Commun. math. Phys. 8, 228—244 (1968)

A Classification of the Unitary Irreducible
Representations of SOy(N, 1)

ULr OTrosox

Institute of Theoretical Physics, Goteborg

Received November 20, 1967

Abstraet. All inequivalent continuous unitary irreducible representations of the
group SOy (N, 1), N = 3, and its universal covering group are classified.

Introduction

Besides the identity representation all unitary irreducible represen-
tations (U I R) of SO, (N, 1) are infinite dimensional. In this paper we will
classify these infinite dimensional representations and calculate the
matrix elements of corresponding infintesimal operators in a certain
Hilbert space. Previously the unitary representations have been derived
[1] for groups SOy (N, 1) up to N = 5. The method of calculation which
is used here demands that we make reservations for the case of SO (2, 1)
repeatedly and deal with it separately. As therepresentations of S0, (2, 1)
are already classified [1] we omit this case and consider only &N = 3.
It is not that our method fails for N = 2 but the discussion would be
more difficult to survey if also that case is included.

The UIR of the universal covering group of SOy (XN, 1) are derived
via the UIR of the Lie algebra so (V, 1). According to theorems by
HAarrisH-CHANDRA and NELsoN (2] there exists a one-to-one corre-
spondence between these representations.

Dixm1ER has shown [3] that when an UI R of SO, (N, 1) is restricted
to the subgroup SO (N), each U IR of this subgroup occurs at most once.
As a Hilbert space for the representation of so (&, 1) we may therefore
choose the direct sum of the Hilbert spaces of an apropriate set of
inequivalent representations of so (V).

The representations of SO(N) and its twofold covering group have
been classified by GELFAND and ZuTriv [4]. We will in the following use
the notation of GELraxDp and ZETLIN for the representations of SO (L)
and so (V).

The present paper contains a derivation of the matrix elements of a
representation of the generators of so(V, 1). In these calculations we
first exploit the full content of the commutation relations and then the
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requirement for unitarity. After that conditions for irreducibility and
inequivalence arc imposed. We end the paper with a discussion of the
UIR of SO,(5,1) to exhibit the results in an explicit example.

Gelfand-Zetlin Patterns for so (V)

The infinitesimal generators I, , of SO(N), corresponding to an
infinitesmal rotation in the (i, k)-plane, satisty the following commutation
relation

Uip Ll = 050 Liyy + 05,0 Ly — 00w Lo — 05,0 1y

We shall exhibit the irreducible representations of these generators in a
certain finite-dimensional Hilbert space .

The vectors & («) of anorthormal basis of 57 ave labeled by a Gelfand-
Zetlin pattern . When N = 2p -+ 1 is odd o has the form

—ZEP,I l2p,2 te Zzp.p 7]
Z21)—1.1 ]Zp—l,z e lZp——lm
[F— v lypen g
lapss R

Lol
23.1 l3,2
Ly
S ZZ,I

and when N = 2p is even « has the form

lz:n—-l,l 12)2‘1,2 e l21)—1,ﬂ
lZD—Z.l e ZZﬁ—Z,@—l
I217'~3,1 e l217—3 =1

— 1.1 =

where all the numbers [,; are either integral or half-integral and they
further fullfill the inequalities

Torin,i = lbar,e > laria, i t=1,...,k—1
Larinn = b > laner, nal
Z2]c,2'>l2k—1y2'%l2k,z’+1 @:l,...,k—l

bty > lan—1,6> — lag,x -
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The uppermost row of the array « determines the representation. The
corresponding representation space is then spanned by all vectors with
allowed patterns. The operators Iyy,q,07 and Igj e 041 act on the
basis vectors & () in the following way

k

3
Logsoonii &)= g sz,j(“)f(“;kj)

i=1
where
k-1 12
Aggq, () = ]Jl sv—2,r — lar—1,5 — 1) (lgr—s,» + lzk-m’)l
k 1/2
’ ]] l27\:,r - lzk—l,a’ - ]) (lzk,r + sz —1;1‘)
—12
N Breryr — Bior ) Broryr — (aron,s + 1)2)|
g
| & N B+1 1/2
By, i(w) = Hl(l%k~],7' — B, ) n(lgk»}-],r - l%k,j)
= r=1
I_ ’ 1/2
: 1l%k,j(4l%k,j = 1) JT B — Bry) ((ar,r — 1> = By ])
r+7

kE+1

k 3 -1
on (%) = ]7112k—1,r 11 lyia,» [lek,r oy, r — 1)]
r= r=1 r=1

;"7 and o; 7 are the arrays obtained from the array « by changing I, ; to
l;,; + 1and [;, ; — 1 respectively. Since any generator I, ; can be written
as a commutator between operators of the kind I, .,,,, the action of all
the other generators can be derived from the equations above. The
denominators in the matrix elements 4 and B seem to vanish for certain
values of the I’s. However in these elements one pattern is not allowed
so such matrix elements are zero. When /,,, ;. is one then C, () is zero.

