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Abstract. The theory of orthomodular ortholattices provides mathematical
constructs utilized in the quantum logic approach to the mathematical foundations
of quantum physics. There exists a remarkable connection between the mathematical
theories of orthomodular ortholattices and Baer ^-semigroups therefore, the question
arises whether there exists a phenomenologically interpretable role for Baer *-semi-
groups in the context of the quantum logic approach. Arguments, involving the
quantum theory of measurements, yield the result that the theory of Baer ^semi-
groups provides the mathematical constructs for the discussion of "operations"
and conditional probabilities.

0. Introduction

An affirmative answer to the following question would be extremely
useful in the quantum logic approach to the foundations of quantum
physics:

Question I. Does the collection of events pertaining to a physical
system, which exhibits quantum effects, admit a phenomenologically
interpretable orthomodular ortholattice structure ?

If the word "ortholattice" is replaced by "orthoposet", then the
answer is evidently affirmative. This aspect of Question I will be reviewed
in Section I.

There exists a remarkable connection between orthomodular ortho-
lattices and Baer ^-semigroups. If ($, o, *, ') is a Baer *-semigroup, then
there exists an orthomodular ortholattice (P'($), f£,') with P'(8)CS
If (L, ^ , ') is an orthomodular ortholattice, then there exists a Baer
^-semigroup (S(L), o, *, ') where S(L) consists of a set of mappings of
from L into L and there exists an injective mapping j:L~>8(L).
Since orthomodular ortholattices evidently have a role in the quantum
logic approach1 and since orthomodular ortholattices and Baer *-semi-
groups are closely related mathematical objects, the following question
arises:

* Supported in part by the United States Atomic Energy Commission.
1 For example, the set of events has the structure of an orthomodular ortho-

lattice in von Neumann's Hubert space model of quantum mechanics.
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Question II. Do Baer *-semigroups have a phenomenologically inter -
pretable role in the quantum logic approach ?

In Section II, this question will be answered positively provided one
accepts a number of assertions of the conventional quantum theory of
measurements2. Indeed, the theory of Baer *-semigroups will provide
mathematical constructs for the discussion of operations 3 and conditional
probabilities within the context of the quantum logic approach. A
corollary to the affirmative answer of Question II will be the assertion
that the orthoposet of events in Question I is an ortholattice. Further-
more, a new approach to the phenomenological interpretation of the
lattice operations will be obtained.

Necessary definitions and theorems from the theories of orthomodular
ortholattices and Baer *-semigroups are included in an Appendix.

I. Event-State Structures

The quantum logic approach to the mathematical foundations of
quantum physics studies two distinguished sets, the set of events and the
set of states, pertaining to a physical system. Some formulations of the
quantum logic approach treat events as primitive entities and states as
derived entities (see, for example, [3, 4, 12, 13, 23]). Other formulations
treat the events and the states as equally primitive entities (see, for
example, [7, 9, 15, 17, 18, 25, 28, 30]). Although the collection of axioms
varies from one formulation to another, the following definition yields a
mathematical structure which is widely utilized.

Definition I.I. An event-state structure is a triple (<f, 3f, P) where
i) $ is a set called the logic of the event-state structure and an element

of $ is called an event,
ϋ) £P is a set and an element of Sf is called a state,
iii) P is a function P : <fχ^~> [0, 1] called the probability function

and if p ζ $ and α ζ £P, then P (p, α) is called the probability of occurrence
of the event p in the state α,

iv) if p ζ <f5 then the subsets &Ί(p) and S^0(p) of <$? are defined by

and if α ζ S^Ί (p) (respectively, α ζ ^ 0 (p)) then the event p is said to
occur (respectively, non-occur) with certainty in the state oc, and

v) Axioms I.I through 1.7 are satisfied.
Axiom LI. If p, q ζ $ and &Ί(p) = ^(q), then p = q.

2 For a review of the quantum theory of measurements, see [11] and [12].
3 The concept of operation was introduced in the algebraic approach to quantum

field theory by HAAG and KASTLER [10].
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Axiom 1.2. There exists an event 1 £ $ such that ^ ( 1 ) = Sf.
Axiom 1.3. lίp^qζS1 and ^{p) C &Ί(q), then SfQ(q) C ̂ 0 W
Axiom 1.4. If p ζ <o, then there exists an event p' ζ <f such that

Axiom 1.5. If
i) pv p2, . . . ζ $ and
π) ^ i t e ) C ^ o t e ) for iφj,

then there exists a p ζ $ such that
a) ^ M C ^ f ί ) for alii,
b) if qi$ and .?Ί (pf ) C ? Ί (?) for all i, then ^Ί(p)C ^ x(?), and
c) if α ζ ^ , then

ΐom 7.(5. If oc, β ζ ^ and P(p, α) = P(p, /5) for all p 6 ^, then
β.

Axiom 1.7. If
i) <%!, α2, . . . ζ «^,

ii) ίj, ί2, . . . 6 [0, 1], and

then there exists a n α ( ^ such that

for all p £ (f.
The phenomenological interpretation of the mathematical system,

event-state structure, may be specified by selecting a collection of rules
for the interpretation of the primitive entities: events, states, and
probability function. The following collection is a possible (but obviously
not the only) choice for these rules. An event-state structure (<f, SP, P) is
associated with the class of physical systems of a specified kind. A state
may be identified with a "state-preparation procedure", that is,
instructions for an apparatus which produces sample physical systems
of the specified kind. An event may be identified with the "occurrence
or non-occurrence" of a particular phenomenon pertaining to physical
systems of the specified kind. More specifically, an event may be identi-
fied with an "observation procedure", that is, instructions for an appara-
tus which interacts with a sample physical system and indicates either
yes or no corresponding to the occurrence or non-occurrence of the
phenomenon4. The interpretation of P(p, α) for p ζ $ and α ζ Sf would
then be the following. Prepare an ensemble of sample physical systems
utilizing a state-preparation procedure corresponding to α. Determine

4 For comments on state-preparation procedures and observation procedures
(in the context of the algebraic approach to quantum physics), see [5].
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the occurrence or non-occurrence of the event p utilizing an observation
procedure for p with each sample of this ensemble. If the ensemble is
sufficiently large, then the frequency of occurrence of P should be close
to P(p,oc).

The phenomenological interpretation of the general aspects of the
quantum logic approach are discussed in [12], in particular, Chapters 5
and 6; however, brief comments on the specific axioms adopted above
will be necessary.

Axiom I.I asserts that if p and q are events and if the set of states in
which p occurs with certainty coincides with the set of states in which q
occurs with certainty, then the events p and q are identical. This axiom
is stronger than the corresponding axiom adopted, for example, in [18]
and [25]. Its adoption is motivated by the phenomenological inter-
pretation of the relation ^ introduced in the following definition.

Definition 1.2. If (δ, £?, P) is an event-state structure, then the
relation !g on δ, called the relation of implication, is defined as follows:
for p, q ζ δ, p ^ q means ^(p) C ̂ i(#)

The relation g is evidently reflexive and transitive, since C is a
reflexive and transitive relation5. Axiom I.I and the antisymmetry of
C imply that ^ is antisymmetric; hence, the relation ^ is a partial
ordering of δ. The phenomenological interpretation of the relation ^
may be briefly summarized: p ^ q means if p occurs with certainty,
then q occurs with certainty. Indeed, if α ζ £f is any state and if p occurs
with certainty in the state α, then oc ζ Sfx {p) C &*\ (q) when p ^ q and q
occurs with certainty in the state oc. This interpretation of ^ evidently
corresponds to the phenomenological concept of implication (see [12,13,
23, 24, and 27]) more closely than the relation < on δ defined as follows
(see [18, 19, 25, and 31]): for p, q ζ δ, p < q means P(p, oc) ^ P(q, oc)
for all α ^ y .

