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Abstract. It is found that the massless charged particle permanently at rest
at the origin of spherical polar coordinates in Lovelock's interpretation [1] of Ro-
binson's solution of the Einstein-Maxwell equations [2] will repel all charged test
particles, irrespective of the sign of their charges. By a global embedding of the
space-time in a flat 6-space we find an absence of singularities where point-charges
or point-masses might be located. With the use of the Newman-Penrose method of
spin-coefficients [6] it is shown that all the Robinson solutions [2] represent con-
stant electromagnetic fields.

1. Introduction

The Einstein-Maxwell equations in the absence of sources are
1 i

where E\ is the Bdcci tensor, FiS = —FH the electromagnetic field tensor

and *Fiό= 1/2 (—g)1!2 eijkiF
kl its dual. Co variant differentation with

respect to the metric tensor gij is denoted by a semi-colon. ROBINSON [2]

has found the following solution of (1.1):

cr dtΔ — dr2 — r2 dυL — τι sm 2 θ dφ*),

(1.2)

(i.i)

where e and β are disposable constants.

The solution (1.2), if written in terms of the new coordinates

e
x° = e(ct — r) , x1 = —, x2 = e(πj2 — θ) , x3 = eφ ,

becomes

ds2 = e - 2 ^ 1 dx0)2 + 2 dx° dx1— (dx2)2 — (cos(£2/e) dxz)2

1 1
F. j = — djA cos p + — off cos (x2 e) sm p

(1.3)

in which the Maxwell field is now expressed independently of the co-

ordinate r [2]. A further coordinate transformation
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changes (1.3) to

— X)2d(cT+ X)2 + c2dT2 — dX2

(1.4)
— dY2 — cos2(F/e)tfZ2

If we write Ea = Foa and Ha=*Foa (a = 1, 2, 3) for the electric and

magnetic fields then to the first order in — the solution (1.4) becomes

ds2 = c2 d T2 — dX2 — d Y2 — dZ2

and

E= (j cos β9 0, o) , H= (ysin/ϊ,O,θ) . (1.5)

Since the electromagnetic field in this approximation represents a con-
stant electric field or a constant magnetic field or a superposition of both
[2] it is rather surprising to find in [1] an exact interpretation of a special
case of (1.2) as a point-charge singularity and its field.

LOVELOCK [1] has considered the case β = 0 and has interpreted it as
the field of "a massless particle of charge e at rest at the origin for all
time". He is assuming, of course, that the coordinate r has its usual
significance, when t — constant, of giving a one-parameter family of
spheres r = constant centred on r = 0, a degenerate sphere or mere point,
and that θ and φ coordinatize all the non-degenerate spheres in the usual
way. Unfortunately, in the space-time (1.2) all such non-degenerate
space-like spheres have metric

ds2 = — e2{dθ2 + sin2θ dφ2) (1.6)

and so each coincides with a spherical surface of constant radius e.
It will be shown that the space-time is globally the Cartesian product
of a space-like sphere S2 and the surface of a one sheeted hyperboloid
of indefinite metric. The centre of each S2 will not lie on the space-time
and so cannot be r == 0 even if this 3-space had degenerated into a time-
like curve. In fact, to locate the centre of S2 the space-time must be
embedded in a higher dimensional flat space (of minimal dimension 6).
Thus the assumption that r = 0 is a degenerate 3-space and so represents
the history of a particle in a spherically symmetrical situation has no
mathematical basis.

It will also be shown by a physical argument that this hypothesis
about the usual kind of spherical symmetry cannot be sustained.

