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Abstract. The equal time limit of commutator matrix elements of conserved
currents is rigorously calculated by means of structures which follow from general
principles of relativistic quantum field theory and current conservation. We prove :
(a) In general derivatives of ό-functions occur (gradient terms). — (b) The proper
(non-gradient) part of the equal time limit is exactly given by the divergence-free
causal one particle structures constructed from those intermediate one particle
states which have the same main quantum numbers (mass, total spin and total
isospin) as one of the external states (saturation by two one particles states!). —
(c) All the other intermediate discrete one particle states drop out completely and
the continuous many particle states contribute at most to gradient terms. —
(d) The gradient terms emerging from the remaining two discrete intermediate one
particle states can be removed without any restrictions on the form factors. — (e)
From current algebras of conserved currents in the form proposed and used in the
literature one cannot deduce any predictions for form factors beyond the algebraic
conditions for coupling constants which already follow from the algebra of the
charges.

I. Introduction

In recent years we have witnessed an ever increasing interest in the
field theoretical aspects of current operators. Generalizing group theo-
retical features of conserved charges to non-conserved charges [1 ] proved
to be very successful in deriving sum rules of various types [2—6].
Encouraged by these results physicists have conjectured algebraic struc-
tures also for the current densities. Whereas numerous articles, and
lecture notes [7]1 have been published on the applications of these
current density algebras, considerably less effort has been devoted to
the problem of consistency of the density algebras with quantum field
theory.

In addition the combination of the density algebras with simple
saturation assumptions (one particle saturation) lead to kinematical in-
consistencies of the results [4]. Without looking for possible diseases

* Supported in part by the U.S. Atomic Energy Commission under Contract
AT (30-l)-3829.

1 For a general information on current algebras see [7] and the bibliography
given there.
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of the assumptions, the removal of these inconsistencies combined with
the claim for infinite sets of one particle intermediate states has been
used as a dynamical recipe for the determination of form factors [8, 9].

In a series of papers we will investigate the consistency of current
density algebras without gradient terms and their saturation by a finite
number of intermediate one particle states with general principles of
relativistic quantum field theory. In the present first article we restrict
ourselves to the case of two conserved currents.

Let us consider for example the following simple situation of the
internal symmetry group $£7(2) and the π-system: From the group
theoretical aspects of isospin one obtains the following commutation
relations between total iso- charges and isospin currents:

[&,$(*)] \^}T = ieaβy (π\\ ft(x) |π&2>

\ft(x), Qβ} \πkά* = ieaβy (π^\ ft(x) |π&2> .

The most general form of the truncated charge density commutator
matrix elements consistent with (1) is2:

y)] (2)
- y)]

higher terms.

(kl-ka)rS°'β(k1,kj = 0. (3)

The proposal of a current algebra is that all the gradient terms vanish
and that A^β can be identified with iεκβγ (π&J jγ(0) \k2πy. Furthermore
the one particle saturation in its simplest version means to introduce
a complete set of intermediate states in the commutator on the left hand
side of (2), keep from this infinite set only the discrete one particle states
and drop all the others. It is obvious that such a procedure if it is con-
sistent with general principles leads to relations between form factors.
Unfortunately it destroys locality and because locality is strongly con-
nected with Lorentz covariance this procedure shows the well known
kinematical inconsistencies in the equal time limit.

In this article we will prove from general principles of relativistic
quantum field theory, current conservation and some technical high
energy assumptions the following six statements :

I. The equal time limit of the density commutators is exactly given
by the right hand side of (2).

2 Latin indices run from 1 to 3, Greek indices from 0 to 3 with the metric
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II. In one particle approximations which satisfy locality and current
conservation (such approximations will be called from now on DCOP-
structures) the equal time limit does not show any inconsistencies.

III. From all DCOP-structures only those two which correspond to
the intermediate one particle states with the same main quantum num-
bers as one of the external states contribute to the equal time limit (in
the example at hand this is the one pion state). All the others drop out.

IV. All contributions to the gradient terms emerging from the
remaining two DCOP-structures can be removed without any condition
on the form factors.

V. The proper (non-gradient) part of the charge density algebra does
not lead to any new dynamical restrictions apart from the algebraic
relations for the coupling constants which also follow from the algebra
of the charges. A^β is exactly given by products of coupling constants
and form factors which automatically satisfy the algebra without any
restrictions on the form factors for momentum transfer t =j= 0.

VI. All continuous many particle intermediate states contribute at
most to gradient terms. Sum rules can only emerge from structural
assumptions on these gradient terms, for example their vanishing.

From these six statements it follows that the current density algebras
for conserved currents in the form, in which they are proposed and
extensively used in applications, are dynamically empty as far as the
calculation of form factors is concerned. The only possible dynamical
content is contained in the assumption that no gradient terms do occur
(small distance behaviour of matrix elements). But in order to extract
this content one has to calculate directly the three coefficients 8%,
AQJβl and 8®% on the right hand side of (2) in terms of physical quantities
and to check what the vanishing of the three coefficients means for these
quantities.

