φ 0 and the semisimple Lie algebra 8G has zero
center. Then, without loss of generality, we can suppose oCi(q) = 0 for
i = 1, 2, . . ., hi < I and oct (q) Φ 0 for i = Jc± + 1, . . ., I. Thus for i > &a

[P»e±β<] = ±-

so that by (7), (8) and the Jacobi identity:

,̂ foAJζflP (10)

Now we consider the quantities (αί? α^ ), ί = 1,2, . . . , i^, / = i^ + 1, . . . , I
these can not all be zero. In fact if this assertion is false the elements
e±(X{ (i = 1, 2, . . ., kj generate a proper ideal / of 8G (reference [7]
Ch. IV theorem 4). Since oct(q) = 0 f or ί ^ k± we have [q, I] = 0. Now
let S19 . . . , Sr be the simple ideals of 8°. By hypothesis, q = q1 + + qr

where qk ζ jSfc and qk =j= 0. We can suppose / = ̂  + + Sm, m < r,
so that if we set x = ̂  + + qm, we have x ζ /, a? =j= 0 and [#, /] = 0.
This is impossible since I is semisimple. Then, without loss of generality,
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we can assume :

((Xi, ocj) = 0 for i=l, . . .,k%<k1 and j > k± ,

(oci} ocj) φ 0 for i = &2 + 1, . . . , k-L and some j>kl.

Hence for i = k% + 1> > î we can write :

[P, «± αj = db -̂ ŷ to [*v

 e± J]

where j > kv From this, by (10) and the Jacobi identity, we obtain:

toe±«,KSσ, to*«,KSσ for i = * a + l » Λ and p£^c At this
point it is clear that by iteration of the reasoning we can conclude
[p, e± K{] ζ Sc for i = 1, . . . , I. Thus Sc is an ideal of G°. Bearing in mind
the remarks at the beginning of this section, it is not difficult to see that
8 is also an ideal of G. From lemma II 2' it follows G = Pf xS, P' ^ P.
Now let π be the projection onto 8 with kernel P', the restriction of π
onto L C P is a homomorphism of L into S. Since L is simple the kernel
of this homomorphism is either zero or L. If the kernel is zero, then
πL & L is a non compact subalgebra of S. If S is compact this is im-
possible (see Appendix) so that πL = 0. Hence LζP' and [L, S] = 0.
Then from theorem III 1 it follows G = PxS. This completes the proof.

Remark. The preceding theorem can be compared with the result
stated in reference [6]. There, q is assumed to be an arbitrary element of
8. However in the proof of the statement it is implicitly assumed that
any element of a (complex) simple Lie algebra can be embedded in a
Cartan subalgebra. Now this does not hold in general. Consider for
instance the Lie algebra si (2, (7); its Cartan subalgebras are one-dimen-
sional, so that an element of a Cartan subalgebra is necessarily regular.
But si (2, C) contains a basis {e, /, h} such that [e, h] = 2e, [/, h] = — 2/,
[e, /] = h. Then (ad e)*h = 0 and the Fitting null component of ad e is
two-dimensional. Hence e is not regular and can not belong to a Cartan
subalgebra.

Appendix

We recall that a compact Lie algebra is a real Lie algebra of the form
K — 8 x (7, where G is abelian and 8 semisimple with a negative definite
Killing form.

Let V be a real (complex) vector space equipped with a bilinear
symmetric (hermitian) form Φ. A representation ρ of a real Lie algebra
E on V will be called unitary if Φ is positive definite and

With these definitions we have the following well known
Theorem. // a real Lie algebra has a unitary fίnίtedimensional

faithful representation, then it is compact.
16*
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We can now prove the following
Corollary. Any subalgebra of a semisimple compact Lie algebra is

compact.
Proof. Let H be a subalgebra of the semisimple compact Lie algebra

K. The mapping h -> ad h of H into ad K is a representation of H in
the vector space K\ since K has zero center this representation is faithful.
The Killing form B of K is negative definite so that — B is positive
definite.

Now from the definition B(x, y) = Tr ad# ad^/ of the Killing form
it follows :

5(ad a(x)9 y) + B(x, ad a(y)} = 0, a, x, y ζ K .

Hence the representation h -> ad h of H is unitary and H is compact.
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