Axioms I.I and 1.2 assert the existence of a unique event 1 ζ δ such
that ^ ( 1 ) = £? (and, hence, ^0(l) = 0); moreover, 1 is the greatest
element of δ with respect to ^ since p ^ 1 for all p ζ $. Axioms I.I and
1.4 assert if p £ <f, then there exists a unique p' £ S such that c9?

1(pf)
= Sfo(p) and ^0{p') = ^λ{p). Axiom 1.4 applied to the event 1 ζ δ
yields the unique event 0 in δ such that ^ (0) = 0 and ^ 0 (0) = Sf,
namely, Γ moreover, 0 is the least element of δ with respect to g since
0 ^ p for all p ζ δ. These remarks motivate introduction of the following
terminology.

Definition 1.3. Let (δ9 £?, P) be an event-state structure.
a) The unique event 1 ζ δ such that ^ ( 1 ) = Sf and ^ 0 ( l ) = 0 is

called the certain event.
5 See the Appendix for definitions of terminology from the theory of ortho-

modular ortholattices.
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b) If p £ δ, then the unique event p' ζ δ such that Sf^p') = S?0(p)
and S^0(pr) = &Ί(p) is called the negation of p.

c) The unique event 0, namely, Γ, of δ such that ^Ί(O) = 0 and
e9 0̂(0) = ^ is called the impossible event.

Axiom 1.3 asserts if p, q ζ δ and &Ί{p) C &Ί(q) (that is, "if p occurs
with certainty, then q occurs with certainty"), then 6^0(q) C &Ό(p) (that
is, "if q non-occurs with certainty, then p non-occurs with certainty").
Consequently, in terms of < and ', Axiom 1.3 asserts if p.q^S and
p ^ q, then q' ^ p'. From the defining property of p' and Axiom I.I, it
is also evident that (p')' = p for all p £ δ. Since ^{p) r\ ^Ύ{p') = 0,
the greatest lower bound of p and p' with respect to < exists and equals
the impossible event 0. Since S^0{p) r\ &O(P') = 0 a n ( ^ Axioms 1.2 and
1.3 are valid, it also follows that the least upper bound of p and p' with
respect to ^ exists and equals the certain event 1. These remarks are
summarized by the following theorem.

Theorem I.I. If (δ, £f, P) is an event-state structure, then

a) (δ, ^ ) is a poset,

b) 0 and 1 are the least and greatest events, respectively, of the
poset (δ, ^ ) ,

c) p-> p' is an orthocomplementation of the poset (δ, 5j),

d) if p, q ζ δ, then the following are equivalent:

i) V ^ ?>
ϋ)

e) if p, q ζ $ then the following are equivalent:
i) p _L q (for definition, see Appendix),

ii) ^(pK^ote),
iϋ) p ^ q'.
ί) and if ô £ <f, then the following are equivalent :

i) p = 0,
ii) ^ ( p ) = 0,

iϋ) ^ o ( P ) - ^ 7 .
Proo/. Only assertions e) and f) remain to be proven. The relation J_

on δ is defined by p J_ q means p ^ qf. p < q' is equivalent to
&Ί(P) C ^AqΊ and, hence, also to ^(p) C Sfo(q), since S?0(q) = S^tf).
Assertion f) follows immediately from d) by taking q = 0.

The following definitions are useful for the discussion of Axiom 1.5,
1.6, and 1.7.

Definition 1.4. Let (#, £f, P) be an event-state structure.
a) If p, q ζ δ and p J_ q, then p and q are mutually exclusive events.
b) If α ξ ^ , then the function μΛ: $ -> [0, 1] is defined by
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c) SP denotes the set defined by

& = {μΛ : α £ #>} .

For p, q ζ #, p and q are mutually exclusive events if and only if
"p occurs with certainty whenever q non-occurs with certainty". Con-
sequently, p J_ q is a generalization of the concept of mutually exclusive
events of conventional probability theory. Axiom 1.5, therefore, asserts
if pλ, p2, . . . is a countable set of pair wise mutually exclusive events,
then there exists a p £ $ such that

a) Pi < p for all i,
b) if q £ <f and p{ ^ q for all i, then p < q, and
c) if α ζ < ,̂ then

or
μΛv) = Σ μΛVί)

a) and b) express the fact that p is the least upper bound, V ph of the

set {pv p2, . . .} of events. Consequently, Axiom 1.5 asserts the existence
of the least upper bound of countable sets of pairwise mutually exclusive
events and, furthermore, the law of additivity of probabilities for
mutually exclusive events (see [14]).

Theorem 1.2. If ($, £P, P) is an event-state structure, then
a) (<o, ^ , ') is an orthomodular σ-orthoposet,

A

b) Sf is a strongly-order-determining, σ-convex set of probability
measures on (β, fg, '),

c) α -> μx is a bijection of SP onto SP.

Proof. (<o, ?g, ') is a σ-orthoposet and μα is a probability measure on

(ίf, fg,') for each α ( ^ because of Axiom 1.5. Axiom 1.6 and the

definition of SP assert that α -> //α is a bijection. Axiom 1.7 asserts the
Λ A

σ-convexity of Sf. £f is strongly-order-determining because for p, q ζ (o,

i f £fx{p) C &Ί(<l)> t h e n p ^ q
is equivalent to

if {μ ζ 6P : μ (p) = 1} C {μ 6 ^ /̂  (q) — 1}? then p ^ q *

(<f, g , ') is orthomodular, since any orthoposet possessing a separating

set of probability measures is orthomodular.
The proof of the converse of Theorem 1.2 is straightforward and left

to the reader.
Theorem 1.3. //
a) (2£, <, JL) is a σ-orthoposet,
b) Jί is a σ-convex, strongly-order-determining set of probability

measures on $£', and
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c) P : SC xJf -> [0, 1] is defined by

P(x, m) = m(x), x ζ 3£, m ζ<J? ,

then {2£, Jί, P) is an event-state structure moreover,

i) for x, y ζ $£, x < y if and only if x < y,

ii) for x ζ S£, xL = #', and

ϋi) Jί = J.
(where x < y, x' and ^ are defined using the definitions relating to

event-state structures).

Consequently, an event-state structure may be viewed either as a

triple (β, £P, P) satisfying Axioms I.I through 1.7 or a pair {$, &)

where £f is a σ-convex, strongly-order-determining set of probability

measures on an orthomodular σ-orthoposet. Both of these points of view

will be employed in the following.
Example I.I. If &{H) is the set of all orthogonal projections on a

separable complex Hubert space H of dimension greater than two, if
(&(H), £f, P) is an event-state structure, if ^ coincides with the usual
order of projections,

P^Q if

and if P' is the orthogonal complement of P(P' = I - P) for P
then there exists a bijection α ζ £f ~> Da of £f onto the set Q){Ή.) (the set
of density operators) of all positive, trace-class operators with trace
equal to one such that

P(P,oc) = Tr (DXP)

for all P £ ̂ (H), oc ζ Sf. This, of course, is the event-state structure of
von Neumann's Hubert space model of quantum mechanics (see [29]
and [18], pp. 71-81).