In the proof of these statements we rely heavily on the field theo-
retical causal one particle structure of the commutator matrix elements.
Such causal one particle structure properties in the case of Green's func-
tions have been studied by ZIMMERMAKN [10, 11], SYMANZIK [12, 13]
and STKEATER [14]. They are a consequence of locality, and the
existence of non zero mass one particle states below a continuous spec-
trum. For special Wightman functions and the case at hand one of the
present authors (A. H. VOLKEL) has investigated the one particle struc-
ture [15, 16]. It was shown that the connected matrix element of the
commutator of two currents can be written:

where Fμv( Y is a product of (retarded) three point functions and
Fμv( )π contains only contributions from the continuous energy mo-
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mentum spectrum. Every part is local for itself. However the occurence
of retarded three point functions in Fμv ( }* destroys current conservation
for each part separately on the right hand side of (4). It was shown by
two of the present authors ("UTA VOLKEL and A. H. VOLKEL) [16, 17]
that by changing the decomposition one can rewrite the right hand side
of (4) as:

FPV(X, y}τG + FI*V(X, y)ΠG (5)

where both terms separately satisfy current conservation. Both are
separately local. Furthermore Fμv( )IG contains all the one particle con-
tributions and incorporates only the three point functions information
of the theory.

This decomposition together with current conservation exposes
enough structure of the commutator matrix elements so that the state-
ments above can be rigorously proven. This structure is however not
strong enough to show whether all gradient terms vanish trivially, give
rise to non-trivial sum rules, or cannot be removed in principle.

We want to mention that all forthcoming high energy assumptions
are sufficient assumptions which can be weakened with the only effect
that further gradient terms arise.

We restrict ourselves to the case of spin zero particles. All our
statements remain unchanged for particles with spin. It is a simple matter
of introducing spin indixes to generalize our calculations to the case of
particles with spin. The case of spin 1/2 particles will be treated in the
second article of this series, where we investigate the $£7(2) x SU(2)
algebra of vector and axial vector currents.

II. The Causal, Divergence-Free one Particle Structure (DCOPS)

The commutator matrix element (4) can be written as a sum of the
one particle intermediate state contribution and the continuous rest3:

- OAI f(y) \mqγy (γqm\ j*(x) \M2k2}}

+ continuous rest .

But in this decomposition the one particle contribution and the rest
separately do not have all the linear properties of commutators. They
do not vanish for space like distances. An unpleasant side effect of this

3 The internal quantum number γ denotes always the pair (Γ, Γ) with summa-

tion over Γ. Γ denotes the representation of the corresponding symmetry group

and Γ the states within this representation.
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decomposition would be the explicit &15 k% dependence of each separate
contribution to the equal time commutator. If one for example omits the
continuous contribution then one has to introduce ad hoc devices
(h -> oo method) to get kinematical consistency. The way to repair this
situation is to change the decomposition (6) to [10—17]:

{hlMί [f(x), g"(y)] \M,,k2y = F^(x, yY + F^(x, y)" (7)
•with:

= 2πί f d*q {e-
ί<*«

0), B-(- q)] |0> A'ΐet (q) <0| B[Sv(q),p (0)] |

-(- q), /(O)] |0> Δ\v (q) <0| R [f (0), Sγ(q)] |

-(- q)] |0> ;et (q)

-(- g),f (0)] |0> 21V (g) <

Here By(q) [B-(q) =: j§y(— g)*] is the interpolating field of the inter-
mediate one particle state with mass m and internal quantum numbers γ.
R [ ] denotes the retarded product. The kernel

ίet (?) = : Λίβt (q)-1 A'nt (q) A',,, (ff)-ι (9)
av av av av

is given by the two point functions of the interacting field Bγ(x). They
can be represented by [12] :

Γ ^g(
J s-(q

4m2

4ms

The expression (8) has on the mass shell of the intermediate momentum
the same structure as (6). But it is in addition local and is given solely
in terms of three point functions with one particle on the mass shell.

Of course such a "causal one particle" expression is not unique.
Without changing the normalisation of the intermediate one particle
structure one can take any definition of retarded products or any other
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propagator with the same one particle poles and residua and the same
starting point of the continuum. As long as one does not make any
approximation the choice of retarded products and propagators is a pure
matter of bookkeeping in the decomposition (7).

The next step in our argument is the realisation that the decomposi-
tion (7) is still not satisfactory. For a conserved current dμj

μ(x) = 0 we
would like to redefine our causal one particle term in such a way that
current conservation is separately fulfilled for each term of our decom-
position. In other words, what we call a "divergence-free causal one
particle structure" (DCOP-structure), is an expression which on the mass
shell agrees with (6), is local, satisfies the above mentioned divergence
condition and is a bilinear functional of the three point functions. Two
of the present authors (UTA VOLKEL and A. H. VOLKEL) have explicitely
constructed such DCOP-structures [16, 17] in terms of Jost-Lehmann-
Dyson representations [18—21]. They are given by4:

FPV(X, y}IG = : F^v(x, y)l - eί(M-*ιtf)

•\Ki»(x-y)i + Hi»(x-y\-\ (13)

with

{ Tζμ v} 1

Hμv] (*)ι -^

ε(qQ - UQ) δ((q - uf - s)

(q + kr - 2u)v (q + Λ8_r - 2u)v

- (u - krγ s - (u- 7r3_r)
2

(fc _ ~fa \Λ3~[π(u, s)r + (q

''

— (q + kr — 2u)μ δ(s — (u — &r)
2) eό(u,,

4 The following Eq. (15) differs from Eq. (40) in [17] by the absence of the terms
containing the spectral functions φ, wi*, ρ and E, which do not occur in the case
of conserved currents.
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Here {φv, ψj, βj} (u, s)r are the Dyson spectral functions of the following
matrix elements:

