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Abstract. All inequivalent continuous unitary irreducible representations of the
group S00(Nt 1), N ^> 3, and its universal covering group are classified.

Introduction

Besides the identity representation ail unitary irreducible represen-
tations (UIE) of SOQ(N, 1) are infinite dimensional. In this paper we will
classify these infinite dimensional representations and calculate the
matrix elements of corresponding infintesimal operators in a certain
Hubert space. Previously the unitary representations have been derived
[1] for groups S00(N, 1) up to N = 5. The method of calculation which
is used here demands that we make reservations for the case of $00(2, 1)
repeatedly and deal with it separately. As the representations of $00(2, 1)
are already classified [1] we omit this case and consider only N ^ 3.
It is not that our method fails for N = 2 but the discussion would be
more difficult to survey if also that case is included.

The UIE of the universal covering group of SOQ(N, 1) are derived
via the UIR of the Lie algebra so (N, 1). According to theorems by
HABBISH-CHANDRA and NELSON [2] there exists a one-to-one corre-
spondence between these representations,

DIXMIER has shown [3] that when an UIR of SOQ(N, 1) is restricted
to the subgroup SO(N), each UIR of this subgroup occurs at most once.
As a Hubert space for the representation of so(N, 1) we may therefore
choose the direct sum of the Hubert spaces of an apropriate set of
inequivalent representations of so(N).

The representations of SO(N) and its twofold covering group have
been classified by GELEAND and ZETLEST [4]. We will in the following use
the notation of GELFAND and ZETLIN for the representations of SO(N)
and so(N).

The present paper contains a derivation of the matrix elements of a
representation of the generators of so(N, 1). In these calculations we
first exploit the full content of the commutation relations and then the
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requirement for unitarity. After that conditions for irreducibility and
inequivalence are imposed. We end the paper with a discussion of the
UIE of $00(5,1) to exhibit the results in an explicit example.

Gelfand-Zetlin Patterns for so (N)

The infinitesimal generators Iitk of S O ( N ) . corresponding to an
infinitesmal rotation in the (i, ώ)-plane, satisfy the following commutation
relation

\Ii,s> IK, ι] = <55, k Iί, i + ,̂ i Ij, k ~ δit fc Ij, i - δj, ι Iit k

We shall exhibit the irreducible representations of these generators in a
certain finite-dimensional Hubert space ffl.

The vectors £(α) of anorthormal basis of ffl are labeled by a Gelfand-
Zetlin pattern α. When N = 2p J

Γ 1 is odd α has the form

'279-3,2

Z2 t l

and when Λ7 = 2^} is even α has the form

"7 7ί23)-l,l t2j)-l,2

^22)-2,l ''2:

'225-3,1 ' ''2

7</2β-l,

where all the numbers Z ί 3 are either integral or half-integral and they
further fullfill the inequalities

i = l , . . . , * -

ΐ = 1,. . . , f c -
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The uppermost row of the array α determines the representation. The
corresponding representation space is then spanned by all vectors with
allowed patterns. The operators / 2 fc+ι,27c an<^ ^2^ + 2,2^+1 ac^ on the
basis vectors £(α) in the following \vay

- Σ

(α)

where
Λ-l

Π (i
r= 1

1/2

+ '2/0 -l,

1/2

-1/2

77 (iL-i.r
r = 1

A + l

} Π ( ΐ .
1/2

- i) 77 (ZL,, - zi
-1/2

fc +

r 77 ^

Γ

, r
L

I -1

77

αf ? and α^ ?' are the arrays obtained from the array α by changing lit ό to
l i t j + 1 and ^>? — 1 respectively. Since any generator Iitj can be written
as a commutator between operators of the kind Ir+ltr, the action of all
the other generators can be derived from the equations above. The
denominators in the matrix elements A and B seem to vanish for certain
values of the i's. However in these elements one pattern is not allowed
so such matrix elements are zero. When / 2 f c > f c is one then 02fc(α) is zero.