The infinitesimal generators I;, ., of SO (X, 1), have commutators
of the following from

[Im” Ik,N-l—l] = é]‘,k Ii,A‘+1 - 5i,k Ij,A’+1
and
Uy, y+1 Lo, y+1] = 15, wheret,jand £ = N.
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They satisfy the antihermiticity condition

(Ik,;'+1)* = Ik, N+1 -

As a Hilbert space H for the representations of the Lie algebra so(N, 1)
we choose
H= P @ H(ly 1,1 ly_1,2,---) =2 @ &()
(Iy-1,1,l5-1,2,. . JET o

where H(ly_y,1, ly_1,9: - - .) is the Hilbert space of the representation of
s0(N) which is labeled by (Iy _1,1: lx 1,2, - - -). ['is the set representations
of so(V), which appear in the representation of so(XN, 1) and &(«) is a
vector in the Hilbert space of such a representation.

We next determine the action of the generator Iy, y on the basis
vectors of H by exploiting the commutation relation. That is, we shall
calculate the matrix elements @ (o, «) of the generator Iy, y where

Inyq,x&(2)= Z@ oy a) E(a)

We have to study the two cases so(2p + 1) and so(2p, 1) separately.

Conditions from the Commutation Relations for the Case so (2p +1,1)
By considering the matrix elements of the relation
Uner, 3 Liyia]l =05 ¢ <N

we find by Schur’s lemma that Iy 4, y shifts the indices in the uppermost
row only. Therefore, the two matrix elements of I, ;,_; which appear in
the commutator are equal, and it follows (whether these elements are
zero or not) that the matrix elements of Iy, y can depend only on the
two uppermost lines.

We now exploit the matrix elements of the relation

[[12p+2,2p+1: Izp+1,2p]’ lzp+1,2p] = Izp+2,2p+1 . (1)
With the notation
12p+1,2p E(o) = Z z(e, @) E(a)

the relation reads
ZZ};X{O‘I,OC) ) f //I +22(p Z(ﬁ”;ﬂ,)%(a/”)ﬁ”)

117 17 117 (2)

—2224 o) ey, V) (@ ") = =@l @) .
Suppose that ¢(«, «') can be different from zero when the uppermost
rows of o and o' are (lyy 1, lap, a5« s lop,rs--.) and (lyp,g + 815 lop, o
+ 8, . s lap,» + Sp, .. .) respectively. We will then derive the conditions
that the s; have to satisfy.
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First suppose that some s; ; = 2. Let us then choose the numbers
in the two uppermost rows of « and """ in the following way.

(l-zp,la ZZp»zs R Zzp,jﬂ L >
lzp~1,1 s lzp—l,? LRI lZ:J—l:i LI

| | .
(Z'ZD,I TSt ZZI),Z TSy e e, lzp,i+1 T Si1s e )

lop—11s lop1n v v s lopmay — 250 0s

for o and

for o'”’. Then the right hand side of the commutation relation (2) is zero
and at most one term contributes in each sum. Put

lypv,5=1lap,;—1
then y (o, «) and y(y’, «) are zevo. i Iy, ; — 1 = 1y, ;.4 -+ 8, .1 then
w (B, ) y (o, p) is different from zevo. Butifly, ; — 1 < {y, 1+ 8,44
then both o and f’ can not be alowed arrays. So we have
P a)=0 i by, =1;—1

and where the two upper rows of 5" are

(l2p,1 81 lape - San e )

[213-—1,1’ lzp--],z, R 1211—1,7'3 o)
We next proceed to relax the special choice of the numbers i,,_,;. Put

lzp—l,j = lzﬂ,y’ —2

’

then y (o', o) y (o', &) and y(y", o) @ (", ) y (e
have again

rrr

, y) are zero, and we

g(ploo) =0 if 1y, 4 ;=1;—2.
We may continue this procedure until we reach the minimal value
lyp, 741+ S;.1 by relations where two of the ¢’s have previously been
proved to vanish. Therefore, we have

e e)=0 if s>1.
In a similar way we can show that
p(f,0)=0 if s, <—1.
Suppose s; = s; = + 1. Then we choose the second row of &'’ to be
(lop—1,15 lop,25 - - s lap gt Lo lyp g+ 1,00

Then the right hand side of (2) is zero and at most two terms in each
sum give contributions. First put

l2p—-1,a’ = lzzm' -1

l217—1,i = l211,i -1
then y (o', o) and y(y’, ) are zero and we must have

@) =0.
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Put then
ZZp—l,i = ZZD,i -2
123—1,1' = 1217,2' -1

then y (o, o) (", o) and x(y', o) @ ("', 7") x ("', »"") vanish and we
have once again

p(f,a)=0.
Repeating these arguments we can cover the allowed domain in its
entirety for (ly,_q,4 lap—1,), and we find that the equality
pf,a)=0 if s;=s=+1

holds for the general case. In a similar way we can exclude the other
choices of sign for s; and s;. So that we have ¢ (f’, «) = 0 if more than
one s, is different from zero.