Example 1.2. The event-state structure (β, Sf) where $ is a σ-algebra
of subsets of a set X and £f is a cr-convex, strongly-order-determining set
of probability measures on $ corresponds to the Kolmogorov model of
probability theory (see [14 and 21]) with the additional feature that
many probability measures are considered instead of one distinguished
probability measure.

The formulations of the quantum logic approach to the foundations of
quantum physics presented in [7, 18, 25, 28, 31] are evidently more
general than the formulation adopted here. Indeed, these formulations

Λ

replace the strongly-order-determining property of £f by at least one
A

of the following consequences of this property: (1) £f is order-determining
and (2) if p ζ δ and p=t=O, then there exists an α ζ £? such that μΛ(p) — 1.
Discussions of the condition of strong-order-determining may be found
in [8, 17, and 30].
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II. Event-State-Operation Structures

Heuristic arguments have motivated the study of mathematical
constructs corresponding to a number of physical concepts. For example,
the notion of compatibility (or simultaneous observability) of events
corresponds to a distinguished relation β on ^ (see [13, 18, and 25]).
There exists at most one relation Q on $ with the following properties:

a) if p, q £ S and p ^ g, then p C q

b) if p, q £ $ and p C q, then

i) v C qf,

ϋ) q C p,
in) p ί\ q and p V g exist in #, and

c) if ft, p2> # 6 <?, ft C Pz, Pi C g, a n d ^2 C 2, t n e n

i) Pi A P2 C g,
ϋ) ( f t Λ f t ) V ί = ( f t V ϊ ) V ( f t V g ) .

Indeed, the relation Q is determined by the following property: for
p, q ζ(o, p 0 q iί and only if there exists a Boolean sublogic 88 C $ such
that p, q ζέ%. The existence of a relation Q satisfying a), b), and c) is not
asserted; however, there always exists a relation Q which satisfies
properties a), b), and the following:

c') if ft, p2, q £ <f, ft G p2> 2>i C & #s C 0 a n d (Pi v Q) Λ (2>2 v ί) e x i s t s

in ^, then

i) Pi Λ ^ 2 C 2>
ϋ) (ft Λ ft) V g = (ft V q) Λ (j)a V g).

This relation Q may be defined as follows: for p, q £ <f, p Q q means
there exists p0, q0, r ζ $ such that

i) ί>o i- ^o
ϋ) PQ ± ^ and p ^= PQM r,

iϋ) g0 J_ r and q = q0V r.
lί p, q ζ<£ and 9̂ C g, then p Λ g exists in #. The lattice property of

(S, ^ , ' ) discussed in Question I, therefore, becomes the following:
if ft g £ <f and p G g does not hold, then does p Λ g exist in d' ? The cor-
responding phenomenological question is evidently the following (see
[12], pp. 74—78): if observation procedures for two incompatible (i.e.,
non-simultaneously observable) events are given, then how does one
describe the observation procedure for the "and" (or conjunction) of
these two events ? Although answers to this question have been attempted
in [1, 2, 12, 17, 23 and 24], no completely adequate answer is currently
available. For example, in the context of an event-state structure, the
arguments of [12, 23, and 24] reduce to the assertion of the universal
validity of the hypothesis of the following theorem.

T h e o r e m I L L Let ( # , £f, P) be an event-state structure. If p v p^^S

and there exists an event p £ $ such that
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then the greatest lower bound p1 Λ p2 of pλ and p2 with respect to < exists

and equals p.

Proof. Since p satisfies £fx (p) = £fλ (pj n Sfx (p2) by hypothesis,
^?i(p)C^1(p1) and ^1(p)C^τL{/p^i\ hence p < pλ and p ̂  p2. Let
q ζ £*, q^ px and q ̂  p2. I t follows that ^p

1{q)C^1{p1) and S?x(q)
C ^i(ί? a); hence ^ ( g ) C ^ΛVi) r\ ̂ {p2) = ^ ( p ) and g g p. Conse-
quently, if q £ (f, g ̂  px and # ̂  #>2> then q ̂  p. Therefore, the greatest
lower bound of px and p2 exists and equals p. Q.E.D.

One result of this section will be to provide a new approach to
Question I by introducing the theory of Baer *-semigroups into the
context of the quantum logic approach.

The introduction of the concept of conditional probability in con-
ventional probability theory greatly enhances the utility of the theory
and deepens the mathematical structure of the theory (see [14 and 21]).
The concept of conditional probability is expressed as a mathematical
object defined constructively in terms of the primitive entities of the
theory in an intuitively obvious fashion. In the case of a general event-
state structure, there apparently exists no manifestly evident way of
defining a mathematical construct corresponding to conditional prob-
ability in terms of the primitive objects of the theory in a constructive
fashion. However, there exists a mathematical construct in von Neu-
mann's Hubert space model of quantum mechanics which is widely
employed to represent the concept of conditional probability. These
remarks provide the initial motivation for considering event-state-operation
structures, event-state structures equipped with an additional primitive
entity corresponding essentially to conditional probability. A role for
Baer *-semigroups in the quantum logic approach will emerge from the
study of these event-state-operation structures.

Definition II. 1. Let (<a, £?, P) be an event-state structure.
a) Σ denotes the set of all maps x : <3)x -> Mx with domain Q)x C Sf

and range &XC &** li x ζΣ and α £ @X9 then x(oή (or xoc, for brevity)
denotes the image of α under x.

b) If x, y £ Σ, then x = y means
i) 2X = Q>v and

ii) xoc = yoc for all α £ 3fχ.

c) 0 : ̂ 0 -> &Q is defined by ^ 0 = 0.

d) 1 : 2X -> S)x is defined by

i) QJX = if and

ii) 1 α = α for all α ζ 2V

e) If x, y ζ Σ, then x o y : Q)xoy -> 8%XQy is defined by

i) ^ ^ { α ζ ^ i y α e ^
ii) (xoy)oc = x(ycc) for all α
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In all manipulations with the elements of Σ care must be taken to
examine the domains of definition (as, for example, domains of defini-
tions must be checked for unbounded operators on Hubert space). It is
evident that (Σ, o) is a semigroup with a unit element 1 and a zero
element 0.

Definition II.2. An event-state-operation structure is a 4-tuple
(#, &\ P, Ω) where (<f, Zf, P) is an event-state structure and Ω is a
mapping Ω : £'->Σ(pξ:<o->ΩΊ)ζΣ) which satisfies Axioms II. 1 through
II.7. If p ζ (o, then Ωp is called the operation corresponding to the event p
(relative to Ω). If p £ $ and α ζ @ΩP, then Ω^ca is called the state con-
ditioned on the event p and the state α (relative to Ω). If, moreover, q £ <f,
then P (q, Ωp α) is called the probability of q conditioned on the event p and
the state ot (relative to Ω). SΩ denotes the subset of Σ defined by

S = {ΩVί ofl^o ofl^: pv p2, . . ., pn £ <f} .

An element of $ β is called an operation.
Axiom II.1. If ^ ζ <f, then the domain ^ β of ί^ coincides with the

set ί̂ p defined by

iom J/.2. If p ζ ^ , α ζ ^ and P{p, α) = 1, then

.3. If 29 ζ ^ and α ζ 3)v, then P ( p , Ωpoc) = 1.

