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Abstract. If ($, Sf^ P, Q) is an event-state-operation structure, then the events
form an orthomodular ortholattice (#, ^ , ' ) and the operations, mappings from the
set of states SP into «£*, form a Baer *-semigroup (SQ, O, * , ' ) . Additional axioms
are adopted which yield the existence of a homomorphism 6 from (SQ, O, *,') into
the Baer *-semigroup (S(#), o, *, ') of residuated mappings of (<f, ^ , ' ) such that
x £ SQ maps states while dx £ S(#) maps supports of states. If (#, ^ , ' ) is atomic
and there exists a correspondence between atoms and pure states, then the existence
of d provides the result: (<£, ^ , ' ) is semimodular if and only if every operation
x £ SSJ is a pure operation (maps pure states into pure states).

0. Introduction

The theory of orthomodular ortholattices provides the mathematical
constructs for the quantum logic approach to the foundations of quan-
tum physics. A role for the theory of Baer ^-semigroup, a mathematical
theory closely related to the theory of orthomodular ortholattices, was
exhibited in [15]. The definitions and terminology introduced in [15]
will be utilized in this paper without further explanation. If (<?, £P, P, Q)
is an event-state-operation structure, then (<f, g , ') is an orthomodular
ortholattice and (SQ, O, *, ') is a Baer *-semigroup such that p £ €
-> Qp £P'(SQ) is an isomorphism of ($, fj, ') onto the orthomodular
ortholattice (P'(#,Q), ^ , ') of closed projections in 8Q. Each x £ 8Q is
a mapping, x : 3fx -> 0tx, with domain $)x and range Mx contained in SP.

The connection between the theories of orthomodular ortholattices
and Baer ^-semigroups includes the following: if (L, ^ , ') is any ortho-
modular ortholattice, then there exists a Baer ^-semigroup (S(L), o, *, ')
where 8(L) is a set of mappings of L into L and there exists an injective
mapping j : L -> 8(L). Section I is devoted to a discussion of S(<f>) for
the orthomodular ortholattice ($, ^ , '). In particular, the relation of
(S(<?), o, *, ') to the Baer *-semigroup (8Q, o, *, ') of operations will be
exhibited.

* Supported in part by the United States Atomic Energy Commission and in
part by the Fonds National Suisse.
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One goal of the quantum logic approach to the foundations of quan-
tum physics is to augment the axioms of an event-state structure to
obtain an axiomatic characterization of von Neumann's Hilbert space
model for quantum mechanics: an axiomatic characterization where each
axiom has a plausible physical interpretation. The currently available
"concrete representation theorems" (the identification of (<f, g , ') with
a lattice of subspaces of a vector space) require the following hypothesis:
(&, ^ , ') is semimodular. The correspondence between (SQ, o, *, ') and
(S{<p), o, *, ') will be utilized to obtain a direct phenomenological inter-
pretation of the semimodularity of (#, ^ , ') in Section III . The setting
for the investigation of semimodularity will be developed in Section II.

Definitions and theorems relating to orthomodular ortholattices and
Baer *-semigroups were presented in the Appendix of [15]. Additional
definitions and theorems concerning residuated mappings, atomicity,
and semimodularity are included in an Appendix to this paper.

I. A Role for Residuated Mappings of {$, ^/)

The set S(L) of residuated mappings of any orthomodular ortho-
lattice (L, ^ , ') admits the structure of a Baer ^-semigroup (S(L), o, * , ' ) ;
moreover, the orthomodular ortholattice (P'(#(£)), g , ') of closed pro-
jections in S(L) is isomorphic to (L, g , '). Therefore, if (S\ £f, P, Q) is
an event-state-operation structure, then the residuated mappings of the
orthomodular ortholattice (<f, ^ , ' ) form a Baer ^-semigroup (S(<o), o, *, ') .
The question arises whether this Baer *- semigroup is related to the
Baer *-semigroup (SQ, o, *, ') of operations in a phenomenologically
interpretable way. The answer to this question requires a review of the
concept of support of a state.

Definition I.I. Let {$ 9 £f, P) be an event-state structure.
(a) If a £ £?, then <^0(a) and SX{OL) are the subsets of # defined by

(b) If a £ ^ , then p £ S is a support of a provided:
for q £ S9 P(q, a) = 0 if and only if q _[_ p.

The validity of the following assertions is evident.
Theorem I.I. Let (<?, S?, P) be an event-state structure.
(a) / / a £ 9* and p £ S9 then the following are equivalent:

i) p is a support of ot,

ii) *0(«) = fa€*:!Z-Lp},
iii) ^(a) = {8^:pg{},
iv) p is the least element of the subset $x (a) of $.