In summary we have found that

Topyg,aps1 () = 2@7 052p)+0‘(05)5(06)—{-2‘57(05)5(062—;)

where 9, o and 7 depend only on the uppermost rows of . Next consider
the matmx element of the commutator (1) between the states

.“¢,p”) .”¢M+L”.)
(”@MM”,“l.“quﬁz”.

(We will sometimes exhibit only those {’s in the o’s which are of special
interest for the discussion.) It gives

ZZ??,T | lZZJ,T ZZP,T
Azp_l’i (Zm—m - 2) Az, (lzv—m - 1) o (lu—m')
Zzn,r lzp.r + 1 ) l2v.r
- 2A2p—1'i (lm—m‘ — 2> A2p—1,i (lzm—l,z —1) ¢ (Zza)ﬂ.z - 1)

lopr + 1 lpy + 1 Lo
+ AZP—‘lyi ( 2” _ 2) A2:0——1,2' < * 1) Qr (l2p _ 2) = O

ZZp-l‘z lZﬂ—l,i - 2p—1,%
and hence
lzz),r ) —
e\t — 2

Ay (lw

lzp-l.i — 2
Azp-—l,z (

l211,1‘ —[— 1 )

(Z2pr )
(ZEr.r ) lp-ll l211-—li -1 (l2p,r )

(lm+1 ) 0r |y
2P 1,7

217~1 @

2p—1,i

By iteration we have

(ZM).T ) — [ (l2ﬂ,¢ - lz;o——l.i + 1) (lzp,r ‘1“‘ lzp—l,i - ’ﬂ) ]1/2 (3)
(lza:u,r - ZZp 1,¢ + n) (lzpr + lzp ~1,4 ]-)

lzpr )_ - [ (ZZﬂT - 1211*1 z) ( en,r T l"zz = 1) ]1/2 (lzv.r )]
[n 97 ( 2p Li T 1 (n 1) (lzp,r - 211—1.1 + 1) (lzv.r lzp-l.z) er lzzz—l,i ’

16 Commun, math. Phys., Vol. 8

"\lapg,s —
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Particularly, when ¢ = r and

l =1

2p=1,7

l21l,r l/ -1 lzp,r
er (lzp—l.r - 2) =2 20—1 (lzp_m — 1)
lzp,r . Vn(2l '" n) l2p.r )
er (Zzp—l,r - n) o 21 — 1—— Qr (lz,,_l,r - 1)

We now return to the commutation relation (1) and consider the matrix
element between the states

lonr ) (l 1 )
' and ' .
(127)—1.1', 121:-—1,5 lZz)—l,i + 1’ ZZD—I,J + 1

This yields the relation

2pyr T
we get

and

(Z2p—1,i - l2q—-1,i)
. [ (lzp,r - Zzp—-l,j) (lzmr + lZp—lJ + 1) (lzn r lzz)—l i (lzp -t l211 —1,¢ + ]-) ]1/2

(lzp.r - lzzz—lj —1) (lZp,r -+ l211—1,7) (l2y r l2p—~1 = 1) (Z2ﬂ r Zzp 14

l?-pr ) [ zpr"lz -1i)<2pr‘+'lz —1i+1) ]1/2
N —( 1 po1 ) Vopr T bant.
& (l2p—1,i: lzp—l.i ( 2p-1i 51279 b J ) 217 r 1273-1 i 1) (lzzv » l2JJ—1 z)
. lZJD,T (lzn r 2zz~1 J) (l2p r + lzp =1, + 1) yz
er (lzp—l,u lop1 T 1) —(lzp_l’i—lzp_l’j_ b [ (lap,r — lapss— D(epr -+ lap-13) ]
lz 7 D, T
e (12:—1.1 -1, lzp—l,j) T (lzpwl’i 21) 1’9) Or (l:p—l s+l + 1) 0. (4)

Here we can get a relation between two p,.()’s with consecutive values
on ly,_4,; by choosing ¢ equal to r
oy < lan.r g
(l::_“) V|l>p r 217 =17 f ]) I =0 (ZZ:—IJ + l)l/ Il%p,r - l§p~1,7'| .