.4. If 2>i, 2>2» » 2>w» &> ?2» ^™

O O ΩVχ = ΩQm O ΩQml O O Ωqχ .
then

Axiom II.5. If x ζ SfΩi then there exists a qx ζ $ such that

Axiom II.6. lί p, q ζ $*> q ^ p and α ζ ̂ , then

Axiom II.7. lί p, q ζ<o, p Q q and α ζ @v, then

The rules of interpretation for an event-state structure must be
augmented to include the concept of operation. The rule of interpretation
adopted here depends upon the following phenomenological assertion.
If p ζ (o, then an observation procedure for p can be selected to fulfill the
following "gentleness" requirement: after utilizing this observation procedure
with a sample physical system to determine the occurrence or non-occurrence
of p, the resulting physical system is again a member of the class of physical
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systems corresponding to (S, &\ P). A critical discussion of this assertion
may be found in [12 and 19]. If p ζ δ and α ζ £? with P(p, α) =f= 0,
then the following describes a state-preparation procedure:

Step A. Produce a sample physical system utilizing a state-preparation
procedure corresponding to α.

Step B. Determine the occurrence or non-occurrence of the event p
utilizing an observation procedure corresponding to p.

Step C. If the event p occurred, then accept the physical system
resulting from this observation procedure as a sample physical system;
if the event p did not occur, then do not accept the resultant physical
system as a sample.

There should exist a state in £f corresponding to this state-prepara-
tion procedure. The rule of interpretation for Ωv adopted here is the
assertion that this state is Ω^oc. The terminology operation is employed
since this rule of interpretation corresponds essentially to a special case
of the "operations" utilized by HAAG and KASTLER in the algebraic

approach to quantum field theory [10].
Example II.1. The event-state structure (β?{H), <?, P) of von Neu-

mann's Hubert space model of quantum mechanics admits an operation
map Ω. Indeed, for P ζέ?(H), ΩP may be defined as follows: if α ζ £? is
the state with density operator D α ζ Q) (H) and

then Ωpoc is the state α' ζ^Sf with the density operator Dα/ £ Q){ΉL) given

D

^ ' - Tr (DΛP) *
This is the usual way of introducing "conditional probability" in quantum
mechanics (see, for example, [20], p. 333 and [16]). The verification of
all the axioms except Axiom II. 5 is straight or ward. If x ζ Sf' Ω and
x = ΩPi o o ΩPn, where Plf P2, . . ., Pn ζ &(H), then the projection
Q on the null space of P 2 P 2 . . . Pn satisfies Axiom II.5.

Example II.2. The event-state structure (<f, £?) of Example 1.2 also

admits an operation map. For p ζ <f, Ωp is defined as follows: if μ ζ Sf

and μ(p) Φ 0, then Ωvμ is the element of Sf defined by

This is the usual formulation of conditional probability from the Kolmo-
gorov model of probability theory. The verification of the axioms is
straightforward in this case.

The motivation for Axioms II . 1 through II.7 will now be discussed
utilizing the previously adopted rule of interpretation. If p ζ $ and

, then the rule of interpretation yields a state in the case P(p> α) φ 0
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however, the rule of interpretation does not yield a state when P(p, α) = 0,
since the samples will not satisfy the condition that the event p occurs.
Consequently, the domain @Ωp of Ωp should, indeed, be the set
Q}^ = {α ζ Sf : P(p, α) φ 0}. Axioms II.2 and II.3 evidently assert that
the observation procedure corresponding to p ζ $ may be selected to be
a measurement of the first kind in the sense of Pauli (see [12 and 22]).
Axioms II.6 and II.7 are immediate consequences of the assertion: if
p, q ζ $ and pQq, then the observation of the event q should not disturb
the results of the observation of the event p (since p and q are com-
patible events) and, hence, the arguments about frequencies of occur-
rence of conventional probability theory should be applicable.

Consequently, Axioms II. 1, II.2, II.3, II.β, and II.7 are explicitly
part of the conventional quantum theory of measurements. Axioms II.4
and II.5 are implicitly part of the conventional quantum theory of
measurements since Example II. 1 satisfies these axioms; however, the
role of these axioms has evidently not been previously discussed.

If x ζ 8Ω, then there exist pv p2, . . ., pn £ $ such that

x = Ω^ o ΩPz o o ΩPn .

The element x of 8Ω, therefore, represents the experimental procedure
of first executing the operation ΩVn, then executing the operation ΩPnl,
and so on until finally executing the operation Ω^χ. The experimental
procedure obtained by executing these operations in the reverse order
yields an element of 8Ω also, namely, ΩPn o ΩVnl o o ΩPi. It, there-
fore, seems desirable to introduce a mapping * of 8Ω into SΩ which cor-
responds to this reversal of the order of the execution of operations.
Consequently, x* would be the element ΩVn o ΩVnX o o ΩPί of 8Ω.
However x ~» x* might not be a well-defined mapping. Indeed, there
might also exist qv q2, . . ., qm ζ $ such that x = ΩQi o ΩQ2 o o ΩQm,
(x also represents the experimental procedure of first executing ΩQm

then executing ΩQml, and so on until finally executing ΩQi) but such
that the "reversal" of this experimental procedure does not coincide
with the "reversal" of the experimental procedure corresponding to the
p/s that is,

but
oΩqm

ΩVn°ΩVn-l O ' " θ Ω V l Φ ΩQm O ΩQm_χ O O Ω Qχ

Axiom II.4 asserts that this does not happen; consequently, the following
mapping * : 8Ω -> 8Ω is well-defined.

Definition 11.3. Let (β > Sf > P, Ω) be an event-state-operation struc-
ture. The mapping * : 8Ω -> 8Ω is defined as follows: if x ζ 8Ω, then select
pv p2, . . ., pn ζ $ such that

9 Commun. math. Phys., Vol. 9
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and define #* to be the element

Theorem Π.2. // (δ, £f, P, Ω) is an event-state-operation structure,
then SΩ is a subsemigroup of Σ; moreover,

a) Ω1 = 0, Ωλ = 1,
b) if pζ δ, then

Ω9oΩ9 = Ω9

and the range of Ω^ equals S^x (p)
c) * : 8Ω ~> 8Ω is the unique mapping at SΩ into SΩ such that
i) * is an involution for the semigroup (SΩ, o),

ϋ) (Ω9)* = Ωp for all p ζ <$;
d) if p, q £ δ, then the following are equivalnet properties:

i) p< q,
ii)

iv) ΩgoΩP = Ω99

v) Ω9oΩQ = Ω9.
Proof. SΩ is obviously a subsemigroup of 27 relative to the com-

position o since
S f l ={ί2 S l o...ofl Λ : f t , . . . ,p n ^}.

Since

the domain of Ωo is 0 and, hence, Ωo = 0. Since

^ = {α ζ ̂  P(l, α) Ψ O H ^ ,

the domain of Ωλ is ^ . If α £ 5 ,̂ then P(l, α) = 1 by Axiom 1.3 and,
hence, ΩXOL = α by Axiom II.2; consequently, Ω1 — 1.