(b) If <x ^3^, then there exists at most one p £ <f such that p is a support
of a.
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Definition 1.2. If (<o, S?\ P) is an event-state structure and a £ £?,
then the support of a, provided it exists, is denoted by pa.

The investigation of the role of #(<?) will involve the adoption of
another axiom to supplement the seven axioms for event-state structures
presented in [15].

Axiom 1.8. (a) If a £ £P9 then the support px of a exists.
(b) If p £ # and p 4= 0, then there exists a n a ( ^ such that p is the

support of oc.
Axiom 1.8 is valid for von Neumann's Hilbert space model of quantum

mechanics; indeed, this axiom is valid for a wide class of event-state
structures [21].

Example 1.1. (See Example I.I of [15]). Let (&{H), &, P) be the
event-state structure for von Neumann's Hilbert space model of quantum
mechanics. If oc ££?, then the support of a is the operator-theoretic
support projection of the density operator DK corresponding to a, since
Tr is a faithful normal trace on the von Neumann algebra j£?c (H) of all
continuous linear operators on H (see, for example, [4], [5] and [16]).
The operator-theoretic support projection of Dx is the projection on the
orthogonal complement of the null space of D a ; hence, in terms of the
Baer ^-semigroup (J?e(H), o, *, ') (see the Appendix of [15]), the support
of a is (Da)".

Theorem 1.2. Let (<f, £f9 P , Q) be an event-state-operation structure
satisfying Axiom 1.8. If p £ (f, a £ £?, P(p, a) 4= 0 and j$ = Q^oc, then the
support pp of /? and the support px of oc satisfy

Pp ^ (P« vp')*P>

Proof. pa is the support of a and pr
a _j_ px; hence, P(p'x, oc) = 0 by the

defining property of support. Since p'u A p ^ px> it follows tha t

and, since pf
xAp ^ p, Axiom II.6 of [15] implies

hence, P(p'x A p, Qva) = 0. Since ft = Qpoc, one has

By assertion a) of Theorem I.I, P(px v p', /?) = 1 implies ^ ^ ^a v P'-
Axiom II.2 of [15] asserts P (p, Qv a) = 1; hence, P(p, /8) = 1, since
fi = Qpoc, and Pp ̂  p again by Theorem I.I. Therefore, Pp ̂  pxv p' and
Pp^p\ hence, ^ g (pa v ^') A ̂ ). Q.E.D.

The assertion of Theorem 1.2 may be expressed in terms of residuated
mappings as follows: if p £ ef, a £ ^ and /S = QPcc, then ^ ^ <f>p(Px)>
where fy^ is the following residuated mapping of € into # :
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The example of von Neumann's Hilbert space model of quantum me-
chanics and the case of a compatible logic provide stronger results than
Theorem 1.2.

Example 1.2. For the event-state-operation structure {& (H), Sf \ P , Q)
(see Example II. l of [15]), Q is defined as follows: if P €&(H), a ( ^ ,
P(P, a) H= 0, and Da is the density operator for a, then /? = QPoc is the
state with density operator Dp,

n PD«P

U^~ Tr(DxP) '
The supports of a and /? are Px = (Da)" and Pp — (Dp)", respectively,
in terms of the Baer ^-semigroup (<j£?c(#), o, *, '). The support (Dp)"
coincides with (PDXP)", since the positive number (Tr(D<xP))~1 is
immaterial for supports. Dx is a positive operator on H; hence, there
exists a Tx £ &e(H) such that Da = T\ Ta. Consequently, Theorem A.5
of the Appendix asserts

Therefore, the inequality of the conclusion of Theorem 1.2 is replaced by
an equality

Pp = (PK v n A p

for the special case of von Neumann's Hilbert space model for quantum
physics.

Theorem 1.3. Let (&t Sf, P, Q) be an event-state-operation structure
such that

i) Axiom 1.8 is satisfied, and
ii) */ *p,q(z$> th<en V C <?•
If P 6 ^ a 6 ^ 7 P(p, a) 4= 0 and jff = ^ a ,

Proof. Because of hypothesis ii), the relation of orthogonality may
be characterized as follows (see, for example, [14]): for p, q £<?, p J_ q
if and only if p A q = 0. If q £ #, then £> Q <? a n ( i

by Theorem IV.l of [15]; hence, for q £ g, P{q, j8) = 0 if and only if
P (q A p, oc) = 0. P (g A 2?, a) = 0 if and only if q A p _j_ ^a by the definition
of the support oi oc. q Ap± px if and only if q ± p A ̂ a, since (q A p) A px

= q A (p A Px) and J_ has the above characterization. Consequently, for
q £ g, P(q, /J) = 0 if and only if g J_ p A px. This, however, is the defining
property for the support pp of /?; hence, pp = px h P- Since £> Q ̂ a> ^n e

characteristic properties of the relation C (see Section III of [15]) imply
(Pa v p') Ap = pxAp. Q.E.D.
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The following axiom for event-state-operation structures is, therefore,
motivated by the general result of Theorem 1.2 and the results of the
special cases of Example 1.2 and Theorem 1.3.