Together with the previous relation (3) this gives us the dependence on
the second row of o,. We will use the notation g, (ly,,1, lzp, 9 - . .) for the
part of p, that does not depend on the second row. Then we have

l21)—1 1 Zp 1,29 ¢ ¢ -

s v ’
QT(Z ol Vﬂlln;) )p 171 0rllap,1 lap, 2 - -) -

In a similar way we find

Lopas Laprgs » o -
T, ( .1 2 ) H |l)p’ — 27,_1,7‘ — 1)21 Tr(lml,l: ZZ@;Z? R

lzﬂ"'l,l’ lz])-l,?’ c

We now turn to ¢. In analogy with the derivation of relation (3) we can

derive
o (lzp,r ) = Nno (l%.r ) _ (TL _ 1) o (lzp.r >
lypri + 7 lop-1i+ 1 A
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and find that ¢ is a linear function of n. So either ¢ is independent of
some [ in the second row or we have that

14

o) = I7 (l2p—1,7‘ +- ;/) G(ZZIJ,la .

r=1

where the 1,’s may depend on the [,, ;’s. With the analogue of the
equation (4) we find if o (e) is independent of one l,,_4, ; it is independent
of all l,,,_4,;, and further that all 4,’s are equal. We denote them by A.

The diagonal element of the commutation relation (1) yields that if
o(e) is independent of all I, _, ; it is zero, and further that

2(7(1219,1’ . ) 2 [(A211—1,i(‘x))2 - (Azp—l,i((x;zf—l))z] H (Z2P~1,1‘+ )V)

v
»
= —0(lap,1, ) 1] (layg,r + 2)
7=1
which hold identically in l,,_, ., 0ls,_1,, and Iy, .. By choosing
lzr—2,r = lZp——l,r = 1271,7' —lforr=1,..,p—Tlandly, 4, =1y, —1

we find that A is zero.
We now turn to the commutation relation

[Izp+2,2p+1a [Izz>+2,2p+1y [2p+»1,2p]] = 1211+1,273 . (5)
The matrix element of this relation between vectors with the arrays

(lzp,is lzm.j) and (lzrm 1{: L lzw’ i 1)

) lop—vt lLy—1LEk+1
gives

(lap,i = lap, i + 1) 0illan, o> lap, i) 0ilap, s 4 Li 1oy, )
= (lap, i = lap,s — 1) 0:(lap, 6> lap,s = 1) 0i(lap, 55 Loy, 4)
(ap, s+ lag,s — 2) Tillap, s bap,s) 05(Lp, s — 1, by, 5)
= (lap, i + oy, i) Tillap,is lap, s+ 1) 05(Lap, 55 Loy, )
(Lap, i+ lap, s = 2) 0llap, 15 Lo, s — 1) Ti(lan, 55 lap, 5)
= (lap, i T lap,s) 0:(lap, 5> lap, s) Tillay, s + 1, Iy, )
(lap, i = lap,s — 1) Tillap, is lap,3) Tillay, s — L, 1oy, 5)
= (lap,s = lap,s + 1) Tillap, i lap, 5 — 1) Ti(lap, &5 lap, )
which implies that
(o, e = lap, s+ 1) (ap,s + lap, s+ 1) 0i(lap,i 4+ 1, by, 5) Tillap, s+ Llap, ;1)
= (lap,s = lap,i — 1) (ap,i + lap,s) 0illan, s lap,s) Tillap,is lop,s + 1)

it 0iap, o lan,i)s  0illan, s lag,s + 1), Tillay,i + 1, oy + 1) or
T;(lyp, s+ Lily,, ;) 1s different from zero. Therefore the expression

(Z%p,i - l%p,y) ((lzao,i - 1)2 - l%p,j) 0; (ZZp,z‘, l2p,a') T; (l2p, 7 l2p,a' + 1)
16*
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is independent of I, ;, and the product
@J’(lzzhj) Tj(ZZp,i -+ 1) H (lgp,r - lgp,j) ((lzp,r - 1)2 - lgp,r)

T+]
depends only on [, ;.
The matrix element of the commutation relation (5) between vectors

with the array:
lzp,d ) lzw + 1 )
R L
(lop,s — 1) 0(lap,3) = (lap,; + 1) 0(lyy,; + 1)

lap,i Ugp,s — 1) 0(lay,5)
is independent of I, ,, ;. Therefore,

P
U(ZM),D Z2p,2’ o ) HZZp,r(lzszr - 1) =0

=1

implies that

so that

where ¢ is a constant. If o = 0 we have
ag

U(lzp,b lzmzv ce) = »

qlzp,r(l2ﬁ,r - 1)

r=
If o =0 then either o(ly,,1,lsp, 0 --.) =0 or Iy, , =1, so that o(x)
vanishes.