- q ) , j » (0)] |0> %„ (q)}

P,(Y>9,*ύ», (16)
ΐ^q), = ί(2π)^Pg(γ,q,k1\

• { ίet (?) <0| R \Sy(q), f (0)] |is> - ?„ (q) <0| Λ [f (0), £„(?)] |&2>}

with the abbreviations :

Pg (V, ^ &ι)ι = =(*!- ?)„ <*ιl ̂  [<7"(0), 3?(- g)] |0>
Pβ(y,ί,*a) l=:(*a-?) ί,<0|Λ[5x( ί f),^(0)]|A l l>. ( ]

Locality implies the functions Pg(γ, q, kr)r to be polynomials in q.
Similarly {φμ, ψg) eg} (u, s)r are the Dyson spectral functions of the

matrix elements ϊμ(q)r which are obtained from /3 (#)3_r by the replace-
ments jμ -> gμ and Pg(γ, q, kr)r -> Pj(γ> q, kr)r on the right hand sides of
(16), (17). Pj(γ, q, kr)r is given by (18) with g replaced by j. All these
spectral functions are introduced in such a way that the following
divergence conditions are automatically fulfilled by the Dyson represen-
tations :

(q — kγ)μl.(q)

(a-k }W Kz-r)μ±g\

[^etfe)-1 - /lav(g)-1] Λ(y, ί, &3-r)3-r

These equations follow immediately from current conservation and the
definition of the matrix elements Iμ^ )(q)r.

Now the Dyson representation of Iμ in terms of {φμ

} ψ} e} are simply
obtained by the most general solutions of the Eq. (19). If — i(— l)rπ (u,s)r

are the Dyson spectral functions5 of the right hand side of (19) then these
solutions are given by [17]:

ty(2)r= ~ *'(- !)r / 'd*uds ε(qQ - u°) δ((q - u)2 - s)
If _ 9-J/^

= ~ * ( π) '' (γ' q' r)r

(u, s)r] (20)

(q + kr - 2«y δ(8 - (u - kr)*) e}(u, a),

da ε(q° - u°) δ((q - uf - s)

φ β(u, s)r-(q+ks_r- 2«)' δ(β-(u- ^3_r)
2) eg (u, β), (21)

5 From the polynomial character of Pj(g) and Eq. (11) it follows that the
support of π(u, s)r is concentrated in the point u = 0.
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with
ds ε(q° - u°) ό((q - u)* - s) <ψj(g} (u, s)r = 0

and

( '
_

s - (u- & 3_ f)
2 ' ds s - (u - &3_ r)

2

All the spectral functions have certain support properties which follow
in the well known manner [18—21] from the support properties of the
commutator matrix elements 1^ ^ (q)r in momentum space.

As we mentioned earlier the DCOP-structure is not unique. In part
this non-uniqueness is expressed in the occurrence of the functions
Hμv(x}r in Eq. (13). Their fourier transforms are arbitrary local solutions
of the divergence equations :

with their support contained in the support of Kμv(q)r. Solutions of this
boundary value problem are given by [17] :

(q° - u°) δ((q - u)2 - s}

_ (U _ fcj] [5 _ (U _ ^2)2] > r s- (u- krγ

• (q - krMu, s)r + 0

a

(*J(ϊ
UJky (q - *3-r)^?lK «)r

+ δ(s -(u- Tcrγ) δ(a -(u- Jc^r)^E(u} β)r] (25)

+ ̂  (»> Sϊr ~ (!ίf;li$- (ί - *r)A ft* («, «)r

(g + yr - 2^)^ '

β _ (W _ fc3_f)
2 (q ~ ̂ "^ (U> S)r

-(q+kr- 2ur δ(s - (u - &r)
2) Λfj (M, β)r

- to + &3-r - 2^)V 0(5 - (U - &3-r)2) ̂ K *)r) -

The spectral functions Z^v(u} s)r and E(^π^ (u, s)r are arbitrary except
the condition that their support is contained in the support of φf(u, s)r

+ Φff(u> sh~τ and ^(u, s)τ + eg(u, β)8_r respectively.
As we will see in section IV the arbitrariness of all these spectral

functions is strongly restricted, if we demand that the equal time limit
does not contain derivatives of δ -functions.



On Current-Density Algebras, Gradient Terms and Saturation 77

III. The Equal Time Limit of the DCOP-Structure

In order to calculate the equal time limit we have to introduce Dyson
representations for the retarded and advanced matrix elements and to
make certain high energy assumptions. Essentially these are assumptions
on the "large ^-behaviour" of the Dyson spectral functions.

First of all we assume the validity of Ward's identity for the three
point matrix elements. By this assumption it follows from (18) that the
polynomials Pg(γ, q, kr)r are independent of q6. Therefore we obtain by
means of the asymptotic condition :

P,(y, 9, *ι)ι - P,(V, *ι)ι = lίm & - q)μ <
_ Q~~^ «α

— r i ι f ι l ̂ °) l°> (26)

and similar :

Pβ(γ,ί,kύts*Pβ(γ,*>ύa (27)

= - W<G| Bv(0) \M*
From these equations we deduce that Pg(γ, kr}r is unequal to zero only
if the mass m of the intermediate state is equal to the external mass Mr.
Otherwise the matrix elements of B vanish (B is the interpolating field
of the intermediate particle with mass m). Pg(γ, kr)r is also diagonal in
the total isospin because the space integral over g° is a generator of the
isospin group. If we had included particles with spin the same statement
would be true for the total spins, because the generators of the isospin
group commute with the generators of the Lorentz group.