Assertion b) is a consequence of Axioms II. 1, II.2, and II.3. Let
p ζ δ. If α 6 ̂ , then P(p, β^α) = 1 by Axiom Π.3. Hence, fi,a(%
for a ζ ̂ p and since

it follows that ^ β j , o Ω j ) = ̂ β j , = 29. Since P(p, β^α) = 1 for α

by Axiom II.2; hence, Ωv o Ω^ = β^. Since P(29, Ω^α) = 1 for α £ ̂ ,
the range of Ω^ is contained in ^ α (^) . If α ζ ̂ i(p), then β^α = α by
Axioms II.1 and II.2; hence, the range of ΩP contains ^(p).

It is evident that x -» x* is an involution such that (Ωp)* = Ωv for
every p ζ $ and, moreover, it is the only such involution.

The equivalence of i), ii), and in) of assertion d) is a general property of
event-state structures. The equivalence of iv) and v) is an obvious con-
sequence of assertion c). Assume &Ί(p)C ^i(Φ- If α ( ^ , then



Logic of Quantum Mechanics 131

oc ζ &Ί{p) by Axiom II.3, hence, if α ζ 3)^ then Ωpocζ@q and

If α ζ %,, then β^α ζ ^ ( g ) and by Axiom II.2

(ΩQoΩp)oc = Ωq(ΩQ<x) = Ω9<x.

Thus, fi.ofi^ β , if sex (p) C ̂  (g). If Ω9oΩq = Ω9, then

hence, ^ 0 ( ^ ) C ^o(P) s i n c e % = C^oCP) a n d ^Q = c^o(<l) Hence, i)
implies iii). Q.E.D.

Consequently, Axiom II.4 provides the semigroup (SΩ, o) with an
involution. The existence of this involution then yields a characterization
of the partial order ^ of (<f, ̂ , ') in terms of product o of (8Ω, o). In
terms of the theory of involution semigroups (see Appendix), the theorem
asserts: (SΩ, o, *) is an involution semigroup such that

i) For each p ζ $> Ω^ is a projection, that is, Ωp is an element of

ii) p ζ $ -> Ωy ζ P{SΩ) is an order preserving map of (<f, fg) into
g) where

e g / means e o f = e
ίoτeffζP(SΩ).

If a? ζ $ β , then there exist pv p2, . . ., pn ζ $ s u c n that

x = β P i o ί J ^ o o β p n .

Let pn+1 = 1. α ζ ^ is an element of the domain, i ^ , of x if and only if α
is an element of the domain of β 2 J i o ΩVi o o β p w . Consequently,
α £ ̂ # if and only if

for j — n, n — 1, . . ., 1. Therefore, α $ ̂  if and only if there exists an

ΐ , ί i έ «' ̂  1? such that

for j = * + 1,.. ., 1 and ΩPi+1 o o ί3Pn+1α $ ̂ . . Because of Axiom II . 1,
this characterization of C@x may be expressed as follows: α £ 0 ^ ^ if
and only if there exists an ί, n ^ i ^ 1, such that

for / = i + 1, . . ., 1 and

P(Pi, ΩPi+1 o o ΩPn+ιoc) = 0 .

This characterization of O i ^ evidently provides an experimental pro-
cedure for determining whether a state belongs to CQ)X. Axiom II.5
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asserts the existence of an event q such that q occurs with certainty in
the state α if and only if α ζ C@x, that is,

If qλ ζδ and ^{qj = C2X also, then ^ ( f i ) = ^(q) and, hence

<h = <l-
Definition IIA. If (δ, ^ , P, β) is an event-state-operation structure,

then the mapping ' : 8Ω-> P {SΩ) is defined as follows: for x ζ SΩ, x' is
the element ΩQχ of P(8Ω), where qx £ δ is the unique element of <f such
that ^ f e )

The mapping f:8Ω->P(8Ω), provided by Axiom II.5, gives the
involution semigroup (SΩ, o, *) the structure of a Baer ^-semigroup (see
Appendix).

Theorem Π.3. // (δ, SP, P, β ) is an event-state-operation structure, then
($Ω> °5 *5 ') ^5 α -Bαer *-semigroup; moreover, the mapping p ζ (?
-> Ωv ζ P(8Ω) is an isomorphism of the orthomodular orthoposet ($, ^ , ')
onto the orthomodular orthoposet (Pf(SΩ), ^ , ') (see Appendix for a dis-
cussion of P'(8Ω)).

Proof. Let xζ8Ω. (8Ω,o,*,f) is a Baer *-semigroup provided: if
V ζ. $Ω> then x o y = 0 is equivalent toxfoy = y.xoy= 0 is equivalent to

or to the assertion: (A) if ocζ<3y, then yoc£C@x. Consequently, if
α ζ ^ , then 2/α ζ ^ ^ since Qίx> = C@x, and α ζ ^ Ό r Since @X'oy C ^ ,
it follows that 2X'oy = ^ when assertion (A) holds. Since 0 ^ = ^{q^t
assertion (A) is equivalent to the following assertion by Axioms II.2 and
II.3: (B) If α ζ®y> then Ωqχ(yoc) = yoc. Consequently, assertion (A) is
equivalent to the assertion: (C) ^ y = ^ O J / and if α f ^ , then
(ΩQχ o y)oc = yoL. Since ΩQχ = x', x o y = 0 is equivalent to xf o y = y.

If £> £ <f, then ί^ ζ P(/Sβ); moreover, (β^)' - β^. Indeed, if p ζ δ,
then

and #>' satisfies the criterion of Axiom II.5 for the case x = Ω^; hence,
{ΩPY = Ω^' Ίίpζδ, then

and, hence, Ωv is a closed projection, that is, Ωp ζ P' (8Ω). The mapping
p ζ <o -> β^ ζ P r (/Sίβ) preserves order, since

p ^ q if and only if Ω^ o Ωq = Ω^ ,
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and preserves orthocomplementation, since {Ωv)
r — ΩP>. This mapping

is injective and it is surjective, since P' (8Ω) = {xr : x £ 8Ω} and x' — ΩQχ

for x £ 8Ω. Consequently, p ζ $ -> ΩP ζ P' (8Ω) is an isomorphism of the
orthoposet (<?, <, ') onto the orthoposet (P ' (SΩ), ^ , '). Q.E.D.

III. On the Lattice Structure of (<?, ^ , ' )

The event-state structure may be viewed as a passive picture for the
description of physical systems since it considers only the probability of
occurrence of events. The introduction of the concept of operation
provides an active picture indeed, the operations in 8Ω correspond to
filtering experiments. The orthoposet ($, ^ , ') of events is isomorphic
to the orthoposet (P ' (SΩ), ^ , ') under the mapping p £ $ -> Ωv £ P' (SΩ).
In (P'(8Ω), 5Ξ|, '), the order relation ^ is defined in terms of the com-
position o of operations indeed, for p, q ζ <f,

p ^ q if and only if Ωv o Ωq = Ωp .

The question, therefore, arises whether the greatest lower bound p ί\ q
of p and q in <f, an order theoretic construct in (<o, ̂ , '), can be inter-
preted in terms of the composition o of the Baer *-semigroup (SΩ, o, *, ').

Theorem III.l. // (β, £?, P, Ω) is an event-state-operation structure,
then (<f, ^ , ') is an ortholattice moreover, if p, q £ S\ then

Ωvha={Ωυ,oΩq)ΌΩq.

Proof. (Pf{8Ω), ^ , ' ) is an orthomodular ortholattice such that if

e Λ / = ( e ' o / ) Ό /

(see Appendix). The theorem follows immediately from the fact that
p ζ δ -> ̂  ζ Pf (8Ω) is an isomorphism of (£, ^ , ') onto (P ; (/Sβ), g , ').
Q.E.D.