Finally we take the matrix elements of the two members of the
commutation relation (5) between vectors with the arrays

(l2p—1.k) and (l27)—1,k + 1)

20, L 1 | » |
Z [ e Qz‘(lw, ;) Tz'(lw,z' + 1) ' H(l%p— 1,07 ng i)

TR, B
B lzpn» 2p-1k r=1 ]

which yields

2y — 3 ?
LU Uy s — D1(lyy s B i—(ly,  — 1)
(lzp,i . 1)2 — ng_l’k Qz( 2D,1 )Tz< 2p,z) 7]=71( 2p—1,7 ( 2,1 ) )]
y4
1 ]Yilgﬁ—l,r
= .
=1- Bn o? ifly, ,>1

»
.Hll;zp,r (ZZILT -1 )2

and a similar relation without the second term in the right member
when l,, , = 1. We first assume that no l,, _,,,’s are constant in value
for the representation, and consider the degenerate case later. Then
identify terms with the same dependence on ly,_4,,, for all r different
from k. Using the notation

Bi(lap,s) = 0i(lap, ) Tillap,; + 1)

' l%p,i(4lg'p,i - 1) {.Z (l%p,r - l%p,;i) ((Zzp,r —1)2— l%p,j)
T
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where (; depends on I,,, ; only, we have

S X
1 2l2p.z’ —1 |: l%p,i r{g (l%pr - ‘Q’p i) ((l%r - 1)2 - lgp i) (6)
+ . ﬁ’l 2777 1
(lzam - 1)2 ]:Z (l%;o,r - (lzp i 1 2 ( lzp,r - 1)2 - (ZZp,i - 1)2)]
o2
= V" T By (e = 17
e 13,,,/} (lap.s) (7)
i =1 21211,1‘ -1 [ H (l‘gp.r 2171 ((lznr - 1)2 - l2pz‘)
i = )
(lani — 1) Bo(laps — 1) 1
T T — 09 (= 1F = (s = 1>2>] =0
fory=0,1,...,p—3
Lo (=1 1325 B (la,:)
2 30, ~1[_ Bl (e — T B
47 2p,1 ’/‘]:FYL ( 2p,r Qp,z) (( 2p,7 ) 2D, z) (8)
(lzpi -1 217_4[3 "pz - l) .
+ .]:Z-.(ng,r_ ( 2p,% 1) ) ((12171‘ - 1) - (lmz - )2)] - 1 )

(Observe that terms with zero in the denominator do not occure in
these equations. In the corresponding ¢’s or 7’s there are unallowed
patterns in that case).

We now let all indices but one l,, ; take their minimal values
lypr,mm in I By starting with the minimal value on I,,, ; and then
increasing it by one unit at a time we get a series of equations from
which we can calculate f;(l,,, ;). We find

. lop,i
(=D Bilon,) . 5 21 — 1
rg (l%p,r,min - Z%p,i) ((lz,p,r,min - 1)2 - l%]),i) 1= ZQZp,‘i,min( )
. 2 (=1) 4, (lﬂp.a‘,min)
j=q (212p.i,min - ]-) (l2 - lgp,j,min) ((l - 1)2 - lgp,j,min) H (lgp,r, min l‘gp,i.min)
]
: ((ZQp.r,mm - ]-)2 - lgpl mm) T

— - 1) /37 Z?p] mm) (prz min Zgj{,z) ((l2p.i,min — 1)2 " l%p.i)

jEq (2 [2111 min T ]-) (Z2pj min l?p z) -I:Z.(lzp.r min lgp,j.min) ((IQp.r,min - 1)2 - l%p,i.min)
r=F7

+ <_ 1) ﬁ (Z2pz mm) ( lsz min ]-) - lgp,i)

(2l2p,i,min - 1) H (ZZpr min l"pz mm) ((Z2pr min ~ 1)2 - lgp.i,min)
r1
so that
14
_1)1+1 ﬂi(lzzu,i) = I];((ZZZJ,r,min - 1)2 - Z%p,i)
=
(— 1)Z /35 (l‘Zﬂ,j,miu) ]I(lgp,r,min - l%p,i)
r=+j

1 (212p,j,min - 1) H (lgp,r,rniu - lg’p,j.min) ((ZQJ)‘r.min - 1)2 - [gzl.j,min) ’
r=Fj

e

i)
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Irrespective of the sign, we sec that all the §’s have the same functional
dependence on the I’s. They depend on /2, and they are polynomials. We
find that their degree is 2p 4 2 by putting a very large l,,,; into the
relations (7) and (8). The only possibility is then that

. p+1
(_ ])H-l ﬂz (Zzp. z) =b 171 (l%p~i-],1' - l%p,z)
r=
where Iy, q,r = 1lopmin—1 for r=1,2,...p, and where b is a

constant which can be determined by the relation (8) to (—1)7.

