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Abstract, For a large class of tensor operators in U(n)9 a surprisingly simple
diagrammatic calculus of patterns is shown to exist; to each operator of this class
a pattern may be assigned in terms of which the complete algebraic formula for all
matrix elements may be read off directly. The class of operators includes all funda-
mental, elementary and extremal Wigner operators in all U(n). Application of the
pattern calculus toward the explicit determination of all tensor operators is dis-
cussed.

I. Introduction and Summary

The problem of extending the angular momentum techniques, devel-
oped principally by WIGNER and RACAH, to the ^-dimensional unitary
group, U(n), has been a research goal of considerable interest in the past
few years1. The ancillary problems (for example, a constructive definition
of all unitary irreducible representations2) have been solved and the major
problem, simple reducibility (or more accurately, the multiplicity prob-
lem), has been given a canonical setting [4] in terms of a general em-
bedding proposition (embedding U (n) in the totally symmetric irreps of
U (n2)) and a corresponding interpretation in terms of the 'boson factor-
ization lemma'. These results — which nicely incorporate all our earlier
work as special cases — lead to an explicit canonical definition of all
SU(3) tensor operators3 (and correspondingly a Wigner-Racah system
comprising the analogues for SU(3) of the (lj), (3?') and (6?*) symbols of
SU(2)).

* Supported in part by the U. S. Army Research Office (Durham), the National
Science Foundation, and the U. S. Atomic Energy Commission.

1 To attempt an adequate referencing here would be inappropriate alternatively
we refer to three recent texts — [1, 2, 3] — typifying widely different view-points,
from which a suitable bibliography can be obtained.

2 The term "irrep" is used for an irreducible representation; "rep" denotes any
representation. All representations considered are assumed unitary.

3 The extension to all 8 U (n) has been obtained, but has not as yet been pre-
pared for publication.
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Let us note, for clarity, that 'canonical' is used here in the sense that
there are no free choices involved in the resolution of the multiplicity,
aside from that choice of order (1, 2, ...?&) explicitly used in the Weyl
canonical state labelling.

These general results provide the basic structure and framework for
the present investigation; for the convenience of the reader a resume is
given in Section II, in sufficient detail that the present paper is essen-
tially self-contained.

The results of the present paper arose from a detailed investigation of
the explicit tensor operators of U (n) for this investigation we exploited
corollary (4) to the factorization lemma [4] (the analog for tensor
operators of the Cartan theorem for constructing all irreps from the
fundamental irrep). We found that, for a large class of tensor operators,
there existed a 'calculus of patterns' in terms of which a truly remarkable,
even astonishing, simplification occurs: To each operator of this class we
may assign a pattern in terms of which the complete algebraic formula for
all matrix elements may be read off directly.

I t is only a slight exaggeration to say that our result makes the pre-
paration of algebraic and numerical tables for these operators quite
superfluous!

This pattern calculus is a natural continuation of the synthesis
typified by the Young frame and the Young tableaux for the symmetric
groups, and the Weyl and Gelfand patterns for the unitary groups; but
it is also something more, in that an operator pattern is not merely a
mnemonic, but literally is the operator it denotes, in virtue of its speci-
fication of all matrix elements. This fact distinguishes the pattern
calculus from the many mnemonic schemes currently popular for the
8U(2), and other groups.

The class of operators for which the pattern calculus applies, in this
completely explicit form, comprises first of all the fundamental Wigner
operators of SU(n), denoted by 4 (1 0) (Section III) — these are the
analogues to the spin-1/2 operators of 8U(2); secondly, it applies to all
elementary operators, (1&, 0 r t_ fc), (k, n arbitrary) (Section IV) lastly, it
applies to all extremal reduced operators (Section VI). (Each of these
classes includes the preceding class, but it is convenient to make the
distinctions indicated.)

