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Abstract. Under certain conditions it is shown that the kinetic part of the
dynamical operator of a quantum mechanical system with a Riemannian manifold
as configuration space is the Laplace-Beltrami operator.

§ 1. Introduetion

In his book on the ‘“Mathematical foundations of quantum me-
chanics” [2]. MACKEY raises the problem of characterising the kinetic
part of the Schroedinger equation in a Riemannian manifold. The main
aim of this paper is to show that under certain conditions the dynamical
operator of a quantum mechanical system with a Riemannian manifold
as its configuration space has its kinetic part locally unitarily equivalent
to the Laplace-Beltrami operator. Since in a Riemannian manifold there
need not exist one parameter groups of isometries it seems necessary to
characterise the Schroedinger operator without using the notion of
momentum. In the case of Euclidean configuration space MACKEY obtains
the kinetic part of the Schroedinger operator by equating the velocity
operator to a constant multiple of the momentum operator. Instead we
start from the assumption that the acceleration operator is equal to
a constant times the force operator.

In general notations and terminology we follow [2]. Regarding the
basic properties of Riemannian manifolds and notations of tensor cal-
culus we refer to [1].

§ 2. Quantum Mechanical Systems with one Degree of Freedom

Let R denote the real line and L, (R) the space of all complex valued
functions on R square integrable with respect to the Lebesgue measure.
For any complex valued function g on R we shall denote by g( the r-th.
derivative of g. We shall adopt the notation g for both the function g
as well as multiplication by g. For any two operators 4 and B of L,(R)
into itself we shall denote by [4, B] the operator 4 B — BA.

Let H be the dynamical operator of a quantum mechanical system
whose state vectors are unit vectors in L, (R). If  denotes the position
operator, then 4 [H, ] is the velocity operator and — [H, [H, «]] is the
acceleration operator.
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We shall now derive the form of H under the assumption that the
acceleration operator is a multiplication operator and an energy equation
is satisfied.

Theorem 2.1. Let H be a symmetric differential operator with twice
differentiable coefficients and

a) m[H, [H,z]] =— @
b) m[H, [H, z]*] = c[H, ],
where m and c are non zero constants and v 18 an infinitely differentiable

function. Suppose v does not vanish on a set of positive Lebesque measure.
Then ¢ = — 2 and H is a second order differential opemtor which is unit-

. . a:
arily equivalent to an operator of the form h——5 + 57— hm + o where h

and o are constants. The unitary equivalence can be effected through a multi-
plication operator.
Proof. Condition b) implies that
m[H: w] [H: [H’ x]] + m[H: [H, x]] [H, x] = C[H’ ’l)] .
By condition a) we have ~ .
[H, ] v® + vW [H, z] = — c¢[H, v]. (2.1)
Suppose

dn dﬂ—l
H=ay gt gmg+ " +a

where a, = 0. By applying the operators on either side of (2.1) to O

functions with compact supports and equating the coefficients of ddxk ,
0 k<mn-—1, wehave
n r—1 n
b+ 1) aye o®+ 5 mr( . )mr—k): ¢ Xa ()w oy
r=k+1 r=k+

Putting k= n — 1, we get
2na,vM) = — cna,v® .
Since v® = 0, ¢ = — 2. Putting k = » — 3, we have

(g} a,v® =0.
Since v®) 3= 0 and @, == 0, we have (;) = 0. Le., n < 2. In other words

H is a second order differential operator.

Suppose

d?
H=a x2+b +d.

Substituting this operator in condition (@), we obtain

2
m{Zaa(l) L 1 (2aa® + 20a0) S 1 ab® 1 b0 — 2ad<1>} — oW,
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Thus aa® = 0. In other words @ = A where h is a constant.
Further
m(hb® + bb® — 2hdM) = — @),
Hence

d= ;—h(kb(l) + b¥y + vfm) + «
where « is a constant. Thus
H= hd2+v/2hm+bd + 357 (hb(1)+b2/2)+oc

The symmetry of H implies that b is purely imaginary. Consider the
unitary operator U defined by

Uf=fexp [-—1— fb(t)dt]
2h g
A simple calculation shows that

U-'HU = hdaﬂ +2hm + .

This completes the proof.
h d? v
Remark. Theorem 2.1 shows that one may take 5 ——— + 7 as the

most general dynamical operator of a quantum mechanical system with
one degree of freedom. Condition (b) of the theorem can be written as

[H,—%[H,x]z—-v] =0

— [H, z]? is the square of the velocity operator and — v is the potential
energy operator.