We will calculate o? from the relation (6). We first observe that as (6)
is fullfilled in an infinitive set of points there is only one rational function
that can interpolate and extrapolate the right member on the whole real

line. Comparing the limits of the two members as [,, , goes to one, we
find

p+1

2 _ >
o= 1 B, 1,

=1

We next consider the cases when some of the numbers I,,_;, , are
constant in a representation. The result of the calculations in these
cases is the same as in the previous case. If n of the numbers [,,_; , are
constant then the calculations are analogous to those of the non-
degenerate case for the algebra (2p — 2n + 1, 1). Some extra factors
enter and modify the result. The number of equations of the type (7)
decreases, and there is none left in the degenerate case when

lopper =1+7 for r=0,1,...,p—2
lopt,pr=0+4+7r—1 for r=1,...,p—2 and I>1.
Let us outline the calculations in this case. Instead of the equations (6),
(7) and (8) we now have

D -1
/31\ 229,1) [ 2p,2 l%p,l) H ((Zzp,r - 1)2 - lgz),l)]

P -1
- ﬁl(ZZp,l ) [(l’p 2 ( 20,17 1)2) H <(l2:n, T ])2“ (ZZp.l_ 1)2]

= (* 1)” (21219,1 - ])
and

-1
- ﬁl(lzzr,l) I:ZZ;n 1(%p““l)p1 H( 2Py 1 _l%p 1):'
4 Prllep— 1) (10)

—1
: [(Zzpyl—“ 1)2(l2p 2 ( 2,17 1) ) ( 20, T 1)2 - (lzp,l—' 1)Z>:I

Fe=2
2

= (— l)pgz[lzgmlznzﬂ (lgp,r — 1 ]
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when [y, ; does not take its minimal value L, 1. I Zyp1mm
>14 p—1(9) and (10) also hold for Iy, iy Forlyp jmm =1+ p—1
we have instead

» -1
- [))1 I’p 1, mm H((Zzp,r - 1)2 - l;%p,lmin)
My (11)

—1
= (_ l)p(QZZp,lmin - a® [ ﬁ(ZZﬂ,r - 1)2] - 1)

TFrom the equations (9), (10) and (11) we again deduce that

—

D+

ﬂl(ZZIJ,l) = (_ ])p Z l2p+l,p - ng,])

and
P+l

2 _. C 72
= [ By
=1

In the most degenerate case with I = 1 one finds /,,_, , = 0. When
lopii > lop,1,min OF lop,1,min > P the equation (9) remains valid. If
lop,1,min = P We get no equation to determine f;(ly,,1, min) Different
values on this quantity therefore give rise to different representation
But the freedom of choosing 5 ({5,,1, min) I8 @ consequence of the freedom
of choosing the factor (13, ., — 3, 1 mm) Or rather the constant
lyp+1,p+1- Therefore it is possible to classify also these representations
with the numbers Iy, 4,

Conditions for Unitarity, Irreducibility and Inequivalence

The unitarity of the representations requires that ¢ is imaginary and
that

0i(@) = — (). (12)
We can change the phases of the vectors &(«) by multiplying them by a

factor ]] ®,(lyp, ) of modulus one so that gp; become positive or zero
=2

on I'. We have, therefore,

. 7) . . 3
Topio,epi16(0) = 2 By, () (o)) “'2‘1 Boy,i (0)) Elaay) + Coapé(a)
j =
where

12

»
]] (Z'gp—l,r - ’p ]) U (Z[H"lr l%p,]')

7-—1 I

I%p;( 20, T 1) [[ (ZQpr - ZZI).]) ((l2p,r - 1)2 - Z%p])

f
i
By, (o) = |

Iﬁ]kp erlzzrlr
Czpz ?_J' -

H lzp.r( 20,7 T 1)
r=1
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The numbers I, .1, 7 =1, ..., p are all integer or all half integer and
ordered so that
bpsta > lapra,e > > lopiy, -

As C,, is imaginary either 0y, .,,,,; I8 imaginary or l,,.4,, is zero.
Relation (12) implies that f is negative or zero in 1. Thus, when ly, 4, ,
is zero, Iy, 41, p4+1 €an be real or imaginary. The sign of ,,,,,,.; has no
consequence when Iy, .;,, is zero. Sign conditions imply that when
lop11,p+1 is real and positive, f has to be zero for all positive integers
smaller than Iy, 4,51

That the representations obtained in this way are irreducible follows
immediately from the fact that the representation of so(2p + 1) occur
at the most once, and that B is identically zero only on the boundary
of I

To determine equivalence conditions we will first establish the
condition which must be satisfied by a unitary transformation that
transforms one Gelfand-Zetlin base into another Gelfand-Zetlin base.
Clearly, it must not mix the irreducible spaces of the so(2p + 1) —
subalgebra, since they correspond to inequivalent representations. This
then implies that the unitary transformation reduces to a direct sum of
unitary transformations in the irreducible spaces of so(2p -~ 1). We can
now proceede to so(2p),so(2p — 1), ... and repeat the argument, and
we find that the unit operator is the only unitary transformation that
transfers one Gelfand-Zetlin base into another Gelfand-Zetlin base.
Therefore, two representations are inequivalent if and only if all the
matrix elements are the same in the two representations. This leaves us
with the following inequivalent representations.