The infinitesimal generators Ik

of the following from
of SOQ(N, 1), have commutators

and
U ί t j ί *k,N+l\ " Oj,k A',Λ τ-fl ~~ Vi,lc *j,N+l

[ I i f jy+1, Ikt N+1] = Iit k where i, j and k ̂  N.
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They satisfy the antihermiticity condition

(^fc, JV+l)* — ~~ Ik, N+l -

As a Hubert space H for the representations of the Lie algebra so(N, 1)

we choose

H= Σ e H(iN_ltl, zA V-ι i a, . . .) = Σ © ί(α)
(ίtf-1,1, ^-1,2, . . . ) € Γ α

where H(lN__ltl, ^v_ι,2? •) is the Hubert space of the representation of

so(N) which is labeled by fer-ι,ι> ^y-i, 2? •)• Γi^ the set representations
of so(N), which appear in the representation of so(N, 1) and £(α) is a
vector in the Hubert space of such a representation.

We next determine the action of the generator Iχ +ltχ on the basis

vectors of H by exploiting the commutation relation. That is, we shall

calculate the matrix elements φ (α', α) of the generator Iχ+ι,N where

i, N £ (α) = Σ Ψ (u> <*) I (α/)

We have to study the two cases so(2p + 1) and 50 (2^, 1) separately.

Conditions from the Commutation Relations for the Case so (2p + 1, 1)

By considering the matrix elements of the relation

[^+i,,v^i,<-i] = 0; i<N

we find by Schur's lemma that /jy+1, N shifts the indices in the uppermost

row only. Therefore, the twτo matrix elements of Iiti_ ± which appear in
the commutator are equal, and it follows (whether these elements are

zero or not) that the matrix elements of /jv+ι,jv can depend only on the
two uppermost lines.

We now exploit the matrix elements of the relation

LL^2P + 2,233+l5 - * 2 ϊ > + l , 2 2 3 J > ^22>+l,2jJ ~ ~~ ^2ί> + 2, 2ϊ>+l W

With the notation

Izv+ittp ί(α) = Σ χ(<*', α) ί(α/)
α'

the relation reads

-2ΣΣ x(γ', «) φ(v"> /) %(«'"» Y") = - φ(*'", «)
y' v"

Suppose that φ (α, α') can be different from zero when the uppermost

rows of α and α; are (l2Vtl9 / 2 2 9 j 2 J . . . , Z 2 j ) f r , . . .) and (Z 2 j ϊ f l -f 51? 223,,a

-f θ2, . . . , lZy,r + sr, . . .) respectively. We will then derive the conditions
that the s{ have to satisfy.
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First suppose that some sj+l ^ 2. Let us then choose the numbers

in the two uppermost ΓOΛVS of α and ct!" in the following way.

for α and
/^2»,1 ~f~ Sl > ,̂2 H~~ 'S2> j &2ίU+l 4" δ j + l » Λ

V2p-J, l j ^2j>-l,2 ? ' J ^27>-l,3 ~t~ ^> /

for α'" '. Then the right hand side of the commutation relation (2) is zero

and at most one term contributes in each sum. Put

^2P-1, 3 ~ *'2v,3 -̂

then χ(oc', α) and χ(γ', oc) are zero. If l 2 V f j — I ^ ^p,y+i + '93 f i then

/(/*"» ^') #(α'"> j8")isdifferentfrom zero Butif ?2P;5 — 1 < ?23>,3+ι+ 53+ι
then both α and β' can not be alowed arrays. So we have

φ ( β ' , o c ) = 0 if I 2 ί > - ι , j = l2p,j-1

and Λvhere the two upper rows of β' are

ΛVe next proceed to relax the special choice of the numbers Z2;p-ι,r

then ^(α', α) χ(oc", α'') and #(y', α) ψ(y" > Ϋ) ^( α / / / ? y) are ^ero, and we
have again

φ ( β ' , o c ) = 0 if ί2»-ι,ί = '2»,ί- 2 -

We may continue this procedure until we reach the minimal value

^2y,j+ι + sj+ι ^y relations where two of the <p's have previously been
proved to vanish. Therefore, we have

φ(β',κ) = 0 if Sj > 1 .

In a similar way we can show that

φ(β',<z) = 0 if Sj < - 1 .