Axiom II.8. If p £ <f, oc £ Sf 3 P(p, oc) #= 0, /? = jQ^a, and the supports
px and pp of a and /3 exist, then

Theorem 1.4. Let (<o, £f, P, Q) be an event-state-operation structure
satisfying Axioms 1.8 and II.8 with x^BQ, PUPZJ • • •> Pn 6^ :

a) If oc £ £#Xi then

Pxoc = fa ° ^ a ° ' * ' ° <f>pn(P«) •

b) a £ C@x if and only if

c) a £ C^a; £*/ awe? ow??/ ̂ /

Proof. Assertion a) follows from Axiom II.8 by induction on n. Let
pn+1 = 1. The following characterization of C<3a was obtained in Sec-
tion II of [15]: a £ C@x if and only if there exists an i, 1 ^ i ^ %,
such that

for i ^ j ^ n and

Since the supports of the states involved in these two expressions may
be determined by utilizing a), this characterization of C@JX yields the
following: a £ C!3X if and only of there exists an i, 1 ^ i < n, such that

for i <j ^ n and

For any p, q (z$> $<» {%) = 0 if and only if p J_ q. Hence, the characteriza-
tion of C!3X may be expressed as follows: a £ O i ^ if and only if
(f)Vi o (f)Pz o • • • o ̂ Vn{Po) ~ 0. Thus, assertion b) is established. For any
q £ $ and ^ £ #(<f), ^(g) = 0 if and only if g ^ ^* (1)'; hence, assertion
c) follows immediately from b). Because of the properties of pxi c) asserts

C9m ={<*£#>: P(tfPl o fa o • • • o ̂ J*(l)', a) = 1} .
Since qx is the unique element of $ such that

C®. = 9>x(qu) = {*£#>: P{qx, oc) = 1}

(see Definition II.3 of [15]), assertion d) is valid. Q.E.D.
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Theorem 1.5. Let (#, S?, P, Q) be an event-state-operation structure
satisfying Axioms 1.8 and 11.8,

a) The mapping Q : 8Q ~> 8{£) (x £ 8Q -» 6X £ 8(<f)) defined as follows
is well-defined: if x £ 8$, then select pv p2, . . ., pn £ $ such that x = DPi o
o QPst o • • • o QPn and define 0x by

b) 6 is a homomorphism of the Baer ^-semigroup (8Q, o, *, ') of
operations into the Baer *-semigroup ($(#), o, *,') of residuated mappings

c) If x £ 8Q and oc £ @x, then

d) If x £ 8D and oc £ ̂  then the following are equivalent:
i) a $ ®x,
ii) 0,(0.) = 0,
iii) P . ^ e S ( l ) ' .

Proof, d : 8D^ S (<̂ ) is well-defined provided: if x ^ ̂ , p1? p2, . . ., ^n,

fts» • • • ^ m ^ 5
 a n d

then
» = QVx oQP2 o

that is, if £> ̂  ^, then

Both sides of (I) are equal to 0, if p = 0. If p £ # and #> 4= 0, then there
exists a n a ( y such that p is the support px of a, p = £>a, by Axiom 1.8.
If a (i^a, then both sides of (I) are equal to the support of # a by asser-
tion a) of Theorem 1.4. If a $ @Xi then both sides of (I) are equal to 0
by assertion b) of Theorem 1.4. Consequently, 0 is well-defined.