The Principal Series

D(p;lypir,n lapra,er - o5 lapet,pe1)
where Iy, 1,41 =17, Treal. I 1y, ., , =0 then 7 = 0.

l2:o,1 = l211+1,1 + 17 Z227+1,'r—1 = Z2p,1‘ = 22p+1,r =+ 1’ for r= 27 SRR

The Supplementary Series

D(s; byt lopstiz -+ oo lapit,pa)

where Iy, 1, pii=r—1forr=1,.. ., sand ly, 1,1 =S5,

lip1 = lapirn+ Llapia, 1 = lopr = lypyq,, 1 forr =2, p—s,
lop,porey=riorr=1,...,8s=p—1.

The Exceptional Series

D(e;lypia,0 lopia,e - oo lopitinen)

where lyy, . 1, ry1=r—1 for r=1,.. .t and 0 <1y, ,4, <t for
some positive integer ¢ =< p — 1,0y, 1 = ly, 1,1+ 1,

bpit,r1 = lag,r Z lapyy,, + Liorr=2,...,p.
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Construetion of the UIR of so (2p, 1)

The derivation can be made step by step in a similar way as in the
previous case. The only difference is that we here can prove that o(«)
is zero. For this we make use of the diagonal element of the commutation
relation

[[IZIH—LZQ?’ ]2p,2p—1]’ IZp,Zp—l] = IZn+1,2p
which yields

20(lyp—1,1 - ) 2 [(Bap-a,s(0))* = (Boy—g,i (OLZ—}?—Z))Q].:‘]:Z(ZZP—%T + )

p—1
= G(l2p~1’1) ) 0T (lzp-—z,r -+ )‘)
r=1
where the entities 1 and o(ly,_s,1,...) are defined as in the case
so(2p -+ 1,1).
First choosely, 5, + 1 =1y, 5, =1y, 4, forr=1,...,p— 1 And
we find that o(«) is identically zero if not 2 = — I,,_,, for some s for

which [,,_, ¢ is not constant in the representation.
Next choose the I’s so that all but one of the equalities above hold
and we have
lop—9,0=1lap 1,4— 1 for gq=s.

Then we find that o («) is zero if not all but one l,,_, , are constant in
the representation and thus s = 1.

Finally choose the I’s so that all but one of the equalities in the first
choice are satisfied and we have

lop_s1+2=1y, 5.
Then we find

P
(sz~2,1(“2_pl»-2)>2U(lzp—l,l’ o) ]]2 (lap—2,r = lap—1,1) =0
7=

so that o(«) is zero even in this case, and ¢ () is identically zero.
We omit the rest of the derivation as it is completely analogous to
the derivation in the case so(2p + 1, 1). The final result is

P ) P ) )
Iypi1,00 &() :‘21A2p—1,j () 5(0‘;117—1)“_21Azp—1,j(0‘2_5—1) Slog) 1)
i= i=
where

Agp_1,(2)

Ip—1 P i1
1’ Hl (Zzp‘z,r - ZZp—x,j - 1) (lzp—z,r + l217—-1,]'> [];l (lzm,r - lzp—],i - 1) (lzp,r + 1212*17') :
7 = 7= i
2; g (l%;a—l,f - l%p—l,j) (lgp»l,r - (l211—1,j + 1)2)

Y]

/2
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The numbers l,,, ., 7 =1,...,p — 1 are all integers or all half integers
and ordered so that
lypg > lap,a > > lopp 1.

Reality and sign conditions imply that I, ,(l5,,, — 1) is real and not
too large. When [, , is real and positive, § has to be zero for all positive
arguments smaller than f,, , — 1.

This leaves us with the following inequivalent representations:

Dl lap,n - o lap,)

where [y, , is real and integer or half integer at the same time as
1

lZP,I’ Z2:m1:—-1> l2p,p = 9 Z‘M)—l,l = lzp,l’ lzp, o — 1= l2p—1,r = lz:u,r

forr=2,...,p.

D(=5lyp1s o5 lap,p)

where l,,, ,isreal and integer or half integer at the same time as [,,, , and

1
—loppat 2=y, = 9 bpo11Z by laprn— 1 Z ly g, = lap,r

for r=2,...,p—1 and l,,—1=l, 1, = by, 1+ 1.