Suppose Sj --= Sj = -f 1. Then Λve choose the second row of α'" to be

(^22>-l , l> ^22?-l, 2 ? ' ' ^2p-l,i ~^ *- > ' ' > ^Zv-l, 3 ~^ ^' ' ' ' ) '

Then the right hand side of (2) is zero and at most two terms in each

sum give contributions. First put

^22)-l,ί ~ ^V,! ~~ •*•

7 — 7 — 1t ' 2 3 > — 1, i ~~ t'22?> ί -1-

then ^(α', α) and χ(γ', oc) are zero and we must have

oc) = o .
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Put then

^2 V -1,3 ~ Izv,] ~~ %

1 __ / _ Ί
t2D-l, i 6 22?» z •*•

then #(α', α) #(α", α;) and #(}/, α) φ(γ", γ') χ(ot"f, γ") vanish and we
have once again

Repeating these arguments we can cover the allowed domain in its

entirety for (Z2 3,-ι,ϊJ ^D -1,3)5 anc^ we ^n<^ ̂ na^ ̂ ne equality

φ(/?', α) = 0 if ^ = ^=-1-1

holds for the general case. In a similar way we can exclude the other
choices of sign for sϊ and Sj. So that we have φ(βf, α) = 0 if more than
one sr is different from zero.

In summary we have found that

r r

where ρ, σ and τ depend only on the uppermost rows of α. Next consider
the matrix element of the commutator (1) between the states

->-'••• and r̂ + γ \
\ ' ' ' > I2v-l,i ' ' *> •/

(We will sometimes exhibit only those Γs in the α's which are of special
interest for the discussion.) It gives

9-l,i\L. . . - 9.1 ^20-l,i \/2ί,_lt, - I/ ^ \lsv-ltl - 1

I/ ^r

and hence
/Ur \

^ U.-̂  - 2J

Af zv-
o

Q
j /*20,r -

/i22)-l,< I 7 -i
V^ίJ-l.* — -1-

By iteration we have

(kv.r — hv-l.i + 1) (kv.r + ky-ι,ί ~ n) I1/2/^,r \ Γ (kv.r
r \kv-ι,i - n) L (hv.r ~ kv-ι,ί -f n) (kv,r -f Z2a,_ l f< - 1)

Γ Λ,,r \ , __ ^ Γ (gag,r - h*-l,i) (k»,r ~ ?8g-ι.i ~ 1) I1/2

L Qf [kv-l,* ~ l) ( } L (W - J«p-l.< + 1) ft,.r - l*»-l.t)\

16 Commun. math. Phys., Vol. 8
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Particularly, when i — r and

l^ ^ = ι^ r== i
we get

^r \lz'-ι r — 2/ = ^ Γ ¥Γ^Ϊ ^r l^^-l r — 1 '

and

ρr

λVe now return to the commutation relation (1) and consider the matrix
element between the states

(l

\1
\*

This yields the relation

(ltΛT ] and\1 7 / \ 7 4 - 1 7 4- 1 / '
\*23J-l.i> 62ϊ)~l3ί7 V^aj)-!.* ί J ? t2ί;-l,j ~Γ -1-/

Γ (?2..r ~ ?2.-u) (?2i»r + hv-i,, + 1) (?2..r ~ h^ι,i) (hy.r + ^-l.z + 1) 1 l/'2

L V'Zp.r ~~ hp-lj ~ 1) V'Zp.r "Ή ^23»-l,ί) (^2p,r ~~ ^2p~l,i ~~ 1) (^23),r ~t" ^20-1, ί) J

\ // _ 7 i n Γ <^.r- ̂ -ii) (;a».r+ ?8p-ι.i + 1) I
,, 1M-J ^»-ι * ^-1.1+ ̂  [ (I,,.,-!,,-,.,- 1) (!„., + Z,,-!.,) J

„ _, Ί .

l2ϊ'-1'< 2ϊ>-1>5'

1/2

Here we can get a relation between two ρr(α)'s with consecutive values
on ?23?-ι,; ^y choosing i equal to r

Together with the previous relation (3) this gives us the dependence on
the second row of ρr. We will use the notation ρ r(Z2 ί),ι> ^239,2? •) ^or ̂ ne

part of ρr that does not depend on the second row. Then we have

7 \ i p

.iJ ^.to ' ' ' J — I/ 77 172 72 I Λ / 7 7 N
7 / !/ -̂  Γ22?5f ~

 L2p~l,j\ QrWv,!' l2v,Z> •) •
)-l,l> fc2j)-l,2» •/ f ? = i

In a similar way we find

ΛJU» ,̂2, - \ ]/ ίr 1/2 // I \2 r /7 7 \
τr \ 7 7 I I/ 11 Γ2jp,r ~~ V^D-l,? ~ ll Trlί'23),l' ^23), 2 > j

\ί'2ί)-l,l' fc23J-lJ2> * V J j _ -ĵ

We no\v turn to σ. In analogy with the derivation of relation (3) we can
derive
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and find that a is a linear function of n. So either σ is independent of
some I in the second row or we have that

P
<τ(α) = Π (kp-ι,r 4- λr) tf(^,ι> 0

r = 1

where the A r 's may depend on the Z23,,3 's. With the analogue of the
equation (4) we find if σ(α) is independent of one Z22>-ι, ί ̂  *s independent
of all I2v-ι,j, and further that all λ/s are equal. We denote them by λ.