6 obviously preserves o and *,

for a j , y f ^ . If a; £ 8Q, p v p 2 , . . .,pn£& a n d x = QPloQp o — 'o QPn,
then x' == QQx (see Definition II.3 of [15]). By the definition of ; for
(8(g), o, *, ')* (6X)' = (f>x where q£*ia given by

d) of Theorem 1.4 asserts that q = qx; hence, (dx)' = <j>Qx. Since a;' = i2fe,
(Qx)

r = 0 ,̂ and 0 preserves '.
Assertion c) is an immediate consequence of assertion a) of Theorem

1.4 while assertion d) is an immediate consequence of b) and c) of Theorem
1.4. Q.E.D.
15 Commun. math. Phys., Vol. 9
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Consequently, if (S\ SP, P, Q) is an event-state-operation structure
satisfying Axioms 1.8 and II.8, then, for each element x of the Baer
^-semigroup (SQ, o, *, ') of operations, there is an element dx of the
Baer ^-semigroup (S(<o)} o, *, ') of residuated mappings of (to, ̂ , ').
x maps states while 0x maps supports of states; specifically, if a £ 2X

then the support px of the state a is mapped into the support px<x of the
state x a by 0x,

II. Atoms and Pure States

The purpose of this section is to augment the axioms of an event-
state structure to provide a setting for investigating the role of semi-
modularity.

Definition II.1. Let (S>, £?, P) be an event-state structure.
a) If a1? a2, . . . , £ ̂ , ^ *2, . . ., 6 [0,1], and J? t< = 1, then the

i
unique a £ £f such that

P{p,*) = ZtiP(P,*i),
i

for all p £ <f (see Axioms 1.6 and 1.7 of [15]) is denoted by

and called the mixture of ocv ocz> • • • with respective weights tvt2, . . .
b) A state a £ ̂  is #wre provided: if £ £ (0, 1), a1? a2 $ ̂ , and

oc = tccx + (1 — £) a2 ,

then ax = a2; otherwise, a is mixed. The set of all pure states is denoted

byS.

c) The set of all atoms in & is denoted by £\
For a general event-state structure, £ is not atomic; indeed there

may be no atoms in $ (for the definitions of atom and atomic, see the
Appendix). Furthermore, there may exist no pure states in Sf. An
additonal axiom is necessary [12].

Axiom 1.9. a) If p £ $ and p 4= 0, then there exists a pure state
a £ ̂  such that P(p, a) = 1.

b) a £ SP is a pure state if and only of there exists a p £ <? such that,
for /? £y,P(p,p) = l is equivalent to /? = a.

If #> £ # and #> ={= 0, then there exists a n a ( ^ such that P{p, a) = 1
by assertion f) of Theorem I.I of [15], Part a) of Axiom 1.9 asserts that
this state may be selected to be a pure state. Part b) of Axiom 1.9 asserts
that a state is pure if and only if it may be prepared (see Theorem III.l)
and identified by observing a single event.
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Theorem II.1. / / {$, Sf, P) is an event-state structure satisfying Axiom
1.8, then the following are equivalent statements:

a) (<f, S?, P) satisfies Axiom 1.9,
b) ($, £f, P) satisfies the following:

i) if p £ <̂  and p =j= 0, then there exists a pure state oc £ £f such that
P(p, oc) = 1, and

ii) oc ^ 6^ is a pure state if and only if pa is an atom and oc is the
unique state in <9* with support equal to pa; and

c) (<o, £?, P) satisfies the following:
i) {$, ^ , ') is atomic and

ii) there exists a mapping p -> ocP of the set of atoms, S\ onto the set
of pure states, £f',such that, for p £ <f, oc^ is the unique state oc £6?
with P{p, oc) = 1.

Moreover, if Axiom 1.9 is satisfied and p £ $, then p is the support
of ov ^

Proof. First, consider part b) of Axiom 1.9. Suppose oc £5? and
p £ $ has the following property: for ft £ ̂ , P (p, /?) = 1 if and only if
ft = oc. Since P(p, oc) = 1, one has px ^ 1; consequently for ft ^ S?,
P (pa, ft) = I implies P (p, ft) = 1 and, hence, ft = oc. Conversely, if /? ̂  ^
and ft = oc, then P(#>a, j8) = P(^ a , a) = 1. Consequently, part b) of
Axiom 1.9 is equivalent to the following: oc £ ̂  is pure if and only if,
for P£Sf9 P(px, ft) = 1 is equivalent to 0 = a.