§ 3. Systems with n Degrees of Freedom

We shall now consider a quantum mechanical system whose con-
figuration space is the n-dimensional real Euclidean space R”. Let H be
the dynamical operator of the system acting in the Hilbert space L,(R")
of complex valued functions square integrable with respect to the
Lebesgue measure. In the preceding section we derived the form of H
under the agsumption that an energy equation is satisfied and the accel-
eration operator is a multiplication operator. We shall now replace the
energy equation by the assumption that H is a second order differential
operator. For any twice differentiable function ¢ we assume that
[[H, ¢], ] = 0 if and only if ¢ is a constant. This assumption simply
means that if a function of the position coordinates can be observed
simultaneously with its rate of change, then it is a constant. We now
have the following theorem.
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Theorem 3.1. Let H be a symmetric second order differential operator
of the form

02 0
H _,,:Z’?'-‘a”ax;ax, + ; bi?{i:-i_ ¢

where a;;, b; and ¢ are twice differentiable. Suppose for any twice differen-
tiable function ¢, the equation [[H, @], ¢] = 0 holds if and only if ¢ is
a constant.
Let
m[H, [H,z]]=—-V;, i=12...n (3.1)

where V; are once differentiable functions and m; are constants. Then H is
unitarily equivalent to an operator of the form

02
2 i 0x;0; T
where ((a;;)) is a constant non singular positive or negative definite matriz
such that

AT MAT =J M1 41, 3.2)
Here

v
A= (@), M= (), T=((555))
J' is the transpose of J and v is a function satisfying the equations

dv _ V;
?Z' A4 5 2m (3.3)
The unitary eguivalence here can be effected by a multiplication operator.

Conversely any operator of the form described above satisfies Eq. (3.1).

Remark 1. If there exists a function V such that V; = Z—:; for all 4,

then (3.2) and (3.3) are automatically satisfied if 4 = ((—- E%; 6“))
and v = V where & is a constant. H then assumes the standard form

h o vV
‘:‘" 2m; 0x? T

Proof of Theorem 3.1. First of all we observe that without loss of
generality we may assume that a,; = a;; for all ¢ and j. The symmetry
of H implies that the a;; are all real. Since under coordinate trans-
formations the a,; behave like the coefficients of a second order symmetric
contravariant tensor we may and do employ the standard notations of

tensor calculus. In particular repeated index in a product implies that

Ba“ 8%,;

summation has been carried out. We shall denote Froulr Pl by
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@3jv1 Figrrr - - - Tespectively. Simple calculations show that

0
[H, ;] = 2“1:‘35; +b;

02 02 02
[H, [H, z]] = 2ay, (“mkm‘l‘ air,l_——axkaxr) - 20;, Oty r Juedmy

Fl ob, @  ab, @
20510, k1 T “kz(ﬁf“a‘x; a—x;a—x,) (3.4)
F} b, @ 2°b;
+2 (bzair,za—xf - airja—_,,;:a—xl) A P P
0b; dc

+b‘3—x,_ 2“@’1"3_—'

By (3.1), the coefficients of =——- and aix,, in (3.4) must vanish. Hence

ax ox;
By Qg r + WprQsy,p — Giplyy,, =0 forevery<, k, 1. (3.5)
Interchanging ¢ and % in (3.5) and adding to (3.5) we obtain
@y ¥p,r =0 foreveryi, k,1. (3.6)
If we put @ = a;; it follows from (3.6) that

0 0
[[H, ¢, ¢] = 2¢,, 4022 =

ax 0 x;
Thus by hypothesis ¢ is a constant. In other words all the a,; are constant.
Let y by the linear function ¢;x; where ¢, ¢,, . . ., ¢, are real constants.
Then

[[H, v], y] = 2a4;¢;¢; .
Hence the quadratic form a,;c;c; = 0 if and only if all the ¢;’s are
zero. Thus the constant matrix ((;;)) is non singular and positive or
negative definite. Hence its inverse exists and we shall denote it by

((aiﬁ))' )
Equating the coefficient of -~ in (3.4) to zero we have
k
ab‘ abk
“kz@g — Gy s
Putting b = a?7b;, we can rewrite (3.7) as

W _ow
9x,  om;

=0 foreveryi, k. (3.7)

for every 1,7 . (3.8)

Hence there exists a function B such that

y_ OB

ox;
In other words

oB .
b; = a;; oy for every ¢ .
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Thus H is of the form
0? oB @
% zan, T % om, oz T O
where a;; is a non singular positive or negative definite constant matrix.
Since H is symmetric, B is purely imaginary. Let U be the unitary
operator defined by

B
Uf=fexp——5.
Then
az
H’Z U'“IHU=(,ZHW+’I),

where v is some real valued function. Further H’ satisfies (3.1). Hence
substituting H' in (3.1) and (3.4) and equating constant terms we get
v Vi

Ui S0 = Tm; for all ¢ .