The diagonal element of the commutation relation (1) yields that if

σ(α) is independent of all ^^-1,3 ^ ̂ s ZOΓ°> arι d further that

= — σ(Z 2 3,,ι> . .) 77 (^20-ι,r ~r ^)
?•= 1

which hold identically in Z 2 2 ,_ 2 > r>hv~ι,r anc^ ^22?, r By choosing

^22>-2, r ~ ^23>-l ,r ~ ^2D, r ~~ -*- ^OΓ ^ — l j j 2> ~ 1 and i 2 2 ,_i > 3 , = ^2p,2> ~ •*•

we find that A is zero.
We now turn to the commutation relation

20 f l , 2 2 > j ~

The matrix element of this relation between vectors with the arrays

(^2»,ί» ^2j).Λ T /'2JJ.7 i •!•» ^2ί),ί dl "ϊ \j and 1 , 1 ,
ίzfl-i,*; / \*2j) — i, Λ; + l /

gives

(^22),i ~ ^2D,J 4- 1) £fc (^2l>, i> ^2D, ί) QiV'ZVti ^ ^' ^22?,?)

= (^233, i ~~ ^2 3), 3 ~~ 1) Qi(hv,ί> ^233,3 + 1) Qjfizpyi' ^2ΐ>, ί)

\^2p,ί 4~ fr2ϊ), 3 ^/ ί ? ϊ ( ^ 2 2 ) » ί > ^20,3' •) ^3(^233,^5 ^ 2 2 ) » 3 /

^ (^233, ί "Γ ^20,3') Qi(^2p,i^ ^20,3') 73\^20, i ~Γ 1> ^20,3')

(^20, i ~ ^2^,; ~~ -*•) rί(^2p,iί ^2p,y) ^j(^2p,i ~ *^> ^ 2 0 , 3 )

~ (^223,^ ~~ ^20,3" 4~ •*•) τi(^20, iJ ^20,3' ~ •*•) T3'(^20,^ ^20,3*)

which implies that

(^20, z ~ ^20,3* + 1) ('20, i + ^20,3 + l ) ^ 3 ' ( ^ 2 0 , i ^" ^ > ^20, 3') T3 (^20, i + ^ > ^20,3+1)

~ (^20, ΐ ~ ^20,3 ~~ •*•) (^20, i + ^20,3') Q}(^2j),i^ '20,3') τ3'(^2i3,i' ^20,3* ">" •*•)

if &(*23>,i» ?23),3 )? Qj(kv,ί> kv,j + !)^ ^(Zaj,,,- -f 1, ^20,3 + 1) or
T3 -(^2u,t+ 1,^20,3) is different from zero. Therefore the expression

\^2p,ί ^2p,j) \(^2j>ti •*-) ^2p,i) @3^ 2ΐ>,ί > ^20,3') 73'(^2u,i' ^20,3 "̂ ~ •*•/

16*
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is independent of Z 2 j ) j ί, and the product

, j ) tjΨzvΛ + 1) Π \^2p,r ~ ^2pj)

depends only on / 2 3 ) > 3 .
The matrix element of the commutation relation (5) between vectors

with the array:

implies that ._ 1 X / 7

( * 2 2 > , ί - 1 ) o > ( ' 2 2 > , i ) = D,ί

so that
^233,3 ^2 3). 3 J / ^ 1^2 3), j)

is independent of ^2D,r Therefore,

r = 1

where σ is a constant. If σ 4= 0 Λve have

tfί^J),!' ^223,2' 0 = p ~

Πh,.r9*,.r- 1)
r = l

If σ = 0 then either a(l^^^ 1%$,^ - - •) = 0 or lZΊ)tV = 1, so that σ(α)
vanishes.