Suppose a ^ y7 and #>a satisfies the property: (I) for ft ^Sf,P (px, ft) = 1
is equivalent to /? = a. I t is asserted first that px is an atom. Indeed, let
q £ (f ? ̂  ={= 09 and g ^ pa. By Axiom 1.8, there exists a state ft ^^ such
that the support ^ of ft equals q; hence, P(px, ft) = 1, since pp = g ^ ^a.
Therefore, ft = oc and qp = p = px'> consequently, #>a is, indeed, an atom.
Let ft £ ̂  and suppose the support of /? equals £>a- Then P(px, ft)
= P(2>0, /3) = 1 and ft = oc. Therefore, if £>a satisfies (I), then px satisfies:
(II) px is an atom and oc is the unique state with support equal to pK.
Suppose now that px satisfies (II). If ft £ Sf and P(pu,ft) = 1, then
Pp ̂  px and, hence, pp = px, since px is an atom; consequently, ft — oc
since oc is the unique state with support equal to px. Therefore, if px

satisfies (II), then px satisfies (I).
Consequently, a) and b) are equivalent. Assume now the validity of b)

for {$', Sf, P). $ is atomic provided: if p £ $ and p =j= 0, then there exists
an atom q ^ p. Ii p £ <o and p 4= 0, then there exists a pure state oc ̂ £^
such that P(p, oc) = 1; consequently, ^a i

s a n atom such that pot ̂  p.
Therefore, <̂  is atomic. If p £ ̂ T, then select a pure state oc^Sf such
that P (2?, a) = 1. Since p is an atom and pa ^ p, p coincides with the
support of oc; consequently, there exists exactly one oc £ ̂  such that
P{p, oc) — 1. Denote this oc by a^. The mapping p-+ ocP from # into Sf

15*
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is surjective; indeed, if a £ £f is pure, then a = aP where £> is the support
of a. Consequently, b) implies c).

Assume the validity of c). If p £ S, then ^ is the support of ocv. Indeed,
P(P> ap) — 1 implies px ^ p and, hence, px = p, since p is an atom.
Suppose p £ <f and £> 4= 0. Since <f is atomic, there exists an atom q £ #
such that q ^ p. The pure state â  satisfies P(p, aff) = 1 since g is the
support of ocg and q ^ p- Therefore, c) implies b). Q.E.D.

Consequently, for an event-state structure (S9 SP, P) satisfying
Axiom 1.8, Theorem II. 1 asserts that Axiom 1.9 is satisfied if and only
if $ is atomic and the restriction of the mapping a -> px from S? onto $
to the set of pure states, SP, is a one-to-one mapping of SP onto the set
of atoms, $, such that if a £ Sf and /? £ ^ with p* — p$, then /? = a.

The event-state structure (&(H), £P, P) of von Neumann's Hilbert
space model of quantum mechanics satisfies Axiom 1.9.

Example II.1. The atoms of 0*(H) are the projections with one-
dimensional range. A state a £ y is pure if and only if the density
operator Da is a projection with one-dimensional range [10]; therefore,
the support of a pure state a is the atom Da.

III. Semimodularity and Pure Operations

The recent interest in the quantum logic approach to the foundations
of quantum physics, at least partially, stems from the recognition of the
desirability of an axiomatic characterization of von Neumann's Hilbert
space model for quantum mechanics. Ideally, a criterion for the adoption
of each axiom of this characterization would be the existence of a pheno-
menological interpretation of the axiom. The currently available
"concrete representation theorems," the identification of (<?, g , ') with
an appropriate lattice of subspaces of a vector space (although not
necessarily a Hilbert space), depend upon hypothesizing the atomicity
and semimodularity of (g, ^ , ' ) (see [10], [11], [12], and [13]). The
purpose of this section is to provide a direct phenomenological inter-
pretation of the property of semimodularity when Axioms 1.8 and 1.9
are satisfied.

Although von Neumann's early papers on quantum mechanics in-
volved the quantum logic approach (see [19] and [20], pp. 247—254), the
first formalization of the quantum logic approach was contained in the
classic work by BIRKHOFF and VON NEUMANN [2], The hypothesis of
modularity was imposed on the logic, (<f, ^ , ;), of quantum mechanics
in [2] despite the fact that (&(H), ^ , ' ) is not modular for a separable
infinite dimensional complex Hilbert space H. More recently, it has been
recognized that the orthomodularity of (#, ^ , ') is adequate to replace
modularity for many purposes; indeed, the orthomodularity of (<f, ^ , ' )



Logic of Quantum Mechanics 221

is a consequence of the axioms for an event-state structure and possesses
a phenomenological interpretation even when only the set of events is
considered [13]. Definition A.4 and Theorems A.7 and A.8 of the Appen-
dix indicate the interdependence of modularity, semimodularity, ortho-
modularity, and distributivity.

The semimodularity of ($*, ^ , ') will be discussed in terms of pure
operations [9].

Definition 11 I.I. If (<f, Sf\ P, Q) is an event-state-operation struc-
ture, then x £ SQ is a pure operation provided: if a £Sfx and a is a pure
state, then x<x is a pure state.