On the "large- s-behaviour" of the spectral functions we make the
following assumptions:

oo

f dsh(u) s~l{ψfί

) ψ} (u, s)r < oo

(28)
00 V '

fd*u f d8h(u)s-*l*ZPv(u98)r <oo
a>0

ioτh(u) ζC°°
00

/ dsρ(γ, s) < oo . (29)
4m2

The assumptions (28) and (29) are sufficient conditions in order that the
equal time limits of the DCOP-structures and the so called continuous
rest exist separately.

β In case the ETC between the currents and the intermediate Heisenbergfield
like {^1 [g°(x)9 B(y)] 10) contain gradient terms, one would have instead of a con-
stant Pg a polynomial in q. The nonconstant part of Pg would then give additional
gradient contributions to the ET-structure of the 4-point function.
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From the first inequality of (28) and the condition (22) it follows:

Furthermore we define the retarded and advanced parts of the matrix
elements Ifo (16)-(21) by:

< |̂ £[f (0), S-(- q)] |0> Λίette)-1 P.(γ, *„

i ΓM j Γ (? + fcι-2«)"
= — in \~ι* / d*u ds\ — ̂ — — —-. - ~(2π)''2 J \_s — (q ±^ε — u)2

_ _ i I>(M> δ)ι + %(«' s)ι + (ί ~

(g - u) -(v-

+ Qf(γ, ?/&ι)ι

P / Λ . Z, \ A' (/Ί\—l /Πl 7? Γ 7? /'/Ύ^ ^/ΠM IZ 1

g \ Ύ ) *^ι/ι ^retw/ \ I L ^ y W / J / W / J I

Here Q^(y, g/^) are polynomials in q.
The corresponding representation for the retarded and advanced

matrix elements of the current gμ are obtained from (31) and (32) re-
placing {φf, ψj, ej9 π} (u, s)r by {φ*9 ψg, eg,-π} (u, s)B.r and Qjf(γ, qjkr)r

% Qg(y> ^rίs-r on tne right hand sides.
In order to calculate the polynomials Qμ, we multiply for instance the

Eq. (31) by (&x — q)μ. By means of Eq. (18) we obtain:

Pi(γ, )̂ι ^ίette)-1 Pβ(γ, ^2)2 = (&ι - 9)μ Q?(y> 2/*ι)ι - ~^γw { ̂  ̂
(33)

Taking the limit q -» ̂  we deduce from Eq. (11), the diagonality of P$
in the masses and the polynomial character of Q? that the ό-function
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term in (33) must vanish.

dsδ(s- (u- kr)*) e3 (u, s)r = 0

sδ(s- (u- k 3 _ _ τ ) * ) e g ( u , s ) r = Q .

If we use the fact that π (u, s) is the Dyson spectral function of the right
hand side of (19), and therefore apart from trivial factors equal to the
spectral function σ(γ, s) of the inverse two point functions, we get by
means of some elementary calculations from the Eqs. (11), (33) and (34) 7 :

Qξ(Y> Φτ)τ = fe + *r)MyP,(y, kr)r Pg(γ, &3-r)3-r

Qμ

g(V, ϊ/*r)s-r = (? + kτYAvPg(γ, kr)r Pj(γ, k3_r)3_r .

The retarded and advanced matrix elements defined in (31), (32) and (35)
are needed for the calculation of the equal time limit of the terms Kμv in
(13). In order to calculate the equal time limit of Fμv(x, y}1 defined in
Eq. (8) we need similar representations for the retarded and advanced
matrix elements without the (constant) factors Pg [P3 ] occurring in (31),
(32). These can be constructed in exactly the same manner as above
because we never used any properties of these factors. Therefore the
result is simply obtained by dropping these factors in the Eq. (31) — (35).

With these preparations it is straight forward to calculate the equal
time limit by means of the Gauchy integral formula and the occurring
^-functions respectively, if we assume, that the limit yQ -> XQ can be inter-
changed with the u, s and g° integrals. We obtain:

lim F™(x, y}IG = (2π)5 el^~^x δ(x - y)
° °

R [B-(- k2), f (0)] |0> Jίyί*,)-1] P,(γ, k2)2 (36)

kzlγ] (d(a} r 5M z + dM l dM r)

,/γ) (d<x)r- dMr) d,9v} [β-**«- *»> ^(α^ - y)] .