Finally we take the matrix elements of the two members of the
commutation relation (5) between vectors with the arrays

which yields

Γ 2l2p>i + 1
2< ~ 7^ 72— ί

ΐ L ^ ~ ^-l'k

9 7 ^
L Δtlciφ,ί "

72,-
and (/ " '+ i )\^-^ + 1 /

72—7- - — - -- σ2, if Z2 Vt y > 1
P

and a similar relation without the second term in the right member
when Z 2 j ) > 2, = 1. We first assume that no Z 2 p_ 1 ) r 's are constant in value
for the representation, and consider the degenerate case later. Then
identify terms with the same dependence on Z2 3 )_ι, r, for all r different
from k. Using the notation

l^pJ^Zp.j ~ 1) Π (^2p,r ~ ^2p,j
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where βj depends on l 2 Ί > ί j only, we have

*.r ~ I)2 - &*,< ~ I)2)

zpi.iM««.!) (7)

71 a, - llPιί) ((lu,r - l)a - ,̂,.)
r φ i

+
77 a, - (Z2ί,., -rφi

1) 1ΓZI7^7ΊΓT^)j

for v = 0, 1, . . .,p- 3

l&t βi(lι*.ϊ)

f φ i

77 ( ,̂r - (?2p.ί ~ I)2) (fe.r - I)2 - (h,.t ~ I)
rφi

(Observe that terms with zero in the denominator do not occure in
these equations. In the corresponding ρ's or τ's there are unallowed
patterns in that case).

We now let all indices but one I 2 p , i take their minimal values
^2p,r,mm m Γ. By starting with the minimal value on I 2 ϊ ) t i and then
increasing it by one unit at a time we get a series of equations from
which we can calculate β i ( l 2 ΐ ) , i ) . We find

77

,,.mln - I)2 - i^.miπ)

1 /2^ . . \\ TJ (l2 . /2 . ) ((I . i)2 l2

so that
V

y = l
( Λ \* R (1 \ ΓT /72 _ 72 N

-?) \ L) 1Ji\v%pj,mm) J.J. \l2p.r,m'm I2v,i/

£—1 / O / _ Ί \ ΓT /72 72 \ / / J _ Ί \ 2 /2 \
, = 1 2^,mm ^^ 2^r,mm 2^,mm
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Irrespective of the sign, we see that all the β's have the same functional
dependence on the Γs. They depend on I2, and they are polynomials. We
find that their degree is 2p + 2 by putting a very large /2ί?j l into the
relations (7) and (8). The only possibility is then that

r= 1

where ?2»+ι,r — ^2p,r,rnin ~~ 1 -^OΓ f ~ 1» ^, . . . £>, and where 6 is a
constant which can be determined by the relation (8) to (— l)p.

We will calculate cr2 from the relation (6). We first observe that as (6)
is fullfilled in an infinitive set of points there is only one rational function
that can interpolate and extrapolate the right member on the whole real
line. Comparing the limits of the two members as lzpti goes to one, we
find

p 4-1

We next consider the cases when some of the numbers £ 2 2 )_ 1 > r.
 are

constant in a representation. The result of the calculations in these
cases is the same as in the previous case. If n of the numbers ?23,_ι, r are
constant then the calculations are analogous to those of the non-
degenerate case for the algebra (2p — 2n -}- 1 , 1 ) . Some extra factors
enter and modify the result. The number of equations of the type (7)
decreases, and there is none left in the degenerate case when

^22>,ϊ>-r ^l + r for r = 0, 1, . . ., p - 2

I2j)-ι,v-r •= I + r — I for r = 1, . . ., p — 2 and I > 1 .

Let us outline the calculations in this case. Instead of the equations (6),
(7) and (8) we now have

Π ((l*,,r - I)2 ~ %,l)l ,Q,
J W

i)2) π ((^,r-υ2-(^,ι-i)2l

and

(10)

7
= 1
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when l2Ί),ι does not take its minimal value ^p.imίn ^ ^p.imin
> / + p — 1 (9) and (10) also hold for ^p.imίn For ^p.imin = ^ + P — 1
we have instead

Lr = 1

From the equations (9), (10) and (11) we again deduce that

&&„!) = (-!)" 77 VlP + 1,^-^,1)
?' = I

and

In the most degenerate case with Z = 1 one finds l^v-i^ = ® When

hι>,ι > ^2D,ι,min or ^2»,ι,ιnm > P ^ne equation (9) remains valid. If
^23J,ι,min = P WΘ §e^ no equation to determine j9ι(^23),ι,min) Different
values on this quantity therefore give rise to different representation
But the freedom of choosing βι(^2ί>,ι,min) ^s a consequence of the freedom
of choosing the factor (^2? + ι,p + i ~ ^Ip.i.min) or ra^ner the constant
^2 39+1, 3) +ι Therefore it is possible to classify also these representations
with the numbers lzv+ι,r