Theorem III.l. Let (<?, £?, P, Q) be an event-state-operation structure
satisfying Axioms 1.8 and 1.9. If p £ # is an atom, oc £ £f and P(p, oc) 4= 0,
then Q^oc = ocv; hence, Q^ is a pure operation.

Proof. By Axiom II.3 of [15], P{p, Q^oc) = 1; since p is an atom,
Qvoc = otp by assertion c) of Theorem ILL ocp is a pure state; hence, Qp

is trivially a pure operation. Q.E.D.

A first indication of a connection between semimodularity and pure
operations is contained in the following theorem.

Theorem IIL2. Let ($, if, P, Q) be an event-state-operation structure
satisfying Axioms 1.8 and 1.9. If (S', ^ , ') is semimodular, then Qv is
a pure operation for every p £ $; hence, every x £ SQ is a pure operation.

Proof. If p £ $ and a £ 2fQ^ then P(p, a) =j= 0. Consequently, by the
definition of support, £>a ̂  V- The support p@ of /S = Qv a satisfies

Pfi ^ (Pa Vp')*P

because of Theorem 1.2. If, moreover, a is a pure state, then pa is an
atom since Axiom 1.9 holds. Since (E, ^ , ' ) is atomic, orthomodular
and semimodular, (pxv p') A p is an atom (see Theorem A.8 of the
appendix). p$ is the support of a state; hence, p@ =j= 0. Therefore, the
support pp of /? = QP a is an atom,

Consequently, ($ is a pure state and D^ is a pure operation. If x £ >Ŝ ,
then there exist pv p2, . . ., pn g <̂  such that

*a = £,,(£>,,(. . .£>„ a . . . ) )

for all oc £@x; therefore, if oc £ @x is pure, then #a is pure. Q.E.D.
The crucial step in the proof of Theorem III.2 was noticing the fact

that the semimodularity of the atomic, orthomodular ortholattice
(<̂ , 5g, ') yields the following property of the residuated mapping <j)^: if
Q 6 <̂> Q^Pt a n d (I is an atom, then
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is an atom. Indeed, this is a characterization of the semimodularity of
(<̂ , ^ , ') when (#, g , ' ) is atomic. Consequently, if the connection be-
tween operations and residuated mappings is utilized, that is, if Axiom
II.8 is assumed, then a characterization of semimodularity is obtained.

Theorem III.3. / / (S\ SP, P, Q) is an event-state-operation structure
satisfying Axioms 1.8, 1.9 and II.8, then the following are equivalent:

a) (<f, ^ , ') is semimodular,
b) Qp is a pure operation for every p £ S\ and
c) every x £ SQ is a pure operation.
Proof, b) and c) are equivalent obviously and a) implies b) by

Theorem III.2 (without the assumption of Axiom II.8). Assume Qv is
a pure operation for every p £ $. To prove {$, g , ') is semimodular it
suffies to prove (see Theorem A.8 of the Appendix): if p £ S, q £ $ and
q is an atom with q^-p, then

&»(£) = {qvp')r,p
is an atom. Consider the state oc2 corresponding to the atom q. Since
p^f- q andq is the support of <xq, P(p, ocq) =j= 0 and ocQ is in the domain of
Qp; moreover, ocQ is a pure state. Since QP is a pure operation, ft — Dp (<xQ)
is a pure state and the support pp is an atom. By Axiom II.8,

and ^ (g) is an atom. Q.E.D.
The rule for the phenomenological interpretation of operations pre-

sented in [15] provides a heuristic reason for asserting that Qp should
be a pure operation for each p £ $. The phenomenological characteriza-
tion of the fact that a state a £ £f is pure is the following indecomposa-
bility of the corresponding ensemble. The ensemble of physical systems
prepared by a state-preparation procedure corresponding to a can not
be decomposed into two subensembles prepared by state-preparation
procedures corresponding to two distinct states ax and a2 with the
following property: a system of the ensemble corresponding to a may be
attributed to the ensemble corresponding to ô  with probability t and to
the ensemble corresponding to a2 with probability 1 — t, where 0 < t < 1.
The ensemble corresponding to Q^oc is constructed by selecting the
systems of the ensemble corresponding to a for which the observation
procedure for p indicates that the event p occurs. It is, therefore,
plausible that this ensemble is indecomposable provided the ensemble
corresponding to a is indecomposable.