1 The solution (35) is unique if we limit the polynomials to be of degree one.
In the opposite case, we can add a higher polynomial of the form:

Ψ, = [ft. - lY (<? - Tξ) + ft + ?)" ft - <?)2] p(q, k),

where p is an invariant polynomial. We drop such polynomial as part of our high
energy assumptions.
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In order to give the explicit expressions for the four coefficients A, A,
8 and $ we introduce the following abbreviations:

Φ£(«, s)r = : (tf(u, s)r ± φζ(u, s)3_r)
-fcμ _ fcμ- ^ _ fey (ψi (u, s)r ± ψg (u, s)3_r) ,

Z% (u, β)r = : y (Zf"(u, β)r ± Zff(n, s)r~) . (38)

In terms of these abbreviations the coefficients are given by:

' ds

ι +k*~ 2u)0 (βί(u> s)ι ~ e°(u' s)a)

- 2u)<> (E\(u, 5)2 + E^(u, 5)0

s)2 + Eϋ

Π(u, s}^}} (39)

- 2u)° δ(s -(u- fcj)2) δ(s - (u- Λ2)
2)

^0:r and ̂ 0:r are the (0, r) - components (r = 1, 2, 3) of the following
tensors :

+ka- 2u)" Φ"+ (u, s)i + (&α - &2)λ

! + ̂ 2 - 2W)"ZVJ(M, S)j. - (&! + *2 - 2M

+ ia - 2 u)λ Z^ (u, 5)0] (40)

«, a

ds

(41)

u, ajj (42)
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Now the first question is if all the gradient terms in (36) can be removed.
As will be seen in the next section this can be achieved by (strong)
restrictions on the arbitrary spectral functions Zμv, Eμ

 IΓ In other words
the condition that no gradient terms occur in the density algebras fixes
in part the approximations which are consistent with these algebras.

Furthermore it will be shown there, that the coefficient Afg must
vanish in order that the commutation relations (1) between one charge
and one current density are satisfied. This in turn leads to a further
restriction on the spectral function E\ n(u, s). This condition must be
fulfilled because the only contribution to the non gradient terms in the
equal time limit comes from the DCOP-structure as will be shown in
section V.

IV. Consistency of DCOP-Saturation of Current Algebras

We first discuss the removal of the gradient terms and prove the
fol] owing theorem :

Theorem. Necessary and sufficient for the vanishing of all gradient
terms :

^•"(k,, k2jγ) = Sft'fa, ia/y) = Aff1^, *2) = 0 (43)

is the condition:

(k1-kJμS
rtf(k1,ktlγ) = 0. (44)

Proof. We define antisymmetric tensors by:

μ- (h, *2) = : - 4- (2π)3/2 (v 1J 2/ 2 v ' J d*u ds Γ - -. - γ - Γ - -.[s — (u — fcj)2] [s — (u —

+ k2 - 2u)μ Φv

+ (u, s^ - (&! + k2 - 2u)v Φ\ (u, s)λ

2)} ,

s [ s _ ( u _ k ι ) 2 ] s _(u_ ,a)2] (4β)

• {(k, + k2- 2ur [Z^(u, s\ + Z^(u9 θ)a]} ,

Γ^λ(k1} k2) = : {t^ vλ - ΐ »λ + tλ'^v} (kv 4a) . (47)

The tensors Z^9 Bμ_? and tλ:μv are antisymmetric in μ and v. Γμvλ is anti-
symmetric in all three indices. With these definitions S0:r are the (0, r)
— components of the expression :

Sr 'fa, *ϊ/y) = B^(kv k2) - (k, - k,)λ Γp'ifa, k2) . (48)

In order that 8μ:v vanishes we must find a totally antisymmetric tensor
Γμvλ such that (ί± - k2)λ Γ

μvλ is equal to the first term of (48)

(&ι ~ *S)A Γ^λ(k1} k2) = B^(k1} k2) . (49)
6 Commun. math. Phys., Vol. 10
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The antisymmetry of both tensors in this equation implies the necessary
condition :

(̂  - ̂ ^(^ &2) = 0 (50)

which is equivalent to (44).
If this condition is satisfied then the most general solution of Eq. (49)

is given by :

Γ"Vλ =
 fe - W {to - W B- ~ to ~ W B- + to - *s)' &_»} + h^

(51)
with

( fc l - i a ) A A'" ' A =0. (52)

For our purpose it is sufficient to take only special solutions of the
homogenous Eq. (52), which can be represented in the form:

[Zv_λ(u, s\

In order to satisfy condition (52) it is sufficient that Z has the form :

Zv^(u, s)r = (^ + k2 - 2u)v Vλ(u, s)r - (v <-> λ) . (55)

Solving the Eqs. (46), (47) and (51)— (54) for Zv^ we obtain by means of
the Eq. (45) :

Zv_λ(u, s)r _ 1

- (λ «
)r) - (A

_ _

•"[«-(!*- ^) ] [5 - (U - *,)»] '

Inserting this expression into Eq. (42) we get for A®.' u (&1? &2/y) :

^?:^(^1? &2/r) = - 4- (2π)3/2 ί d*u ds IT — / - r^π — / - ΓWΓj g \ 19 21 f t 2 \ ) J (̂  [S _ (^ _ £^2] [5 _ ζu _ ^2)2]

^(u, s\ + (^ + &2 - 2M)«> Z¥ (u, s), (57)

+ A, -2«)*ZO+'(«.*)i + ff 3

(!<-> 2)}.
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It is easy to see that A®:Jcl vanishes with the following choice of Z+

and Z_ :

Z ? (u, a), = :g»>
(kf

.s/ς in, fr γ.
v ^ r> > i ΠΛ //, \ rz?λ u, n\ τ^λ(Λ, 0^ i l ^ (58)

ikO8] [β - (W - &2)
2] ~ ' (fc, - W) 2 - (&3_ r - «)2

f - ? — . . .„ r - - j- r̂ [(fe. + i2 - 2uY \Φ" (u, s).[s - (u + ij)2] [a - (u - A2)
2] [\ i τ a ^ \ - v ' if

- Φ\ (u, s)r + ~ (^ - fca)Λ Φλ

+ («, β), - (μ «. r)

- w=w (kι - kz)λ (E"(U' s)a-r ~ E" (u> s)r)} ~ {μ ~ v)] } (59)

The tensor ZμJ? as defined by (59) has the structure (55) and therefore
satisfies the condition (52). Furthermore with the choice (58) for Z^f the
gradient term $9:r(&1? &2) also vanishes because Z*+ is diagonal in μ
and v. I

Next we have to investigate the condition (44) of the theorem.
Before we plung into the discussion of this condition we need a little
generalization of our formalism.