In order that such a v may exist it is necessary and sufficient that
A XM =J M-14-1,

where A,M,J,J’ are the matrices described in the statement of the
theorem. This completes the proof.

§ 4. Quantum Mechanical Systems on a Riemannian Manifold

Let H be the dynamical operator of a quantum mechanical system
whose configuration space is a connected C° Riemannian manifold M
of dimension 7 (the obvious modifications needed for the C* manifold
can be made by the reader). We shall suppose that H is a second order
symmetric differential operator acting in the Hilbert space L,(u) of com-
plex valued functions square integrable with respect to the Riemannian
measure .

Let U be a fixed coordinate neighbourhood. We shall denote by
Ly(u, U) and L, (U) respectively the Hilbert spaces of complex valued
functions on U square integrable with respect to the restriction of y to U
and the Lebesgue measure in U. Then there is a canonical isomorphism
between L, (u, U) and L,(U) through a multiplication operator. We shall
denote by Hy the restriction of H to U.Hy can be considered as an
operator in L,(u, U). The isomorphism between Ly(u, U) and L,(U)
takes the operator Hy to an operator Hy in L,(U). Hy is a second order
symmetric differential operator in L, (U).

In the preceding section we derived the form of H under the assump-
tion that the acceleration operators of the individual position coordinates
are multiplication operators. In the case of a Riemannian manifold we
have to replace the acceleration operators by slightly different ones
since the connection coefficients enter the geodesic equations.
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Suppose g;; are the coefficients of the Riemannian metric, I'¥; the
connection coefficients and Rf;; the components of the curvature tensor
derived from the metric in the neighbourhood U. We shall always assume
that whenever there is a repeated index in any product expression
summation has been carried over it. Any geodesic in U is a solution of
the differential equations

o+ & e, =0, k=1,2,...,n
Hence we shall assume that the operators Hy satisfy the condition that

is a multiplication operator for every k.

Before stating our main result we shall introduce a notation. Consider
R, 1, obtained by lowering the index ¢ in the component Rj;; of the
curvature tensor. For the antisymmetric pairs of indices ¢j (¢ < 4) and
kl (k <) in R;;;, introduce the labels I and J. Then ((R;,)) is a matrix

nn—1) Let

of order 5

Cy = det (By,)) -

We now have the following theorem.

Theorem 4.1. Let H be a second order symmetric differential operator in
Ly(u). Let U be a simply connected coordinate meighbourhood such that
Cy = 0 for every point in U and

, 0% 0
HU: ai] ax"axj + bia—af‘+ ¢
where ((a;5)) is nonsingular in U, a;;, b; and ¢ are C™ functions. Suppose
[Hy, [Hy, 2]] + [Hy, ;1 I'% [Hy, 2;] = V, for every k 4.1)

where V;, are C™ functions. Then Hy is unitarily equivalent to an operator
of the form hA + V in Ly(u, U) where A is the Laplace- Belirami operator,
h is a constant and V is a C° function. The unitary equivalence can be
established through a multiplication operator.

Conversely any operator of the form hA + V as described above always
satisfies Eq. (4.1) ¢f we choose V; appropriately.

Remark. In the case when the manifold has dimension 2 the matrix
((Rz,)) is of order one and Cy is just the Gaussian curvature. The con-
dition of the theorem thus reduces to the manifold possessing non zero
curvature at every point in U.