IV. Summary

If ((o, £P, P, Q) is an event-state-operation structure, then the set
SQ of operations admits the structure of a Baer *-semigroup, (8D, o, *, ').
Since ($*, ^ , ') is an orthomodular ortholattice, the set S {$) of residuated
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mappings of ((f, ^ , ' ) also admits the structure of a Baer *-semigroup,
($(<^), o, * , ' ) . Theorem I.I indicated a connection between these two
Baer *-semigroups: if p £ /? and oi^Sf with P(p, a) #= 0, then the sup-
ports £>£ and px of f} = QpOc and a, respectively, satisfy

Pp ̂  &>(flx) >
where <f>p is the residuated mapping

Axiom II.8 replaces the above inequality

Pp^ <f>v(P«)
by an equality

Pp = </>v(P«) -
Axiom II.8 is satisfied, for example, by a compatible logic (that is, p G a
for every pair p,q£<?) and by von Neumann's Hilbert space model for
quantum mechanics. If Axiom II.8 is satisfied, the there exists a homo-
morphism 6 : SQ~> S{$) of the Baer ^-semigroup (8a, o, *, ') of opera-
tions into the Baer ^-semigroup (S(<o), o, *, ') of residuated mappings.
The operation x £ 8Q maps states while the residuated mapping da maps
supports of states, specifically, if a £ @x, then

OxiPcc) = Px«

where px and pxx are the supports of a and xoc, respectively.
When the logic {$, g , ') is atomic and there exists a correspondence

between pure states and atoms, Theorems III.2 and III.3 provide a con-
nection between semimodularity of (<?, ^ , ' ) and pure operations
(operations which map pure states into pure states). Indeed, if ($*, ^ , ')
is semimodular, then every x £ 8a is a pure operation. When Axiom II.8
is imposed, (<o, ^ , ') is semimodular if and only if every x £ ## is a pure
operation.

Appendix

This Appendix is devoted to the exposition of facts about the re-
siduated mappings of an orthomodular ortholattice and about the semi-
modularity of lattices, specifically, atomic orthomodular ortholattices,
and of the proof of one theorem for general Baer *-semigroups.

A.I. Residuated Mappings

Some definitions and theorems from the theory of posets will be
needed [1, 3].

Definition A.I. Let (Xy ^ ) be a poset.
a) If Y is a subset of X, then x £ Y is a least (respectively, greatest)

element for Y provided: x ^ y (respectively, y ^ x) for every y £ F.
(There exists at most one least (respectively, greatest) element of Y.)
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b) A mapping <f>: X -> X is isotone provided: if x, y £ X and x ^ y,
then <̂ (#) ^ <̂ (2/).

c) A mapping (f>: X -> X is residuated provided:
i) ^ is isotone, and

ii) if x £ X, then the subset

is nonempty and possesses a greatest element.
d) 8 (X) denotes the set of all residuated mappings of X.
e) If (f>: X -> X and y>: X -> X, then the mapping ^ o ip : X -> X is

defined by

for all a; £ X.
f) If ^ £ $(X), then the mapping 0 + : X -> X is defined as follows:

for x £X, <f> (x) is the greatest element of the subset

of X.
Theorem A.I. Let (X, ^ ) be a poset.
a) An isotone mapping (j): X -> X *s residuated if and only if there

exists an isotone mapping ip : X -> X <mc& £to

(^ ° ^) 0*0 ̂  «

(^ o ^>) (x) ^ a;

for all x £ X ; moreover, if (f> is residuated, then ip is uniquely determined,

b) / / (f>, tp £S(X), then <f>oy)£8(X) and

{(j) o rp)+ = \p+ o cf>+ .

c) Let Obea least element for (X, ^ ) , <f> £8(X) and x£X. (f>(x) = 0
if and only x 5j ^ + (0 ) .

d) / / (X, ^ ) has least and greatest elements, 0 and 1, respectively, then
the mappings 0 : X -> X and 1 : X -> X are residuated where

O(o?) = 0 , x £ X

moreover, (S(X), o) is a semigroup with zero, 0, and unit, 1.
If (X, ^ ) is not only a poset but also has an orthocomplementation.

then (8(X), o) admits an involution [6].
Definition A.2. If ' : X - > X is an orthocomplementation of a poset

(X, ^ ) and ^ £ $(X), then the mapping ^* :X -> X is defined by
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Theorem A.2. Let ': X -> X be an orthocomplementation of the poset

a) / / a £ 8{X) and x£X, then

<f>+(x) = <f>*(x')'
and <f>* (x) is the least element of the subset

ofX.
b) / / <f> £8(X), then <f>* £S(X); moreover, <f>* is the unique isotone

mapping ip: X -> X such that

and

for all x £ X.
c) Let (X, :g) have least and greatest elements 0 and 1, <f> £ S(X), and

x £ X . <f)(x) = 0 if and only if x J_ (f>* (1)-
d) * is aw involution for the semigroup (8(X), o).
If (X, g , ') is not only an orthoposet but also an orthomodular ortho-

lattice, then #(X) admits the structure of a Baer *-semigroup [6].
Definition A.3. Let (JD, ̂ , ') be an ortholattice.
a) If p £ L, then the mapping <j>v :L ~> L is denned by

b) If ^ £8(L), then the mapping ^ ' : L-+L is defined by <̂ ' =
where p = < *̂(1)'.