Consequently, (<f, g , ') is an ortholattice for an event-state-
operation structure however, the greatest lower bound p Λ q in $ is
represented in P ' ($β) utilizing not only the composition o of operations
but also the mapping ' : 8Ω -> P' (8Ω).

Since the compatibility relation C discussed at the beginning of
Section II involves only the order and orthocomplementation of (β, ^ , ' ) ,
it must also be expressible in terms of the order and orthocomplementa-
tion of the isomorphic ortholattice (Pf(8Ω), ^ , ').

Theorem III.2. // {$, £f, P, Ω) is an event-state-operation structure and
p, q ζ $, then the following are equivalent:

a) p C q,
b) ΩooΩa = ΩQoΩv;

moreover, if p Q q, then
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Proof. The relation Q may be defined in the ortholattice (Pr (SΩ), <,')
as follows: for e, / ζ P ' (SΩ), eQ / means there exists a triple e0, /0, g ζ Pf(SΩ)
such that

ϋ) e0 J_ g and e = e0 V gr,
iii) /0 J_ gr and / = /0 V gr.
It is a fact from the theory of Baer *-semigroup that for e, f ζ P ' ($β),

e C / is equivalent toeof = foe and, moreover, if e C /? then e Λ / = e o /.
The assertion of the theorem then follows from the fact that (<f, 5ί, ')
and (P' {SΩ), ^ , ') are isomorphic under p -> ί2p. Q.E.D.

Consequently, the compatibility of events corresponds to commuta-
tivity of the associated operations. Furthermore, in the case of compati-
bility, the greatest lower bound p Λ q, of p and q (which is interpreted
as the conjunction or "and" of p and q) corresponds to the composition
of the associated operations Ωp and ΩQ. This, of course, is an intuitively
reasonable result.

IV. Comments

Although Axioms II.6 and II.7 have not been utilized, they are
included in the definition of an event-state-operation structure because
of their equivalence to the conventional expression for conditional
probabilities involving compatible events.

Theorem IV.l. // (<f, £?, P, Ω) is a 4-tuple which satisfies Axiom II.1,
then Axioms 11.6 and II.,7 are equivalent to the following: if p,qζ<o,
p C q, and a ξ @v, then

Pi O \ ^(gΛ?>«)
^ ***">- P(p,oή '

Proof. Assume Axioms II.6 and II.7 and let p, q ζ$, p C (?>
α ζ 3)v. Since p C q,

P(q, Ωv<x) =

by Axiom II.7. Since q Λ p ^ p,

1

by Axiom II.6; hence,

Conversely, assume the validity of

1,Ωva) = •

for p, q ζ $, pQq and α ξ @P. If p, q ζ $*, q ^ p and α ζ ^p, then
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hence, Axiom II.6 is valid. If p, q ζ £, p C q, and α £ ̂ , then

P(qAp,a)
P(p, oή

hence, Axiom II.7 is valid. Q.E.D.
The relation of the operations in SΩ to the operation discussed in

[10] may be examined by considering Example II . 1. If ££V(Ή.) is the set
of finite products of projections in

Z,(H) = {P1P2...Pn: Plt Pt,...,Pn

then (^^(H), o, *, ') is a Baer *-semigroup contained in the Baer
^-semigroup (J£C(ΈL), o, *, ') (see Appendix). Each A^^V(H) yields
an element of 8Ω for the Example II. 1. If

A = P1Pa...Pn,P1,Pi,...,Pnζ0>(H),

then xA = ΩPi o o ΩPn is an element of SΩ. A simple calculation
proves: the domain of xA is

@XA = {oc ζ ^ :Ύr(DaA*A) * 0}

and if α (z@%A, with density operator Dα, then α' = xΛoc has density
operator Dα '

However, if B ζ J?C(H) and 5 = λ̂ 4 where A ζ G (^ne field of complex
numbers) and λ φ 0, then

TT(DXA*A) '

Consequently, the Baer ^-semigroup (jδfc(7ϊ)/=, o, *, ') is evidently the
relevant semigroup in the approach adopted here instead of
(J£C(H), o, *, '). = is the relation defined on J?C(H) as follows: for
A, B ζ &C(H), A == 5 means there exists a λ ζ C? H O , such that
A = λB. == is an equivalence relation which respects the Baer *-semi-
group structure of (jδ?c(/7), o, *, ') (see remark after Thm. A.2.); hence,
(Jίfc(H)l ΞΞ, o, *, ') is also a Baer *-semigroup. However = does not
respect the additive structure of j£?C(H) indeed, if Aλ Ξ= ^ and ^42 = B2,
then J.J + A 2 φ 5X + JB2. This remark indicates that operations and
observables are evidently quite different kinds of entities. For example,
there exists a phenomenological interpretation for the multiplication of
operations but there exists a phenomenological interpretation for the
addition of observables. It is evidently a property of examples like
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Example II. 1 that both operations and observables have simple de-
scriptions in terms of the same mathemathical object, namely, an opera-
tor on a Hubert space.

The connection between the mathematical theories of orthomodular
ortholattices and Baer *-semigroups is explicit:

a) If (8, o, *, ') is a Baer *-semigroup, then there exists an ortho-
modular ortholattice (P'($), ^ , ') with

P' (8) = {x £ 8 : x o x — x* = x" — x} .

b) If (L, ^ , ') is an orthomodular ortholattice, then there exists a
Baer ^-semigroup (8(L), o, *, ') where 8(L) consists of a set of mappings
from L into L and there exists an injective mapping j : L -> S(L).

The orthomodular orthoposet (<f, ^ , ') associated with an event-state
structure (S, Sf, P) is not necessarily an ortholattice. However, the
introduction of operations to form an event-state-operation structure
(<f, Sf, P, Ω) makes (#, ^ , ' ) into an orthomodular ortholattice and
provides a Baer * -semigroup 8Ω which admits a phenomenological inter-
pretation. 8Ω is a set of mappings of the space Sf into itself. Hence, 8Ω

is not the Baer ^-semigroup 8(<o) mentioned in part b) of the connection
between orthomodular ortholattices and Baer *-semigroups (when we
take ((o , ^ , ') for the (L, ^ , ') of part b)). 8(<o) is a collection of mappings
of E into δ. The role of 8(£) will be discussed in [26].

Finally, the question arises whether the introduction of Baer *-semi-
groups yields any useful contributions to the quantum logic approach to
the foundations of quantum physics. In general, a given mathematical
construct in the theory of orthomodular ortholattices has a corresponding
mathematical construct in the theory of Baer *-semigroups and vice
versa. There exist a number of lattice-theoretic constructs which are
extremely useful mathematical tools for the quantum logic approach
but which do not possess a phenomenological interpretation. In several
cases the associated construct in the theory of Baer ^semigroups, indeed,
possesses an intuitively reasonable phenomenological interpretation. For
example, the semimodularity of (<f, ^ , ') is a critical property in the
proof of the "concrete representation" theorems in [17] and [23]; how-
ever, no phenomenological interpretation of this lattice-theoretic con-
cept is available. In [26], it will be shown that the semimodularity of
{$, ^, ') when <σ is atomic is equivalent to the following requirement:
every x £ 8Ω is a pure operation [10], that is, if α ( @x and α is a pure
state (an extreme point of the convex set Sf), then xoc is a pure state.