If @ is the group of all complex n x n matrices of determinant one,
n > 2 and K is the subgroup of unitary matrices then G/K is a symmetric
space which is an analytic Riemannian manifold with C'yy = 0 for every
coordinate neighbourhood U.
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Proof of Theorem 4.1. The operator [Hy, [Hy, x;]] is of the form
given by (3.4). We adopt the same notations as in § 3. An easy calculation
shows that

02

[Hy, 2] I [Hy, %] = 4T a0, K
0 0
+ (4“ikr§j,kajzﬁ+ @ik Pﬁj“a‘z,kﬂ‘) + 4a;, I'; b5~ ax

+ I, b, b + 2a;; T b + 2azk1y 4.2)

where I'%; ; denote a (3.4), (4.1) and (4.2) we have

@y @i1,r = BirOpy,r + Cpy@iz,r + 2150, 05, =0 (4.3)

for every 4, k, I. Interchanging ¢ and % in the above equation and adding
to same we obtain

asl{a’ik,s + I'iga, + Ffsari} =0 (4¢.4)
for every 1, k, I. Since ((@;;)) is non singular in U, (4.4) implies
Xig,s + P;‘:sark + Fg'csari =0 (45)

for every 1, k, s. This simply means that the covariant derivative of the
second order symmetric tensor with components a,; vanishes identically
in U.
The integrability condition for the Eq. (4.5), i.e.,
0 . 2 .
ar Lhstrn + Thiari) = 5= (Thans + THay)

can be rewritten as

(@mGin — OniGim) B* ™y = (4.6)
where @;; are the components of the matrix inverse to ((a;;)). Since
Oy =+ 0, the matrix ((Rr,)) is non singular and hence ((R})) is non
singular. Thus (4.6) holds if and only if

d;;=p09;; foralli,j

where g is a function. Hence a,; = p=1g%/. If we substitute g?/ for a,,,
(4.5) is automatically satisfied. By substituting p—1¢%/ in (4.5) we obtain
dp~*
0z,

a constant & such that
a;;=nhgt? foralli,j. (4.7)

Using Eq. (3 4) (with H = H'U) (4.2) and (4.7) and equating the coef-

=0 for all s. Thus g~! is a constant. In other words there exists

ficient o (4.1) to zero, we get
o2gte ob, o9t , 9b,
kl 1 -
hg* wom T (gu e T ax,)

4.8)

T 2h (g Tl g + gt Tl 527 ) + 2g7 Tiyby = 0
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for all ¢, u. Interchanging ¢ and » in (4.8), adding to the same and making
use of (4.5) we obtain simply 0 = 0.

We shall denote the vector field gu? aixl.by X,,. Interchanging ¢ and
% in (4.8) and subtracting from the same we obtain
(Xubt - thu) + bi(gtqugfs - guthg:is)
+hX;(g**X,9;s — 9*°X;9;5) =0 foreveryt,u. (4.9)
Writing ¢, = b;9;, and making use of the standard properties of vector
fields, (4.9) can be rewritten as
(9 X, — g**X,) (¢s + hX,9;) = 0 (4.10)

for all ¢, . Multiplying the left hand side of (4.10) by g;.9;, and adding
over all ¢t and u, we obtain

a a
(Ck + hX;g1) = (01 +hX;950)

for all k and 7. Smce U is simply oonnected there exists a ¢ function d

on U such that
od

a—xk= Cy + th'g:ik fOI' all IG .

Hence
tr
b,=gt’cs=Xtd+h’ZgT=Xtd+hdivLXt’

where divy, denotes the divergence with respect to the Lebesgue measure.
Thus

HU—h(g” o+ div X, )(Xd) te.

. 0% . .
Since Hy and g¢f 32,02, + div; X, 3{0— are symmetric operators in

L,(U) it follows that d must be purely imaginary. Consider the unitary
operator W of L,(U) into itself defined by

d
Wi=/Ffexp— 5.
Then
W—1H'UW=h(g . a + divy X, )+c’

where ¢’ is some function. If this operator is carried over to the space
Ly (u, U) through the canonical isomorphism it is of the form

7‘(9” 3a,9m, T AV X ax)+ 4

where V is a C* function. Since the Laplace-Beltrami operator is given
by the coefficient of % in the above expression this completes the proof
of theorem 4.1.
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Remark. In general the solution to Eq. (4.5) need not be unique. If
however the manifold is analytic and so are the coefficients a;; then a;;
are completely determined by (4.5) if we know their values at one point
in U. In particular if a;; = « - g*/ at any one point in U, then a;; = ag?’
at all points in U. Thus the condition that Cy =+ 0 at all points in U may
be replaced by the analyticity of the manifold M and the coefficients
a;; and the equation a;; = ag?’ at some point in U.
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