Theorem A.3. Let (L, ̂ , ') be an orthomodular ortholattice.
a) / / p £ X, JAew- ̂ 3, ̂  8(L); moreover,

b) jPor p, q £L, ^^(q) = 0 '̂/ a%tZ owZ?/ if P1. $-
c) (8(L), o, * , ' ) is a J5aer *-semigroup such that p-> <f>P is an iso-

morphism of the orthomodular ortholattice (L, ̂ , ') onto the orthomodular
ortholattice (jP'(S(L)), fg, ') of closed projections in 8(L).

A.I I. Two Theorems on Baer *-semigroups

The following theorem is from the general theory of Baer *-semigroups
[6, 7, 8].

Theorem A.4. / / (8, o, *,') is a Baer ^-semigroup, then
a) forx^S, (x* o x)" = x",
b) for x, y £ 8, (x o «/)" = (x" o y)'\
c) / o r 6 } / ( P ' ( ^ ( e o / r = (6vf)A/.
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The computation of the operator-theoretic support projection of
PDP, where D is a positive operator and P is a projection on a Hilbert
space H, is an application of the following theorem to the Baer ^semi-
group (JSPC(JBT)3 O, *, ') of continuous linear operators on H.

Theorem A.5. / / (8, o, *, ') is a Baer ^-semigroup, y £8, e £ P'{X)
and x = y* o y, then (e o x o e)" = {x" v e') A e.

Proof. First, one notes

e o x o e = (y o e)* o (i/ o e)

and, by a) of Theorem A.4,

( e o x o e)" = (y o e)" .

Utilizing b) of Theorem A.4, one has

(yoe)"=(y"oe)" ;
hence,

(e o x o e)" = (y" o e)/; .

Since y" g P'(/S) and e g P'(i8), c) of Theorem A.4 asserts

(y" o e)" - (y" v 6') A e .

Since a; = «/* o i/, another application of a) of Theorem A.4 yields

x" = (y* o i/)'' = y" ;
consequently,

( eoa ;o e)" — (x" v e') A e ,

the assertion of the theorem. Q.E.D.

A.III. Semimodularity and Atomicity

The following definition and theorem indicate the interdependence of
distributivity, orthomodularity, semimodularity, and modularity [1, 11].

Definition A.4. Let (L, 5g) be a lattice.
a) If p,q,r£ L, then (p, q, r) is a distributive triple, written (p, q, r)D,

provided:
(p v q) A r = (p A r) v (q A r) .

(L, g ) is a distributive lattice provided: if p, q,r £L, then (p, q, r)D.
b) If q, r £ £, then (g, r) is a modular pair, written (q, r) M, provided:

if p £ L and p ̂  r, then (p, g, r)D. (JD, ̂ ) is a modular lattice provided:
if p,q £L, then (p, q)M.

c) {Lf ̂ ) is semimodular provided: if p, q £L and (p, q)M, then

Theorem A.6. J.w ortholattice (L, g , ') 5̂ orthomodular if and only if
every orthogonal pair is a modular pair, i.e., p, q £L and p _L q implies
(p,q)M.
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Consequently, every distributive lattice is modular and every modular
ortholattiee is orthomodular. I t should be noted that the projection
lattice of every von Neumann algebra is not only orthomodular but also
semimodular [18]. Semimodularity admits a useful characterization in
an atomic orthomodular ortholattiee [17].

Definition A5. Let (X, g ) be a poset with a least element 0.
a) An element x £ X is an atom provided:

i) x =# 0 and
ii) if y £ X and y <J x, then either y = 0 or y = x.

b) (X, 5g) is atomic provided: if x £ X and a; #= 0, then there exists
an atom y £ X such that y ^ x.

Theorem A.7. 4̂ necessary and sufficient condition for an atomic ortho-
modular ortholattiee (L, ^ , ') to be semimodular is the following: if p ^L,
q £L is an atom and q is not orthogonal to p, q -^ p, then (qvp')Ap
is an atom.
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