2. Motion of a Charged Test Particle

it follows easily that the only non-vanishing Christoffel symbols for the
metric (1.2) are ( (

-
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A test particle of mass m and charge Q experiences a mechanical
force QFij U3 , where Όι = xι ΞΞ dxljds is its velocity 4-vector. By (1.2),
with β = 0,

and so QF"Uj = QgijFj1cU
k

Writing μ = Q/me the equations of motion of the test particle are

2
7-?* = —

θ — sinθ cosθ φ2 = 0,

The conditions θ = 0, θ = πj2 can be maintained permanently if φ = 0.
There is no loss of generality in taking these initial conditions. We can
also take

φ = hs , h constant. (2.3)

The first of equations (2.2) can be integrated to give

i-μr = Kr2, (2.4)

where K is an arbitrary constant. From the metric (1.2) we get

ήr* = c*(Kr + μ)2—oc2 (2.5)

on putting α2 = h2 + 1/α2.
Equation (2.5) can be rewritten as

( 2 . 6 )

where ρ = r -f μ/UL, δ = α/ϋΓc .
The initial conditions are t = 0, r = r0 (or ρ = ρ0 = r0 + μ/ϋQ, drjdt= V.

Hence
cί + Fρo/C = (ρ« - ρg(l - F^/c2))1'2 (2.7)

which gives valid equations of motion if and only if

For a particle released from rest on the 2-space r = r0 at ί = 0 the last
condition becomes

r S v (2.8)
11*
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Thus, on Lovelock's ad hoc topological assumption about the family of
surfaces r = constant, all charged test particles are repelled from the
apparent centre of force at r = 0 irrespective of the sign of their charges1.

The case μ = 0 is considered by Lovelock in another paper [3].
In all cases the hypothesis about the usual kind of spherical symmetry

does not lead to physically meaningful results.

3. The Curvature Tensor and its Invariants

From the metric (1.2) one can easily show that the only non-vanishing
components of the Riemann tensor are

Λ o i i o ^ / r 4 * ^ 2 3 2 3 = - e 2 s i n ^ . (3.1)

From which it easily follows that

Biikι + Ft,Fkl + *FU *Fkι = 0 . (3.2)
Since

F{j.k = 0, *FiS.Λ = Q (3.3)

can easily be verified for the Maxwell-Einstein field (1.2) we deduce from
(3.2) that

^ W , m = 0 , (3.4)

i.e., the Riemann tensor is covariantly constant. The same applies also
to any of its invariants formed by contraction and transvection with
itself, the metric tensor and the tensor density εij k τ. Thus it is very likely
that the space-time has no singular points. In § 4 we shall confirm that
this is so by a global embedding of (1.2) in a flat six-space.

4. A Global Embedding of the Space-Time

Theorem. The portion of space-time with (1.2) as metric can be imbedded
locally in the pseudo-Euclidean 6-space Eβ of metric

ds2 = du2 + dv2 — dw2 — dx2 — dy2 — dz2 (4.1)

as part of the 4 dimensional submanifold given by

u2 + v2 — IΌ2 = 1 , (4.2)

x2 + y2 + z2 = a2 . (4.3)

Proof. Consider the coordinate transformation
c2t2 — r2 — i c2t2 — r2 + 1

u = ctr , v = — , iv = — — ,, , λ
1 ' r ' r (4.4)

x = a sin θ cos φ , y = a sin θ sin φ z = a cos θ

which satisfies (4.2) and (4.3). (See (5)). If we write

z1 = u, z2 = v, z3 = w, z* = x, zδ = y, zβ = z
^1 = = ^2 = = ' ^3 = = ^4 = = ^5 = = ^6 ~

1 If the negative square root had been taken in (2.6) or if t had been taken to
be negative and, decreasing or both the inequality (2.8) would still follow.
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and allow the capital letters Λ, B, . . . to have the range 1 to 6 we get

ΣeA*Ax*Λ>i = gu> (4.5)

where giό is the metric tensor (1.2),

x° = ct, x1 = r , x% — θ , xs ~ φ (4.6)

and a comma indicates partial differentiation with respect to the xι.
Corollary. The submanifold of M6 represented by (4.2) and (4.3)

is inextendible and so represents a global embedding of the space-time metric
(1.2).