The classes just enumerated comprise the largest set of tensor
operators which the pattern technique directly provides the complete
answer. However, as a calculus of patterns — in which patterns operate

4 We use the notation that the dotted numerals, 0 and 1, signify the numeral is
repeated as often as necessary. The more explicit notation 1Λ denotes that the 1
appears &-times.
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on each other — the method generalizes such that it then applies to the
explicit construction of the general tensor operator. This further devel-
opment of the pattern calculus is incomplete at present. In Section VII
we discuss this development for the simplest cases; the results obtained
(in particular, Eqs. (58) and (60)) show that there exists a close connec-
tion between the pattern calculus and the boson polynomials of
U(n) x U(n).

II. Resume of Previous Work and JVotational Conventions

It is the purpose of the following section to discuss the background
material on which our results are based in sufficient detail that the present
paper be self-contained. I t might be useful to emphasize again that the
pattern calculus — which it is our aim to develop in succeeding sections —
has such a surprisingly simple structure that one might almost be con-
tent merely to know that an adequate justification exists.

The essential results, which we review, have been developed by
BAIRD, GIOVANNINI and the present authors in several papers, [4—11].
There are three principal topics: (a) the concepts of canonical Wigner
operators and reduced Wigner operators5 for the group U(n); (b) the
boson calculus6 applied to U(n) state vectors [6, 10]; and (c) the facto-
rization lemma [4] which reveals the composite structure of boson
operators in terms of Wigner operators.

Let us summarize now the basic results — and especially the nota-
tional conventions — for the (unitary) irreps of the ^-dimensional
unitary group, U(n). Every irrep of U(n) is characterized by a partition
[m] Ξ= [min] ΞΞ [m l n, m a n , . . ., mnn\ of n non-negative integers obeying
the relation min^ mi+ltn; conversely every such partition denotes a
unique irrep. To accord with our motivation from quantum mechanics
("complete set of commuting observables") the integers {min} are to be
defined as the eigenvalues of a set of n commuting invariant operators
[4, 5] denoted by {/&}, h = 1, 2, . . . n. (The invariant operator Ik is of
(algebraic) degree h and the unique definition of the {min} requires sign
conventions on the root extractions. Alternatively, the {min} may be
defined more directly as quantum numbers of the vector of highest
weight.) To characterize uniquely the states (that is, the orthonormal

5 These ideas stem from the 1951 Princeton Lectures of G. RACAH [12] and the
famous unpublished manuscript of E. P. WIGNER [13]. The essential contribution
of [8] is the analysis of the tensor operator decomposition, in which the undefined
quantum numbers used by RACAH are shown to be operator patterns.

6 The boson calculus was first applied to U(n) by P. JORDAN [14], and has been
extensively developed for S U (2) by J. SCHWINGER and V. BARGMANN. The literature
on this subject is very large; further references may be found in the bibliography
cited in [1, 2, 3] and in the reprint volume cited in [13].
7*
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vectors — dim[m] in number, where dim[m] is the Weyl dimension
formula for U (n) — belonging to an irrep [m] one uses the Weyl branching
law for U(n). This law — the foundation (and model, as well) for all the
work to follow — asserts that under restriction of U(n) to U(n — 1) the
irrep [min] of U(n) splits into the irreps [m ί t n _ 1 ] of U(n — 1), where the
non-negative integers {w^ ,n-i} obey the betweenness conditions: mitn ^
^ mί,n-i ^ mi+i,n a n ( i e a c n frrep [mi,n-i\ obeying the betweenness
conditions occurs once and only once. I t follows that every vector of the
irrep [min] of U(n) may be characterized uniquely by the quantum
numbers {mitj} of the chain of subgroups Un -> Un^x -> Un_2 ~> Uv

the final subgroup Ux having, of course, only one-dimensional irreps.
An elegant notational convention to denote the unique states of the

irrep [min] is the Gelfand pattern, a triangular array, denoted by (m), of
n(n +1) . c . Ί2 non-negative mtegers \mi5} arranged as:

m
2n

It is clear that the betweenness condition of the Weyl branching law
becomes a sort of geometrical constraint, very much in the tradition of
the Young pattern for the symmetric group. State vectors belonging to
the Gelfand pattern (m) are denoted by |(m)); to designate more clearly
the irrep to which these state vectors belong, the Gelfand pattern will be

written as: I, ,n I where [m]n is the partition denoting an irrep in
\\m)n-l/

J7(n)._
It is helpful to discuss in more detail certain special Gelfand patterns.