Appendix

The first part of this appendix is review of concepts from the theory
of orthomodular ortholattices while the remainder presents the necessary
aspects of the theory of Baer *-semigroups.
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Definition A.I. A relation R on a set S£ is a subset R of the Cartesian
product ΘC X #*; notation: a?i£?/ means (x, y) ζR.

Definition A.2. A relation i ^ o n a set S£ is said to be
a) symmetric: \ί x,y ^3£ and xRy, then ?/i2#,

b) anti - symmetric: iί x, y ζ $Γ, #ϋίΐ/ and ?/ϋϊα;, then x = y.

c) reflexive: iϊ x £&, then #.##.
d) transitive: if x, y, z ζ 3£, xRy and ΐ/2£z, then a ϋίz.

Definition A.3. A poseί is a pair (#*, g ) where ^ is a set and ^ is an

anti-symmetric, reflexive, transitive relation (a partial ordering) on 9£.

Definition A A. Let ($", ^ ) be a poset and & C&
a) # £ $* is an upper bound for ^ provided: if ?/ £ ̂ , then y ^ x.
b) a; ζ 5Γ is a least upper bound for ^ provided:

i) x is an upper bound for (W,
ii) if z is an upper bound for &, then x ^ z.
c) The least upper bound of ^ , if it exists, is denoted by V ^ ; in

case <& = {ί/j, 2/2}, V ^ is denoted by ^ V y2.
d) Lower bound, greatest lower bound, Λ ̂  and yλ Λ ί/2 are defined

dually.
e) An element 0 £ ̂  (respectively 1 ζ ^*) such that 0 ^ a; (respective-

ly, a; ^ 1) for all .τ ζ ^ is called a least (respectively, greatest) element of 3C.
f) {&, ^ ) is a lattice if xv x2ζ& implies xx Λ x2 and x1 V x2 exist.

The set R of real numbers has a partial ordering, the usual ordering
of real numbers. The collection 2 X of all subsets of a set X has a partial
order, namely, the set-theoretic relation of inclusion. If H is a complex
Hubert space and &(H) is the set of all projection operators in H, then
the relation ^ is a partial ordering where

P rg Q means PQ= P, P, $

Each of these examples is a lattice.

Definition A.5. Let ($", fg) be a poset with 0 and 1.
a) A mapping ' : 3C -> ΘC is an orthocomplementation provided:

i) if x £ ̂ , then (α;')' = #,
ii) if x, y ζ ^ and x ^ y, then i/; ^ ^ ;,

iii) if x ξ ^ , then a; Λ a;' and xVa:' exist and equal 0 and 1, respec-
tively.

b) If '\2£->9£ is an orthocomplementation, the relation J_, the
relation of orthogonality\ is defined as follows: for x, y ζ&, x _[_ y means
x ^ y'.

c) An orthoposet [βC, g , ') is a poset (#*, ̂ ) together with an ortho-
complementation of (5Γ, ^ ) such that iί x, y ζ^ and a; J_ i/, then χ\f y
exists.

d) An orthoposet (£Γ, g , ;) is a σ-orthoposet provided: if xv x2, . . .
and a;t- _L Xj for i 4= /, ί, / = 1, 2, . . ., then V xi exists.
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e) An orthoposet (3£, ̂ Ξ, ') is orthomodular provided: if x, y ξ 9C and
x ^ y, then y = a; V (x' Λ ?/).

2 X admits an orthocomplementation, namely, the set-theoretic com-
plementation. The mapping P £&>(H) -> P' = / - P ζ ^ ( # ) is an
orthocomplementation of έP(H).

Definition A.6. Let ($Γ, ^ ,') be a or-orthoposet.
a) A probability measure μ on 2£ is a function μ\ 9£ -> [0, 1 ] such

that

if a?!, #2, 6 & and a^ J_ ίfy for i ψ ?', then

Let ^# be a set of probability measures on ^*.
b) ^ is order-determining provided: if x.y^SC and μ(a ) ^

for all μ ζ Jί, then x < y.
c) Jt is strongly-order-determining provided: if x, y ζ 2£ and

{μ e^:μ(x) =l}C{μζ^: μ(y) = 1} ,
then x ^ y.

d) «y# is separating provided: if x, y ζ 2£ and μ (x) = μ (y) for all
μ ζ ^ 5 then x = y.

e) ^ is σ-convex provided: if μv μ2, . . . ζ ^ , ίl5 ί2, . . . ζ [0, 1] and
Σ h~ 1J then there exists & μ ζ^Jί such that

Σ h μ% (χ) f o r a11 ^ £ ̂ *
i

Theorem A.I . Ze£ ̂ M be a set of probability measures on a a-orthoposet
(&, ^ , f ) - if ΛC is separating, then (βC, t^,') is orthomodular. If <Jί is
order-determining and {θί\ g , ') is orthomodular, then Jί is separating. If
Jέ is strongly-order-determining and (βC, ^ , ') is orthomodular, then Jί is
order- determining.

Proof. See, for example, [25].
For additional material on posets and lattices, see [2].
Definition A.7. a) A semigroup (8, o) is a set S with a mapping

o: Sx S -> 8({x, y)ζSxS->xoyζS) such that if x, y, z ζ 8, then

(α; o y) o z = x o (y o 2)
i.e., o is associative.

b) If ($, o) is a semigroup, then an element 0 ζ $ (respectively, 1 ζ $)
is a zero (respectively, ^m'£) provided Ooa; = α;oO = 0 (respectively
\ox = xo\ = x) for all x £ $.

c) An involution semigroup (8, o, *) is a semigroup ($, o) together
with a mapping called an involution, * : 8 -> 8(x ζS -> x* ζ8), such that
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i) if x £ 8, then (x*)* = x,
ii) if x, y £ $, then (# o ?/)* = ?/* o a;*.

d) If ($, o, *) is an involution semigroup, then an element of P(S)
is called a projection where

P(8) = { e £ £ : e o e = e* = e} .

e) If ($, o, *) is an involution semigroup, then the relation ^ on
P(S) is defined as follows: for e, f £ P{8), e ^ / means e o / = e.

If i? is a complex Hubert space, then (j£?c (ϋΓ), o) is a semigroup where
£?C(H) is the set of all continuous (i.e., bounded) linear operators on H
and o is operator multiplication, if A, B £ J?C(H), then 4̂ o B = AB.
The usual operator adjoint, A->A*, is an involution for (J£C(H), o);
moreover, in this case, P(H), the set of projection operators in # , co-
incides with P(J£C(H)). The relation <: of e) is just the conventional
partial ordering of projection operators. This illustrates the following
theorem.

Theorem A.2. // (8, o, *) is an involution semigroup, then (P(8), ^ ) is
a poset; moreover, if 8 has a zero 0 (respectively, unit 1), then 0 (respec-
tively, 1) is the least (respectively, greatest) element of P(8).