Proof. As the sphere (4.3) is inextendible it is sufficient to consider
only the one-sheeted hyperboloid of revolution (4.2). The families of
straight lines (in u, v, w space)

v + w = λ (1 — u) , v — w = -y(l + u) (4.7)

v — w = μ{l — u), v + w = ~ {l + u) (4.8)

lie completely on the surface (4.2) for all real values of λ and μ. (Of course,
for λ = 0 we interpret (4.7) to mean the straight line v + w — 0,1 -f u = 0
and for λ = ± °° to mean the straight line v — w = 0, 1 — u = 0. Similar
interpretations apply to μ = 0 and μ= ± <χ>). Each straight line is an
inextendible manifold of one dimension and through every point of the
hyperboloid (4.2) pass two generators, one from each family: In fact the
two generators, through a point (u, v, w) of (4.2) determine it uniquely
through the relations

λμ — 1 λ -f- μ λ — μ /A c\\

because a line of the ^-system meets every ^-generator once and only
once and vice-versa [4]. Thus the set of all oo2 points on the hyperboloid
is the same as the set of all points on the λ- and μ-systems of straight
lines Hence (4.2) is inextendible.

From (4.4) we find that

v~w = —w- ( 4 1 0 )
Treat a typical sphere $ 2 (covered by x, y, z coordinates) as a point in
u, v, w space then the locus r = constant will represent the curve in which
the plane (4.10) cuts the hyperboloid (4.2). For r = ±cχ)we get the unique
plane v — w — 0 while for r -> 0 we get two distinct plane curves at
either "end" of the hyperboloid. (To make this latter remark obvious
the reader should note that the plane (4.10) cuts the v- and w-axes in

the points (0,—Ύ~~>®) a n c ^ (^'^ 51Γ/ r e s P e c t ively: Now if we let
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r -> + 0 these points are (0, —oo, 0) and (0, 0, +oo) respectively and if
r->—0 they are (0, -f-oo, 0) and (0, 0, —oo). As we do not identify the
ends of the υ- and w-axes the two remote planes are distinct).

Thus the apparent repulsion of test particles away from r = 0 in
§ 2 was merely motion away from the infinite remote regions of the space-
time under the influence of the electromagnetic field.

5. The Newman-Penrose Formalism

Using the spin coefficient formalism of NEWMAN and PENROSE [6]
it is very easy to show that the Robinson solution of the Einstein-Maxwell
equations (1.1) represents a constant electromagnetic field.

The metric (1.2) can be written in terms of real Pfaffians ωα,
α = 0, 1, 2, 3, as

ds* = (ω0)2 — (ω1)2 — (ω2)2 — (ω3)2 .

A tetrad system of null vectors fμ, nμ, mμ, mμ, of which tμ, nμ are
real and mμ, mμ are complex conjugate vectors, is defined by the relations

γ2 £μ dxμ = ω° + ω 3 , l/2 nμ dxμ = ω° -

/ r ~ \ ( 5 J )
J/2 mμ dxμ = ω 1 + ίω2, j/2 mμ dxμ — ω1 — iω2

and the following orthonormality conditions are satisfied,

(μ fa = mμ m
μ = mu m

μ — nμ n
μ = 0 ,

μ nμ = — m μ m
μ — 1 ,

%mμ — /μm
μ = nμm

μ = nμm
μ = 0 .

(5.2)

On introducing, as in [7] Debever's Pfaffians 0α, α = 0, 1, 2, 3, Z2*,
2 1 = 1 , 2 , 3 .

θ° = ίμ dxμ, θ 3 = nμ dxμ

θ1 = mμ dxμ , θ* = mμ dxμ (5.3)

Z 1 - Θ2ΛΘ3

5 Z*= θ°/\θ1, Z^ = ~(

the metric becomes ds2 = 2(θ°θ3—θxθ2) and the Maxwell two-form
F = ̂ j , dxμ Λdxv becomes

F = FvZP + FvZ* , (5.4)

where "Λ" stands for Grassman multiplication on vectors in the cotangent
space at any space-time point and

Ft = FμJ
μm\ F2 = ̂ r m ^ v , # 3 - \Fμv{ίμnv + m^m") .

