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Remarks on the Quantum Field Theory in Lattice Space. I
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Abstract. We calculate the Gelfand functionals E(f9g 9 a) for quantized fields φ
in lattice space, a being the lattice constant. In the limit a —> 0 the functionals take
on two different forms depending upon the "potential" F[φ] of the lattice Hamil-
tonian (coupling between different lattice sites not included). If F[φ] is of a short-
range type (see text for definition) the limit functional is Gaussian. The corre-
sponding representation of OCR is reducible and its realization apparently non-
unique unless F[φ] is quadratic. The most natural realization is to represent the
field as a linear combination of Fock fields whose masses are given by the excitation
energies of the lattice Hamiltonian. If F\_φ~\ is of a long-range type, the limit
functional takes the more general form once studied by ARAKI.

I. Introduction and Summary

As an object of quantum mechanics the field is distinguished from

any (finite) particle systems by the infinity of its degrees of freedom. It

is sometimes asserted that the quantized local field should be dealt with

as a limit of some approximate field [1] (finite box, finite cut-off or

averaged bilocal interaction [2], [3]).

In the present series of papers we choose to consider the limit of a

quantized field in a lattice space, by which we mean a set of canonical

variables (π(s), φ(s)} defined for each site s of a discrete lattice (simple

cubic, lattice constant α, total volume V < oo). We assume the commuta-

tion relations, (see [3]):

[ π ( r ) 9 φ ( s ) ] = -ia-*δr,8, etc. (1.1)

Deferring the discussion of a coupling between different lattice sites to

the subsequent paper, the first paper deals with the case of no coupling,

the Hamiltonian of the system being of the form,

]\. (1-2)
)

We study the limit representation at a -> 0 of the canonical commutation

relations in the following way: (1) We calculate the ground-state expecta-

tion functional E(f, g\ a] for the lattice field. (2) We let a approach zero
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to see what representation results for the limit functional1. Basic to this
approach is of course the Gelfand reconstruction theorem (see for
instance [4]).

If the potential F[φ] is 2~1(/α§^2 + λφ*), or more generally if it has
no long-range tail as defined in the text, then it turns out that the limit
functional has the same Gaussian form as KLATJDER [5] has obtained in
his treatment of the continuum theory under the restrictive assumption
of "rotational invariance" in test function space. This is discussed in
section II. The explicit construction of the representation of the can-
onical commutation relations corresponding to the limit functional is
treated in section III. One finds the phenonemon emphasized by KLAU-
DER that the representation becomes reducible unless F(φ) is quadratic.
The field can be expressed then in terms of several Fock fields but this
realization is not unique. The most natural construction is to represent
the field as a linear combination of Fock fields whose masses are given
by the energy levels of a single lattice site.

If we allow F[φ~\ to have the long-range tail, then the limit functional
can deviate from the Gaussian taking the more general form once studied
by ARAKI [6] in the continuum theory (Sec. IV).

II. Short-Range Potential

In view of the commutation relations (1.1) it is convenient to use
new variables {ps, qs} defined by

with a c-number η fixed later. They obey

[2>r,ϊβ] = -<δr, 8 ) etc. (2.2)

Taking real valued, bounded, square-integrable functions, f(x) and g(x),
we define smeared fields by

Φa (/) = »?+1/2«3 Σf(*)Φ («) = «3/2 Σ f («) 9, ,'

πa(g) = η-v'a'ΣgW ?Φ) = a»/*Σg(*)p, \ (2'3)

s s ,

Note that they differ from the usual ones by the "renormalization"
η*1/*. They satisfy

[φa(f)> πa(g)] = -ia*Σ /(s) g ( s ) , etc. (2.4)
s

which go over to the well-known canonical commutation relations for
the fields in the continuum limit a -> 0.

1 Subsequently one may take the limit V -> oo. This process is rather immaterial
in this paper and will not be stated explicitly.
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In terms of the new variables the Hamiltonian (1.2) becomes

*Ό = >?2>.. (2 5)
s

where lιs looks like a single-particle Hamiltonian

A s =yft 2 +^fc;«) (2.6)

with a potential

l*q.]. (2.7),,

In the following we shall omit the subscript s wherever there is no con-
fusion. We may assume that the lowest eigenvalue of h is zero2, ω0 = 0.

Now, the "short-range" potential is defined to be such a F[φ] that
gives an α-independent i^(q\ a) for a suitable choice of η = η(a). An
example :

F[φ}^~(μlφ*+λφt), α ^ O ) , (2.8)

for which
η = I/a (2.9)

serves the purpose,

(2.10)

Another example is: F[φ] = 2"1 λφ2n(λ > 0, n = 3, 4, . . .) for which
η — α- a (n -i)/(« + i)β j f ? however, one wants to put a mass term in, F[φ]

— 2~1(μo<^2 -f- λφ2n), then the potential cannot be of short range unless
λ vanishes with a.