So far we have only considered the DCOP- structure of one single
discrete intermediate one particle state. If there are several discrete one
particle states with the internal quantum numbers γi and masses mί

(i = 1,. . ., N) then we have simply to replace γ by γi and m by m^ in
all our expressions and to take the sum over i [16, 22]. This will be done
explicitely from now on. Furthermore we introduce SU(2) quantum
numbers δ1 = (A19 Δ^) and δ2 = (Δ^ Δ2) for the external states. Here
again Δτ denotes the representation of SU(2) and Δr the states within
this representation.

By means of the Eq. (31), (32), (35), (37) and (40) the condition (44)
can be rewritten as :

-— k, - k,)μ Ptf &, 4.) = Dίfe kj + Dhfa, kj = 0 , (60)
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where we have introduced the abbreviations :

(0)] | ) P,(γt,

• [27 (

- (Ic, -

) , (61)

, a), -

, s)2 - E*j(u, β),)}] 2)

Let us first consider D%. From the Eqs. (26), (27) we obtain in the usual
normalisation of the matrix elements of B:

I, Mi

J° ϊ ί>
(63)

As we already remarked in connection with the Eqs. (26), (27) the matrix
elements on the right hand side are also diagonal in the spin quantum
numbers. Furthermore if we use the fact that j = jx and g = jβ are
members of the regular representation of S U (2) then from the connection
of jx with the group generators, and translation in variance it follows that
these matrix elements are also diagonal in the (main) quantum numbers
Ar> /V Introducing the coupling constants GΔ(Mr] via the Wigner-
Eckart theorem [23] we obtain:

r.
(64)

By means of the .L-$-Z-reduction formalism it follows:

(65)
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Similar relations follow for the other retarded matrix elements in Eq. (61).
If we define form factors by :

{fa + k^F^AM,, t, M2)τ + fa -

with t = : (&! — &2)
2 ,

then we finally get for -Dj (&1? ^2) :

- WFΔlΔt(Mv t, Mt)a} (67)

However the commutator algebra (1) between iso-charges and current-
densities implies that the sum over Γ in (75) vanishes. Furthermore
from these equations it follows :

l) . (68)

In most cases of physical interest D^ vanishes identically because of the
support properties of the Dyson integrand. For instance δ(s — (u — &3)

2)
• βj (u, s, γ}ι is a part of the Dyson spectral f unciton of a commutator
matrix element of the type (q2 — m2) (faM^ [j(0), Bγ(— q)] |0). Let μ1

and μ2 be the masses of the lowest intermediate states with

(g2 - m2) (Mι\ f (0) |Λ> {̂ 1 Bγ(~ q) |0> Φ 0

(g2 - m2) (̂  By(- q) |μ2> <^a| ,'(0) [0> Φ 0 .

If μ^ > M1 or μ<2,>ZMl then δ(s — (u — k^f) e^u, s\γ)ι vanishes iden-
tically. This statement is a special case of a Lemma to be formulated in
section V and proved in appendix I. Similar statements hold for all the
other terms of D^. In the opposite case where Όμ

u is not a priori equal
to zero we obtain by means of the Eq. (34) the following simple solution
of D(kl9kz) = Q:

w ^ (69)

ί

After we have removed all the gradient terms we may now discuss the
remaining proper part of the equal time commutator. Inserting the
Eqs. (64)—(66) into (36) we obtain for the contributions of all discrete
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intermediate one particle states to the equal time limit :

lim F™(x, y}IQ = (2π)3

 e

i^~^xd(x - y)
y°->x°

• y m + WFΔlΔt(Mι, t, Ifj), + (k, - k^FAιΔ2 (Mi, t, M2)π)]

(70)

If we integrate this equation over the space coordinates x or y then con-
sistency with the algebra of one charge and one density (1) requires the
condition (68) on the coupling constants and :

Σ Ail* &, *./y<) = o . (71)

According to Eq. (39) A° has the same structure as D^Γ Therefore all
the remarks above are also valid for A°. Exactly the same argument
applied above for the solution of D%Σ = 0 leads to the following solution
of (71):

E$(u,8)i-r + E*n(u,8)r (kr - k^r)
λ

+ δ(s ~(u- Jc3_r)^ (E(u, «)i + E(u, β)

The equation together with (69) specifies the spectral functions
E$,n(u> s)r completely.

Summing up the results obtained so far we may make the following
statements in the case of (0, 0) -components of conserved currents:

Equal time density commutation relations without gradient terms
together with saturation by a finite number of intermediate one particle
structures are completely consistent with general principles of local
quantum field theory, if the one particle structures are constructed in
such a way that they satisfy themselves all these principles (DCOP-
structures). Therefore we may conclude that all kinematical difficulties
occuring in other approaches to this problem, for instance the k- depend-
ence in the naive one particle approximation [8], simply reflect the fact
that one of these principles (locality!) is destroyed by the approximation.