D(S; Zzp,l: ot Z21J,p)

where s is a positive integer and s < p — 1,05, , _,=rforr=1,... s,

ly,,rareallintegers, o) 11 = lop 1 lop, r1— 1 oy, = lgy,  for =2,
cop—8s—Lly (= r—Llforr=1,...,s.

D(C; lzp,v e l2p,p)

1T
where Iy, , = 5 I T> 05l g0 = lop,s lapyro1 =1 Zlapt,0 Z lap,r

forr=2,...,p—1and ly,, , ,—1 =1 = —lypp+1.

2p—1,p =
D(e;lyp,1s -+ s lan,s)

where ly,,, is real, 5 = [y, , <{+ 1 for some non-negative integer

t < p—1; and when ¢ is positive l,, ,_,=rforr=1,...,t;1,, , are
all integers; lyy 1,0 = lap,1 lop,ro1 — 1 = lapg,r = lap,r
cop—landly, , = 1=l y = —lyppq+ 1.

for r =2,

The Representations of the Groups

In the previous sections we have classified all UIR of the Lie
algebras so(V, 1). According to theorems by HarIsH-CHANDRA and
Nrrson [2] we then also have classified the continuous UIR of the
universal covering group of SO, (N, 1). We do not dixcuss this point
further, a review of results in this field may be found in [5].

Conclusion. All the infinite dimensional continuous unitary irreduc-
ible representations of SO4(N, 1), N = 3, and its universal covering
group have been derived with the following result.

N =2p -+ 1odd



Representations of SO, (¥, 1) 243

D(p;ilyyit,n -5 laprr,p41)s lopra,paa = 07, Treal; if

lopi1,p = 0 then 7= 0;

D(s;lyy 115 -+ -5 laps1,pe1)s S positive integer, s = p — 1;
lapstyp—rsr=1—Lforr=1...,8ly, q,p1=6;

Dle;lypy 1,1 - - o5 lapa,prq); for some positive integer £ ly, 1, g =1—1
forr=1,... ;0 <lypi1,ps1<1t;

where 1y, 1,1 >lopi1,2> > 1lyy4q,, are all integers or all half
integers, they are non-negative and ly, 1 = ly, 1,1 + 1,

lopatyret = lopr 2 lopyq,»+1 for r=2,...,p—s, and also for
r=p-—s-+1,...,pin the p and e cases while Iy, , ,., =7
forr=1,...,sin the ¢ case.

N = 2p even

1 .

D(+5lyp,05 -5 lap,n)s lap,p1 > lap,p = 5 lap,p—1— lap,, integral;
l217,p—1 = lzzz—l,m = lzpyp ) 1
D(—:ilyp,ts -« s lapn)s —lapp1 T 2= lyyp = 9 lav,o—1— lap,p
integral; ly,, , — 1 = loy 3,9 = — lap,pq + 13
D(s:lyp,10 « - -5 lap, p); 8 Positive integer, s =< p — 151, , = 83
loppp=1—Lforr=1...,80;,_1,,=0;

1 .
Dieslop,1s -+ s lap,p)ilap,y =5+ 177> 0;
1217,17—1 1= Zzp——l,p = — 2273,77-1 + 13
Doeslyp 1 -+ 5 Loy, p); for some non-negative integer ¢t < p — 1,

1 . .y

5 = lap,y <t4-1 and when { is positive Iy, ,_, =1 — 1

for r = Lot Zw,p—-l -1z Zzp—lyp = — Zzp,p—l + L

where Iy, 1 > 1ly,, 4> " >1,,,,_, are all integers or all half integers,
they are non-negative and, ly, 4,1 = ly,,1 and Ly, 1 — 1210, 4,

=lyy,, forr=2...,p—sand also for r=p—s+1,...,p—11in
the +, —, ¢ and e cases while [y, _;,,_,,;=7—Llforr=1,...,sinthe
s case.

Example: UIR of SO, (5,1). The representations of the algebra so(5,1)
is of physical interest because the algebra is isomorphic to the Dirac
algebra over the real numbers in the momentum space [6]. It has the
following inequivalent U I R besides the identy representation
D(p;ls,q, b5, 07);

v real; if I5 ,=0 then v = 0;{;,; > [; , = 0 are both integral or both
half integral and l,,; =I5, + 1; 05,1 = Uy, = l5,0 + 1;

D(1; 25,17 0,1);

l5,1 > Oisintegral and I,,; = l;; + 1;14,,=1;

Die; 15,1, 0, 15,5)

0<l;3<1;l;;>0isintegral; I, = 5,1 + 1;

lsn 2 ly,y =I5+ 1.
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The author is indepted to Professors J. NiLssox and N. SvarTHOLM for valuable

comments.
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