Suppose F[φ] is of short range so that the Hamiltonian (2.6) is
α-independent : h = 2"1 p2 -f- i^(q). Let its normalized ground-state wave
function be uQ(q), then the ground state of ^fQ is given by

Note that the α-independence of h implies the same for u0. Then, for the
renormalized fields (2.3) we study the limit a -> 0 of the expectation
functional,

, g\ a) = <βα, exp[^α(/)] exp[^πα(g)] Ωa} . (2.12)

We get
E ( f , g ; a ) = exp[£ log !?,(/, g a)], (2.13)

with

qs] exp[iα3/^(s) p.] |0>

2 An additive constant in the potential will be suppressed throughout the paper.
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where |0) == u0(q) and

α = 2 <0| φ |0>, 0 - 2 <0| y2 |0> (2.14)

the error estimate 0(α6) is obtained by using the boundedness as well
as the square -integrability of the test functions. Now, the time-reversal
in variance of h tells us that

<0| qp 10} = - <0| pq |0> - y <0] [q, p] |0> = -]• ί .

In the continuum limit, therefore, the functional (2.12) tends to

E(f, g) = exp [- (1/4) α ||/p- (1/4) β\gY-~i(S, g)] , (2.15)

where

/, g) = lim a*
α->0

and

This limit functional has the same Gaussian form as the one KLAUΊDER
obtained [5].

III. Construction of the Representation

We now wish to construct the representation corresponding to the
limit functional (2.15). From the uncertainty relation as applied to
(2.14) we know

ocβ ^ 1 , (3.1)

the equality holding if and only if F [φ] is positive quadratic. When
ocβ = 19 (2.15) is the functional for the Fock representation, which we

denote by E F ( f , g ; β). In terms of the creation, annihilation operators

a+(k) and a(k), the field operators are given by

) = T2^ -£-« f [« (fc) + «+ (- fc)] έ ** dk (3.2)

and the corresponding expression for πF(x\ β). We denote the no-
particle state by \ΩF\ /?}, \vhich is the ground state of

^β = y/ [πf(x; β)2 + β*φf(x; β?] dx (3.3)

β may be called the mass.
When ocβ > 1, the functional (2.15) is known to give a reducible

representation [5, 6]. In fact, the representation is realized by the

operators,

Φ(^) = Σ °n2 I Θ Θ 1 Θ φF(x\ ω J 0 1 <8> Θ 1 ,
n (3 4^

π(x) = Σ Gn2 1 ® ® 1 ® ^(aj; ωn) ® 1 ® ® 1
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in the space § cyclically generated from the state,

|β> - \ΩF\ ωj) ® Θ \ΩF\ ωn> ® , (3.5)

where {ω1; 6^; cυ2, β2; . . .} is a set of paired positive numbers satisfying

Σ ω-1 <?„=«, Σ «>nGn = β (3.6)
n n

and
£ <?,, = 1 . (3.7)
n

The solution of (3.6)—(3.7) is not unique. The above construction gives
us therefore many different realizations of the representation. They are,
however, all unitarily equivalent due to Gelfand's theorem. For instance,
one may take the set to be of size two:

(3.8)
α>2

and

On = \ ( r c = l , 2 ) . (3.9)

For this choice,

ψ'(x) =)/ϊ72 [φF(x\ ωx) <g> 1 — 1 <8> φF(x\ ωa)] ,

π'(x) = J/ϊ/2 [τrp(ar, coj) ® 1 — 1 ® π^ (a? ω2)]

commute with the operators (3.4) and yet are not multiples of identity
in §. The representation is thus reducible.

Remark. If we put α/3 = 1 in (3.8) then we get coj = ω2 = /?. In this
case one will see that the operators (3.10) have no range in the space
cyclically generated by the operators (3.4) from the state (3.5). The
representation is thus irreducible in accordance with the previous
realization (3.2).

The most natural set {ωn, Gn} will be the one that is obtained by
considering time -dependent expectation functional,

E t ( f , g) = lim <β, exp[i^α(/)] exp[ΐf £ Aj exp[iπa(g)] Ω) . (3.11)
a— >0 s

Note that the time translation is effected by a "renormalized" Hamil-
tonian η-1 ffl^ and not by ̂ 0 itself; otherwise the limit won't exist3.
By a calculation similar to the one in the above, we get

E t ( f , g) = exp[-(l/4) α |/||2- (1/4) β \\g^- <0| qp(t) |0> (/, g)] (3.12)

where
eiht pe~ίht .