Conditions for Unitarity, Irroducibility and Inequivalence

The unitarity of the representations requires that σ is imaginary and
that

ρ,(α) = -ίR7) (12)

We can change the phases of the vectors £(α) by multiplying them by a
p

factor Π cor(1>2p,r) °̂  modulus one so that ρ; become positive or zero
r =-- 2

on Γ. We have, therefore,

^1 )̂ = Σ B**,i(") ξ(^J) - Σ $2v,i (<*ϊ$) 1

where

j[7 ^2i>-l,r
r = J

p

Π

^

2? i- 1
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The numbers Z23,+1,r,
 r = ^> •> P are all integer or all half integer and

ordered so that

^2»-f l , l ^ ^223+1,2 > ' ' ' > '223+1,33 '

As <72:p is imaginary either ^233+1,33+1 is imaginary or ^+1,23 *s zero

Relation (12) implies that β is negative or zero in Γ. Thus, when £223+1,23
is zero, Z22,+1>2,+1 can be real or imaginary. The sign oί l2p+lιP+I has no

consequence when ^223+1,23 is zer° Sign conditions imply that when
^223+ι,23+ι is real an d positive, β has to be zero for all positive integers

smaller than £2 23 +1,23+1-
That the representations obtained in this way are irreducible follows

immediately from the fact that the representation of so(2p -f 1) occur
at the most once, and that B is identically zero only on the boundary

of Γ.
To determine equivalence conditions wτe will first establish the

condition which must be satisfied by a unitary transformation that
transforms one Gelfand-Zetlin base into another Gelfand-Zetlin base.
Clearly, it must not mix the irreducible spaces of the so (2p ^- 1) —
subalgebra, since they correspond to inequivalent representations. This
then implies that the unitary transformation reduces to a direct sum of
unitary transformations in the irreducible spaces of so(2p -j- 1). We can
now proceede to so (2p), so(2p — 1), ... and repeat the argument, and
we find that the unit operator is the only unitary transformation that
transfers one Gelfand-Zetlin base into another Gelfand-Zetlin base.
Therefore, two representations are inequivalent if and only if all the
matrix elements are the same in the two representations. This leaves us
with the following inequivalent representations.

The Principal Series

*J(P> ^223+1, 1> ^223+1,2' ' •? ^223+1, 23+l)
where I2ί) +1,JP41 = ir, r real. If ^+1,33 = 0 then τ ^ 0.

•*• ^OΓ ~ * ' ' '

^ -*- ^ ^ ' + 1 i°r r ~ Λ > P ~~

The Supplementary Series

•? ^223+l,23+l)

where ί2»+ι,3)-r+ι = r - 1 for r = 1, . . ., s and Z

23+1,1 + -*-' ^223+1, r-1 ̂  ^2p,r ^ '23?+!, r +
?22),2>-r+ι = r for r = 1, . . . ,θ , s ^ 2>- 1 .

The Exceptional Series

U(e'> ^229+1,1' ^223+1,2' J ^223+1,2?+])

where Z 22>+ι,2>-r+ι = r — 1, for r = 1, . . ., ί and 0 < ^23+1,23+1 <

some positive integer t ^ p — 1, Z22))1 ^ ^223+1,1 + 1>
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Construction of the UIR of so (2p9 1)

The derivation can be made step by step in a similar way as in the
previous case. The only difference is that we here can prove that cr(α)
is zero. For this we make use of the diagonal element of the commutation
relation

LL-*22>-t- l ,2 ί» -*23>»2p- l ] ' ^233,233-lJ = ~ * 2 j 5 + l , 2 2 >

which yields

2<r(* a j >_ 1 ( 1, )Σ [Φ.,-1, <(«))" ~ (J^-s,, (<x^_2))a] 11(1*,-*,* + λ)
i f φi

p-l

= — tf(^22>-l,l> ' ) Π (^p-2,r + λ)
r = 1

where the entities λ and cr(/ 2 p_ 2 a, . . .) are defined as in the case
so(2p -f 1, 1).