If we choose ^μ>nμ,mμy mμ to be the principal null vectors of the Max-
well field Fμv then we must have

F1 = F2 = 0 .
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The spin coefficients α, β, γ, ε, κ, λ, μ, v, π, ρ, σ, τ are defined to be the
complex scalars

= / m

μ S»f^ — " μ

1
ε = TΓ

π = —nμ
mμ /v

ρ = :

= —nn.vm
μmv ,μ;*'

σ = ιmv

1
α = -g-1

μ^—n^

— Win , mμ mv)

ιmv,

1
/? = T

72/*m" — ^

(5.5)

2
1

In a conf ormally flat space-time containing a Maxwell field the Bianchi
identities become a set of first order partial differential equations in-
volving the spin-coefficients and the quantities Fl9 F2, F3 (equations A3
of the Newman-Penrose paper with vanishing conformal curvature
tensor, i.e. ψ0 = Ψx = Ψ2 = Ψ3 = Ψ^ = 0)2. Since tμ9 nμ, mμi mμ are
eigenvectors of Fμv it is easy to deduce from the Newman-Penrose form
of the Bianchi identities that κ = λ = μ = v = π = ρ — σ = τ = 0.

Since Sμ;v Λ = — κ m μ — κmμ + (ε + έ) £μ in general and ε -\- e can be
made zero by a change in scale on iμ we deduce that (μ is tangent vector
to a geodesic when κ == 0. When r = 0 the same is true of vector field nμ.
From the vanishing of κ9 ρ, σ, v, μ, λ we can also deduce that fμ and nμ

are divergence-free, curl-free, shear-free and hypersurface-orthogonal
in addition to being geodetic. Further, the equation ^μ >vn

v== — τ mμ

— τ mμ-\- (γ -j- γ) tμi in which 7 + 7 can be made zero by another change
in seale of ίμ9 tells us that fμ does not change as we move in the in-
direction when τ = 0. A similar result for nμ follows from π = 0.

With spin-coefficients Maxwell's equations can be written as

-κF2

f 2πF3

2τF3

\-2μF3
2 Omitting covariant derivatives of Fx and F2 they are

Jc 3 J7 3 V Jί a Ju 3 A JO 3 if 2 Ύ ~\~ JO 2 -F 2 ^ ~= ^ >

DF.-δF,
DF2 — δF3

δF3 — AF1

δF2 — ΔF3

= (π — 2 α) F1 4

= - λ ί T

1 4 - ( ρ -
= (μ — 2 7) ^ -

= — vFx+ (τ —

- 2ρF3

2ε)F2

-σF2-

Zβ)F*

(5.6)

FjFzv —ϊ\Fzλ—F}F2γ
F1F3μ—F3F3π~F1F2β

α = 0 ,

= 0 .
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where

δψ — ψ;μ mμ , δψ = ψ;μm
μ j

denote intrinsic derivatives. The vanishing of κ, λ, μ, v, π, ρ, σ, τ, Fl9 F2

gives DF3 = AF3 = δF3 = δF3 = 0, i.e., F3 is constant.

The reader is undoubtedly aware that the covariant constancy of

Fμv given by (3.3) (which makes all invariants formed from Fμv by con-

traction and transvection with itself, the metric tensor and the tensor

density εijkι constant) is not sufficient to characterize the field as un-

changing in every physical aspect. To show this latter property, we needed

the spin coefficient formalism.

6. Conclusion

There are no singularities in the space-time at which point charges

or point masses might be located. The electromagnetic field on the space-

time in an exact treatment has been shown to be of the same nature

(namely, a uniform field) as that reached approximately by ROBINSON [2].
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