3 Another way for the renormalization will be discussed in the subsequent paper.

18 Commun. math. Phys., Vol. 8
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Now suppose we know the complete set of (discrete) eigenvalues and
eigenf unctions, ωn and un> of h, then

<0| qq(t) |0> = 2-ι Σ (On1Gne
i°"'t, (3.13)

n = l
with

Gn=2ωn\(n\q\Qy\*. (3.14)

One should recall that ω0 is taken to be zero. By symmetry of the
eigenf unctions we have 6r0/co0 = 0 too. Thus we are left with {ωl5 G±\
ω2, 6r2; . . .}. The normalization (3.7) is guaranteed by the THOMAS-
REICHE-KTJHN sum rule. Further, the relation

-£ί <0| qq(t) |0> = -jΐ <0| q(-t) p ]0> = - <0| p(-t) p |0> ,

together with (3.13) proves the conditions (3.6). Thus the set {ωn, Gn}
can be used to carry out the construction (3.4); the field operator is
a sum of Fock operators whose masses are given by the energy eigen-
values of h. The reducibility of the representation is obvious.

IY. Long-Range Potential

We have seen in the previous sections that the short range F[φ]
yields only a trivial sort of representation for canonical commutation
relations. If, however, F[φ] is not short range then the ground state UQ

of the Hamiltonian (2.6) becomes dependent upon a so that we may get
a more general expectation functional. Suppose UQ is given by the
positive square -root of

(<r=σ-»/»), (4.1)

where ρ1 and ρ2 are both real- valued even functions. They must satisfy
the normalization condition,

f (4.2)

We assume further that ρl (q) > 0, ρ2 (x) ^ 0 and that both belong to the
class £f of functions it follows immediately that UQ (q a) itself should
also belong to Sf (recall that ρί > 0!).

By the use of the Schrόdinger equation one can easily construct
a potential y(q\ά) of (2.6) such that the uQ(q\ a) is an eigenstate of h.
The uQ (q a) must be the ground state since, by assumption, it has no
nodes. Due to the second term in (4.1), the potential ^(q\ a) has a long-
range part it shows up at a large distance q ~ a that is ever growing
with a~l -> oo, because ρ ̂  (q) is assumed to decrease faster than any power
of \lq. We call such a F [φ] a long-range potential.
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Let us proceed to calculate the expectation functional (2.12) by using

&a = IJuo(^a) (4.3)
s

in place of (2.11). By the reason explained below, the test function f ( x )

has to be restricted to those having a compact support. We have to

know the function E s ( f , g\ a) as calculated for |0α) = u$(q\ a), to order
α3. Now,

E , ( f , g ; a ) = I + !!+••• + IV,
where

/=<0 β |θxp[tα8/ί/(s)?] |0 β >,

// = ia*/*g(8) <0α| exp[ία»/*/(s) q] p |0α> ,

HI = _- L a»g(8)* <0α| exp[*α3/2/(s) q] & |0a> ,

IV = <00 exp D'a3/2/(s) q] ίexp [ia3/*g(s) p] — 1

- ia^g(s)p+ ~ «<V(S)V} |0β>

The contribution from IV is negligible:

\IV\ = 0(a9/2) , (4.4)

because by TAYLOR'S expansion theorem we have

IV = u Q e x p [ ί a * / * f ( s ) q ] ~ [ a * / * g ( s ) γ dq
J ° r L ; V ' *J 3! L y v / J \ 3|3 ]ξ^q+θa3lzg(s) *

(0 < θ <I) so that by the Schwartz inequality and the normalization of uϋ

IIFI < α f^l2 f \(*£1 ' - L 3! J J [\ dξ*

the convergence of the integral being guaranteed by u0 ζ &*. The ex-

pression for / is the Fourier transform, which we denote by a tilde:

the second line is obtained by using (4.2), and the expectation value

{ }.,_ is taken with the wave function ρα (g)1/2. Further, // and /// can
be calculated in the same way as in the previous section. Then the

formula (2.13) gives for the limit functional,

E ( i , g ) = oxp [-(1/4) α ||/|!»- (1/4) β\\gf~~i (f, g)
L * (4.6)

18*
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the assumption that supp/(a?) should be compact is used here to assure
the existence of the integral. The coefficients α and β are given by

f
(4'7)

β =

We have thus seen that the long-range potential can in fact give an
expectation functional that has a non- quadratic dependence on /.
A functional of the type (4.6) was once studied by ABAKI [6].

Two remarks are in order. First, in the two-point function,

there appears the expectation value of ga with respect to the whole wave
function U0 (q a) :

{q*y = lim / <? u0 (q α)« dq = f <? {6l (q) + ρ2 (q)} dq . (4.9)
α— >0

Second, if one agrees to take the "renormalized" Hamiltonian Σ hs>
s

then one can show that

lim (Ωa) exp [i<f>a(f)] exp [it Σ hs] eχP [ίφafa)'] ^α>
s

[-(1/4) α | ) / + g\\*-~i <(7b(ί)-(Z(0)]> (/, g) (4.10)

>0

- exp I

where the expectation value ( } is in the sense of (4.9).
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