First choose £2 ί )_3, r + 1 = ^20-2, r = ^2»-ι,r ̂ or r = 1, . . , p — 1. And
we find that σ(α) is identically zero if not λ = — IZD-I»S ^or some s for
Λvhich ?22)-2, s ^s no^ constant in the representation.

Next choose the Γs so that all but one of the equalities above hold
and we have

Then we find that σ(α) is zero if not all but one £ 2 p-2,r are constant in
the representation and thus 5=1.

Finally choose the Γs so that all but one of the equalities in the first
choice are satisfied and we have

^2p-3,ι + 2 = '22^-2,1
Then we find

so that σ(α) is zero even in this case, and σ(α) is identically zero.
We omit the rest of the derivation as it is completely analogous to

the derivation in the case so(2p -f 1, 1). The final result is

p p

hv+i^v £(α) = Σ A2P~ι,i (α) l(αί/_ι)- ̂  ̂ 2»-ι,ί (α '̂-i) f( '̂-ι)
? = 1 y = l

where

|^~1 2?

Ί i Π (t<2v-2,r ~ Izv-l.i ~ 1) (^2ί3-2,r ~f" ^2ί»-l,ί) Π

I)2)
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The numbers Z2 2 ) j ί,, r = 1, . . . , p — I are all integers or all half integers

and ordered so that

^223,1 > ^223,2 > * ' ' > ^223,23~1 *

Reality and sign conditions imply that £233,33(^233,33 ~~ 1) ^s rea^ anc^ no^
too large. When Z 2 3 J > 2 J is real and positive, β has to be zero for all positive

arguments smaller than lZΊ>,y>— 1.
This leaves us with the following inequivalent representations :

*j(-r ', &2J),1> ? '22?, 2))

where Z 2 l ) > 2, is real and integer or half integer at the same time as

^233,1' ^233,23-1 > ^2 23,23 £^ ~2~ 5 ^223-1,1 ^ ^23>,1> ^2p, r-1 ~~ * = ^2ϊ>-l,r ^ ^2D, r

for r = 2, . . . , p .

*J( 5 ^2p, l> ' ' J ^223,33)

λvhere I 2 l ) ί P is real and integer or half integer at the same time as I 2 2 ) t v and

2ϊ)>ί3— 1 i •" — '233*33 — ^Γ ' ^233—1,1 ^̂  ^2p,l '233, r — 1 -*- = ^233— l,r — ^223, r

for r = 2, . . . , 2 ) — 1 and Z 2 2 ? > 2 ? — 1 ̂  ^P-ID ^ ^233,33 -i + 1

R(S 5 ̂ 23J,1' ' ' ^223, 2>)

where 5 is a positive integer and 5 ̂  £>— 1, Z 2 2 ) > 3, _r+1^ r for r = 1 , . . . , s,

Z 2 3 ϊ f r are all integers, ?2D-i,i = ^2»,ι^2D,ί -ι— i - ̂ 223-1, r ̂  2 2 Φ , r for r= 2,
. . ., p - s - 1, Z 2 2>-ι,2»-r+ι = y — I for r = 1, . . ., θ .

•^(C5 ^223,1' ' ^223,23)

where ^233»3ϊ == "2" ~ί~ ^^? ^ > ̂  j '20—1,1 — ^233,1' ^2», r— i ~~ *- — ^223—1,?- ^ ^233, r

for r = 2, . . .,p- 1, and ?22))ϊ,_.1 - 1 ̂  ? 2 2 9_ l s 2 9 ^ - ^23,23+ 1

Ufei ^223,1' ' ? ^22>, j>)

Λvhere Z2;P)3) is real, -g- ^ lzv,p<tjr 1 for some non-negative integer

£ ^ ί> — 1; and when ί is positive l^^-r = τ f°r ^ = 1, . . ., ί; ^p,r are

all integers; Z2ί»-ι,ι ^ Z2»,ι» ^223,r-ι - 1 ̂  ^3»-ι,r ^ ?23),r for r = 2»

• j P 1 and ^223,23-1 1 ^ ^223-1,33 ^ ^223,23-1 ~ί~ •*•

The Representations of the Groups

In the previous sections we have classified all UIE of the Lie

algebras so(N, 1). According to theorems by HARISK- CHANDRA and

NELSON [2] we then also have classified the continuous UIE of the

universal covering group of SOQ(N, 1). We do not dixcuss this point

further, a review of results in this field may be found in [5].