Furthermore from all discrete intermediate one particle states the
equal time limiting procedure picks out only those states which have the
same main quantum numbers (mass, tolat isospin, total spin) as the
external states. This is due to the fact that the main contributions to the
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equal time limit come from the terms which must be added to the local
one particle structure F1 in order to save current conservation. These
terms are proportional to the matrix elements Pj(γi)krδr)r (18). By
Ward's identity these matrix elements are diagonal in the main quantum
numbers.

However there exist physical examples [24] (external states are π's
and intermediate states ω, φ) where these terms do not occur because
the local one particle structure F1 itself is divergence free. In the next
section we will prove that all intermediate states, discrete one particle
states as well as continuous many particle states, with masses larger
than both masses of the external states can at most contribute to the
gradient terms of the equal time limit. Therefore the ω- and ^-contribu-
tions to the commutator matrix elements between pion states drop out
of the proper non gradient term of the equal time limit8. This is in
complete agreement with the results obtained by BAKDAKCI, HALPERΊSΓ
and SEGUE [25] from perturbation theory and in disagreement with the
dispersion methods [24, 25].

A further consequence of this pick-out-mechanism is that the density
commutator algebras do not lead to any predictions beyond those which
can be already obtained from the algebra of one charge and one density.
The density algebras for conserved currents are only consistency require-
ments restricting at most the structure of the separately local and
divergence free remainder of the matrix element.

For instance the arbitrary spectral functions Zμv which we left open
at the beginning of our calculations are determined in part by the removal
of the gradient terms. Similarly the spectral functions Eλ

I)Π are fixed in
part by this. The remaining part of ^/5j/ is then determined by the
consistency requirement for the proper part of the equal time limit with
the algebra of one charge and one density (1).

V. The Equal Time Limit of the Rest

We have split the truncated current commutator matrix elements
into two parts:

<fct Jfil \j"(x), g»(y)] I JfΛ>Γ = F"'(*, V)Iβ + &"(*, y)ua (73)

where both parts have all the properties which follow from general prin-
ciples of quantum field theory and current conservation. Furthermore
Fμv(x,y)IQ is explicitely given by products of three point functions
(DCOP-structures).

In this section we adopt the following bookkeeping:

8 Even if the mass of the ω and φ would be smaller or equal to the mass of
the π this remains true. This follows from the general structure of the local one
particle term F1 corresponding to these intermediate states.
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Fμv(x, y}1 G contains all DCOP-structures constructed from one par-
ticle intermediate states with masses smaller or equal to the maximum
of M1 and M2.

Fμv(x,y}IIG contains all other discrete one particle and continuous
many particle contributions to the commutator matrix elements.

We want to prove from current conservation that FQO(x, y}IIG does
not contribute to the proper non gradient terms of the equal time limit
provided the threshold of the continuous many particle intermediate
states is larger than the maximum of M1 and M2. In these cases
FOQ(x, y)ΠG can at most contribute to the gradient terms.

By translation in variance Fμv(x, y}IIG is of the form:

Fμv(x, y}IIG = *>iΔ (a? + 1/) 8/8 fd* q e-ί(*(χ-y) Fμv(Δ, q, P)IIG , (74)

. - g - > ' - 2

From current conservation we obtain the two conditions:

(q-Δ)μf"'(Δ,q,p)II°=Q9 (76a)

(q + Δ)v F
μv(Δ, q, p)IIG = 0 . (7βb)

As it was shown in [17] the most general solution of (76 a) is:

f^(Δ9 q, P}ΠG = d*u ds ε(g° - u°) δ((q - u)* - s)

(q+Δ-

ρv(u, s) satisfies condition (22).
Furthermore all the spectral functions have the well known support

properties [20—21] uniquely given by the support properties of
Fμv(x, y)IIGm momentum space. From these support properties we prove
in appendix I the following lemma:

Lemma. // the mass of the lowest discrete or continuous state in the
commutator Fμv(x, y}IIG is larger than the maximum of the masses M^ M2

of the external states then the intersection of the support of E(u, s} and the
δ-functions δ(s — (u ± Zl)2) is empty.

Therefore according to our bookkeeping the δ-function term in (77)
vanishes. The remaining part of (77) can be rewritten in the following
way:

N°) δ ((q - u}* - s) )(f^"2l" ρv (u, s]
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The first term in this equation occurs only because the Dyson represen-
tations are non unique9. From condition (22) it follows that it vanishes
in the equal time limit. According to the antisymmetry of the cornered
bracket in λ and μ we obtain from (74) and (78) for the equal time limit :

limβ.F
00(α?, y)IIG = * e*ίΛ°*° f d*q(q - Δ)k e

+ί^~^x -«<« + ̂

• lim / dqo e-W-Ήϊ f*W(Δ, q, P) . (79)
y°-+x°

In exactly the same manner we obtain from the most general solution of

(7βb):

lim /dg°e-^0-^y;°0(Zl,g, P). (80)

Each of the limits occuring on the right hand sides of (79) and (80) is
because of locality at most a polynomial in q. Hence, from these two
equations we deduce :

y)Iίβ^ (81)

) + d 3 L-i*(* + υϊ urn H* l' ™(Δ9x - y, P)]\
L y°->z° JJ

with
Δrh^r(Δ9 P) = 0. (82)

By locality the limit on the right hand side of (81) is a finite sum of
δ -functions and their derivatives10. We want to point that we did not
need for our proof any other high energy assumptions than the existence
of the limit 9.