Define the relation = on &C{H) as follows: for A, B ζ^c{H),
A = B means there exists a λ ζ C (the complex number field) such that
2 Φ θ and A = λB. = is obviously an equivalence relation (i.e., = is
reflexive, symmetric and transitive). If A ζj£?c(i7), let CA denote the
equivalence class containing A,

and let J£C{H)I ΞΞ denote the set of all these equivalence classes. If
A,A1,B,B1£&C{H), AX^A and B1 = B9 then A1oB1^AoB;
hence, o induces a composition in &C(H)\ = by

Similarly, if A, B £ £PC(H) and ̂ 4 = B, then ^4* Ξ J5* hence, * induces
an involution in &c(H)j = by (0^)* = O^*, 4̂ £ ̂ c ( # ) . (^c(H)j = , o, *)
is an involution semigroup such that J. -> (7^ is a homomorphism. How-
ever, if A1,A,B1,Bζ:^c{H), AX^A, and BX^B, then Λ + A
φ 4̂ + -β, in general indeed, HA1 = λA and JBX = ̂  J5, A, μ £ C? ̂ 5 ̂  Φ 0,
then, in general, there will exist no v £ C such that

^ + Bτ = λA + μB - v(̂ 4 + ^) .

Definition A. 8. a) A Baer *-semigroup (8,o,*,f) is a n i n v o l u t i o n

semigroup (8, o, *) with a zero 0 and a mapping ' : 8 -> P(S) such that
if x £ 8, then

{̂/ £ £ : x o 2/ = 0} = {z £ # : z = »' o z} .
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b) If (8, o, *, ') is a Baer ^-semigroup, then an element of

is called a closed projection.

If A ζ J&C(H), the null space of A is denoted by J/*^5

and the projection with range JV'A is denoted by A'. The mapping

A -> A1 makes {££c{ΐΐ), o, *) into a Baer ^-semigroup. Furthermore,

if A, B £ J^ c (#) and A = B, then ,4' = £ ' ; consequently, both

(j£?c(i7), o, *, ') and (J£ C(H)\ =, o, *, ') are Baer *-semigroups where

Theorem A.3. Zeί ($, o, *, ') 6e α i?αer *-semigroup.

a) P/(/S) = {a?/:Λ?ζiS}.

b) IfeζP'(S), thene' £P'(8).

c) (Pf (8), <, ') is an orthomodular ortholattice where <J is ίΛe relation

^ on P (8) restricted to P' (8) and ' is the restriction of ' : S -> P (S) to

P' (8); moreover, if e, f ζ P' (8), then e Λ / = (e 'o / ) ' o /.

d) If e, f ζ P' (8), then the following are equivalent:

i) there exist e0, f0, g ζ P' (8) such that

eQ J_ /0, β0 J_ g, /o _L g, β = e 0 V gr cmd / = /0 V gr ,

ϋ) e o / = / o e;

moreover, if e o f = f o e, ^ e π e Λ / = e o /.

The proofs of these theorems together with further details of the

theory of Baer *-semigroups may be found in [6].

Acknowledgements. The author gratefully acknowledges numerous informative
discussions with H. EKSTEIN and A. B. RAMSAY and expresses his gratitude to
R. HAAG both for many stimulating discussions and for the hospitality of the
II. Institut fur Theoretische Physik der Universitat Hamburg.

References

1. BIRKHOFF, G.: Lattices in applied mathematics. Proceedings of Symposia
in Pure Mathematics, Vol. 2, Lattice Theory, pp. 155—184 Providence, R. I.:
American Mathematical Society 1961.

2. — Lattice theory. Colloquium Publications, Vol. 25, 3rd Ed. Providence, R. I.:
American Mathematical Society 1967.

3. —, and J . VON NEUMANN: The logic of quantum mechanics. Ann. Math. 37,
823—843 (1936).

4. BODIOU, G.: Theorie dialectique des probabilities. Paris: Gauthier-Villars 1964.
5. EKSTEIN, H.: Presymmetry. Phys. Rev. 153, 1397—-1402 (1967).
6. FOULIS, D. J . : Baer *-semigroups. Proc. Am. Math. Soc. 11, 648—654 (1960).
7. GUDDER, S.: Spectral methods for a generalized probability theory. Trans.

Am. Math. Soc. 119, 428—442 (1965).
8. — Uniqueness and existence properties of bounded observables. Pacific J.

Math. 19, 81—93 (1966).



Logic of Quantum Mechanics 141

9. GUNSON, J.: On the algebraic structure of quantum mechanics. Commun. Math.
Phys. 6, 262—285 (1957).

10. HAAG, R., and D. KASTLER: An algebraic appraoch to quantum field theory.
J. Math. Phys. 5, 848—861 (1964).

11. JAMMER, M.: The conceptual development of quantum mechanics. New York:
McGraw-Hill 1966.

12. JAUCH, J. M.: Foundations of quantum mechanics. Reading, Mass.: Addison-
Wesley 1968.

13. KAMBER, F.: Die Struktur des Aussagenkalkuls in einer physikalischen Theorie.
Naehr. Akad. Wiss. Gόttingen Math.-Phys. Kl. II, 103—124 (1964).

14. KOLMOGOROV, A. N.: Foundations of probability theory. New York: Chelsea
Publishing Co. 1950.

15. LUDWIG, G.: Versuch einer axiomatischen Grundlegung der Quantenmechanik
und allgemeinerer physikalischer Theorien. Z. Physik 181, 233—260 (1964).

16. LTJDERS, G.: Uber die Zustandsanderung durch den Meβprozeβ. Ann. Physik
8, 322—328 (1951).

17. MACLAREN, M. D.: Notes on axioms for quantum mechanics. Argonne National
Laboratory Report, ANL-7065 (1965).

18. MACKEY, G. W.: Mathematical foundations of quantum mechanics. New York:
W. A. Benjamin, Inc. 1963.

19. MARGEISΓAU, H.: Philosophical problems concerning the meaning of measure-
ment in physics. Philos. Sci. 25, 23—33 (1958).

20. MESSIAH, A.: Quantum mechanics, Vol. 1. Amsterdam: North-Holland Publish-
ing Company 1961.

21. NEVEU, J. : Mathematical foundations of the calculus of probability. San
Francisco: Holden-Day 1965.

22. PAULI, W.: Die allgemeinen Prinzipien der Wellenmechanik, Handbuch der
Physik, Vol. 1, Part 1, 1—168. Berlίn-Gδttingen-Heidelberg: 1958.

23. PIRON, C : Axiomatique quantique. Helv. Phys. Acta 37, 439—468 (1964).
24. — De Γinterpretation des treillis complets faiblement modulaires. Preprint,

Institut de Physique Theorique de ΓUniversite de Gneve.
25. POOL, J. C. T.: Simultaneous observability and the logic of quantum mechanics.

Thesis, State University of Iowa, Department of Physics, Report SUI-63-17
(1963).

26. — Semimodularity and the logic of quantum mechanics. To appear in Commun.
Math. Phys.

27. RANDALL, C. H.: A mathematical foundation for empirical science with special
reference to quantum theory. Ph. D. Thesis, Rensselaer Polytechnic Institute
(1966).

28. VARADARAJAN, V. S.: Probability in physics and a theorem on simultaneous
observability. Commun. Pure Appl. Math. 15, 189—217 (1962).

29. VON NEUMANN, J. : Mathematical foundations of quantum mechanics. Trans.
by R. T. BEYER. Princeton: Princeton Univ. Press 1955.

30. ZIERLER, N.: Axioms for non-relativistic quantum mechanics. Pacific J. Math.
11, 1151—1169 (1961).

31. — and M. SCHLESSINGER: Boolean embeddings of orthomodular sets and
quantum logic. Duke Math. J. 32, 251—262 (1965).

J. C. T. POOL

Applied Mathematics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439, USA