Conclusion. All the infinite dimensional continuous unitary irreduc-

ible representations of SOQ(N, 1), N ^ 3, and its universal covering

group have been derived with the following result.

^Y= 22?+ I odd
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? ' ' ' > ^235+l,25+l) ' ^235+1,35+1 " ^ τ> T Γea^ it

1,2^ 0 thenτ ^ 0;
? 235-f i , ι> •' I2v+ι,v+ι)'> s positive integer, s ^ p - 1

1,35-r+l ~ ^ •*•> -*-°r ^ ~ ^> * ' ' ' S ' ^235 + 1,35+1 ~ 5 J

^(e ^+iα? Λ0+ι,3>+ι) for some positive integerί/ 2 0 + l f p _ r + 1 = r-l
for r = 1, . . . ί; 0 < Z 2»+i,»+i < ̂

where Z2 2+1,1 > ^235+1,2 > ' ' * > ^235+1,35 are a^ integers or all half
integers, they are non-negative and / 2 p j l ^ ^235+1,1 + ̂
^2a>+ι,r-ι ^ ^2»,r ^ ^2»+ι,r + 1 for T = 2, . . . , p — s, and also for
r = p — s -}- 19 . . . , p in the ^ and β eases while ^2ϊ3,39-r+ι — r

for r ^ 1, . . . , s in the e case.

N = 2p even

-^(+ > ^2D,i ' ' ^2p,ϊ>) j ^22?,»-ι ^ ^2p,2? ^ "2" ? ^22>, »-i ~~ ^23?,2> integral;
7 > 7 > 7
^23), 35-1 = ^235—1,35 = ^235,35 '

r>/__ . 7 7 \ _ 7 ' 9 < " 7 <:___. 7 _ 7
•^V ' t 2 2 ? » l » ' • > t / 235 J 35/ ' ^235,35-1 ~Γ ^ = ^235,35 — £ ' ZP*V—1 f / 23?s35

integral; ^22, j2) - 1 ̂  Z 2»-ι,2> = ~ ^235,35-1 + 1;

D(sl ^235,1' •' ^235,35)' 5 positive integer, 5 <^ ^p — 1 Z 2 3 J j 2 , = s;

^,ί>-r = r- 1 for r = 1, . . . , s ; Z 2 j>- ι ,a> = ° 5

D(c; Z2 3 ) > 1, . . J2 35^)^2^,35 = =γ+ *τ, τ> 0;

7 1 > 7 > 7 a 1
^235,3^-1 ~ L = ^235-1,35 -̂- ~ ^235,35-1 "I" 1 >

D(e; /235,ι? •» ^235,35)5 ^or some non-negative integer £ ^ p ~ 1,

— ^ ^23), 35 < M- 1 an-d when ί is positive £ 2 3 3 j 3 3_ r •= f — 1

ίor r — 1, . . . , t £ 2 2 3 ,p_ι — 1 ^ ^235-1,35 = ~~ '235,35-1 ^~ •*
where /22)>1 > / 2 p > 2 > > Z 22>,0-i are a^ integers or all half integers,

they are non-negative and, /235-ι,ι = hv, i anc^ hv,r-ι~- 1 = hv~ι,r
^ /2 2 7 > r for r = 2, . . . , p — 5 and also for r = p — s+\, ...,p—l in
the -f , —, c and e cases while / 2 3 )_ 1 > ; p_ r + 1 = r — 1 for r — 1, . . . , s in the
5 case.

Example: UIR of SO0 (5,1). The representations of the algebra so (5,1)
is of physical interest because the algebra is isomorphic to the Dirac
algebra over the real numbers in the momentum space [6], It has the
following inequivalent UIR besides the identy representation

T real; if I δ j 2 — 0 then τ ^ 0 ; / 5 a > 7 5 j 2 ^ 0 are both integral or both
half integral and £4>1 ^ 15 x -j- 1 ?5 1 ^ /4 2 ^ 15 2 -f 1

^( l ;Z 6 l l ,0 , l ) ;
Z5a > 0 is integral and Z4>1 ^ /5)1 + 1 /4 j 2 = 1

D(e;lM,Q,k,s)
0 < ^5,3 < 1 ^5,1 > 0 is integral; lίtl ^ ?5)1 + 1
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The author is indepted to Professors J. NILSSON and N. SVΔBTHOLM for valuable
comments.
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