An interesting question is if these gradient terms really do occur or
not. It is easy to construct sufficient conditions for their absence in form
of high energy assumptions or special structure properties for the explicit
solutions of the Eq. (76 a— b) [17] similar to the considerations of sec-
tion IV. However, in contrast to the one particle structure, we do not
know enough about the many particle structures [12—13] in order to
see if these conditions are consistent or not. Therefore, we do not write
them down here.

9 In most cases the support in momentum space is symmetric after splitting
off the one particle contributions. Then we can use the unique JOST-LEHMANN
representation [19] and the term containing ρ does not appear [16].

10 In writing down explicitly the most general gradient term in (81) one should
make use of the identity [iΔr + 1/2 (d(x)r + dωr)] e~M(*+») δ(x - y) = 0. This
allows to reduce many of the higher gradient terms to lower ones.
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VI. Final Remarks

In the proof of the statement that the proper (non gradient) part of
the equal time limit is exactly given by the contributions of the DCOP-
structure we had only to assume that the limits of this structure and
the so called rest exist seperately9. No assumptions on the definite
behaviour at high energies or an interchanges of integrals and limits were
needed. On the other hand for the explicit calculation of the equal time
limit of the DCOP-structures we needed further (sufficient) assumptions
(section III) which at a first glance seem to be very strong. One can
probably weaken these conditions with the effect that new gradient terms
emerge. The relevant discussion should be similar to the discussion on
the connection of large s behaviour and occurrence of additional gradient
terms as given by MEYEE and SUTJRA [26] and STICHEL and SCHROER [27].

It would be interesting to see if all our results for the time- time -
components remain true for space-time-or even space-space-components
of conserved currents. A further interesting problem is the investigation
of algebras containing non conserved currents (for instance $£7(2)
x S U (2)) by our methods. Work on these problems is in progress.

Acknowledgement. We want to thank Professor P. STICHEL for his constant
encouragement, for helpful discussions and critical remarks.

Appendix I

Proof of the lemma of section V:
From the support in momentum space we have [20—21]

supp(^(w, s}} = {(u, s ) : ( p + u)ζV+,(p-u)£V+, (Al)

]/s = max(05 μ± -

(fa, μz are the masses of the lowest intermediate states in the commutator

F^(χ, y}"β}
We look for necessary conditions that the support of δ(s — (u ± A ) 2 )

• E (u, s) be not empty, that is for a solution u of the conditions

p + u ζ V+ Λ p - u ζ V+ Λ (u ± A)2 ^ 0 , (A2)

Λ (u ± A)2 ^ max(0, fa - ]/(p + u)2 , μ2 - ]/(p - u)2') . (A3)

Let us first consider the positive sign (u + A ) :

We have to distinguish three cases according to the different shapes
of relation (A3):

(A4)

2 (A5)

)2 (A6)

+ A)2 ^ 0 Λ fa ̂  ]/(p +
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where p = ** + ** , Λ = ̂  \ *? = Jf? , r = 1, 2.

Let us consider case 1. :

l.a) (u + A)0^Q.
Then from (A 4) it follows

J0 + ^o ^ I Δ + u\ Λ μl + \p - u\* ^ (p0 - uQY ,
or

μl+\P- ™\* ^ (Po + Λ - J + t*|)2 ,

and after some calculation

μ%^Ml-2\A + u\ x (A? - cosα l/^) , (A7)
where

From (A7) and &J — cosα l/fej ^ 0 we have

μl^M\. (A8)

For l.b)(^ + Z l ) 0 ^ O w e get from an analogue calculation

μ\^ Ml. (A9)

Therefore we have the necessary condition for a solution of (A 4)

μl^M2yμΛ^M1. (A 10)

Now we study case 2. :
From (A 5) it follows

^)2 v μa ̂  |/(p - ^)2 + J/^T^)2 . (All)

We define the two functions

/± (w) = : l/ίpϊ"^ + l/(2T^Γa (A 12)

An investigation of these functions shows, that

f+(u) ^ M2 for (u + Δ)0 g 0 (A 13)

jL(w) ^ Jfi for (% + Zl)0 ^ 0 .

From (All) and (A 13) we get the necessary condition for a solution
of (A 5)

μ1^M^vμ2^M1. (A 14)

As for case 3. we also get relation (All) from (A 6) and therewith (A 14).
The case (u — A) in (A2), (A3) can be reduced to the above considered
case by changing A -> — A , that means ̂  <-> &2 and M 1 <-> M 2.

We conclude:
A necessary condition for a solution of (A 2), (A3) is

μ1 g lίa v ̂ 2 ^ Jfx .
i 2
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In other words:

supp(<5(<s - (u + Zl)2) E(u, <§)) and supp((5(<s - (u - Af)Έ(u, <§)) are

both empty, if

μ± > max(Jf1, M2) and μ% > ma,x(Ml9 Mz) .

Note added in proof. After this work was completed, we learned that DIETZ and
KUPSCH [28] have proved the analogue of our result in Section V for the special
case of zero momentum transfer (A = 0).
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