The state vector of highest weight has the labels miό = min for all i, j ;

this Gelfand pattern is termed maximal and denoted I n I. The Gelfandr \max/

pattern having the labels m ^ = mi+lfj+1 all i,j is termed minimal and

denoted I ^ ^ Ί These are but two special cases of the set of n\ patterns
termed extremal — patterns in which all miS take on values given by the
top row, min, of the Gelfand pattern. Such extremal patterns are used,
and discussed further, in Section VI.

We may summarize the above results by saying that the Weyl
branching law constitutes 4a canonical resolution of the multiplicity for
the state labelling problem' since this resolution is the prototype for the
analogous operator multiplicity problem, it is useful to discuss the Weyl
resolution a bit further. The essential observation is that the Weyl
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labelling really involves a free choice, namely the order in which specific
variables are treated under the restrictions. Because of the underlying
Weyl group for U(n), all such orderings are abstractly equivalent; thus
one should more properly say that the labelling denoted by the Gelfand
pattern is canonical only in the sense that it is unique to within equiv-
alence.

Let us turn now to the closely related multiplicity problem for tensor
operators in U(n). Following the classic work of JORDAN, RACAH,

WIGNER, . . ., one defines a tensor operator in this way: under a unitary
transformation of the state vectors, |(m)) -> |(m))' Ξ= ί7|(m)). The
generic operator Θ transforms as :

such that all brackets (probability amplitudes) ((?%nai)
remain invariant. A tensor operator is then a set of operators {(̂ } such
that under transformation the set transforms linearly into itself, i.e.,

}' = {ΌΘt ί/-1} = {2fi0f} .

In this way irreducible tensor operators are assigned Gelfand patterns,
(P(M)> denoting that such operators constitute the carrier space of an
irrep of U(n). (To distinguish operators from state vectors, capital letters
are used for operator Gelfand patterns.)

The tensor operator labelling afforded by the Gelfand pattern (M)
does not furnish a unique designation; this is the familiar multiplicity
problem. The essential contribution of [8] was to show that the tensor
operator multiplicity problem could be put in one-to-one correspondence
with the state labelling problem. It follows that a unique tensor operator
notation comprises two Gelfand patterns, which may be denoted most
economically by the pattern:

/(A.-I \
) (1)

This notation for U(n) Wigner operators (unit tensor operators) incor-
porates in the notation itself the fact that the tensor operator multi-
plicity problem can be put in one-to-one correspondence with the state
labelling problem; this operator notation consists of two patterns, a
lower (triangular) pattern and an upper (inverted triangular) pattern
sharing a common row. In the notation (1), the lower pattern

(
Mln M2n ... Mnn\

• " i r i f - " "
Mn
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is an w-rowed Gelfand pattern, in which, for later convenience, we make
explicit the shared irrep labels [M]n == [MlnM2n . . . Mnn] of U(n). The
significance of the complete lower pattern (M)n is that it designates
fully the transformation properties in U(n) of the designated tensor
operator. The upper pattern in the notation (1) is introduced in con-
sequence of the one-to-one mapping of the multiplicity of the tensor
operators onto states. The pattern

•* l n - l •* n-l,n-l

Mlin MM . . . Mn.,,n M

is of the same form as a Gelfand pattern in so far as the nonnegative
integers Γιs satisfy the same "betweenness conditions"

Am^ί^Wi (4)

as do the integers Mί3- of the Gelfand pattern (2). However, the signifi-
cance of the two patterns is very different. A (state labelling) Gelfand
pattern such as in Eq. (2) is an expression of the Weyl branching law,
and accordingly has direct group theoretical significance. The signifi-
cance of the upper pattern is as follows: It designates the fact that the
Wigner operator (1) carries an arbitrary vector belonging to irrep
[m]n = [mlnm2n . . . mnn\ of U(n) into a vector belonging to irrep [m']n

of U(n), where

' m i n + Δ i n { Γ ) (5)

ΣΓa- %ΣΓi9i-l9 ( i = l , 2 , . . . , n ) , (6)
i = l j = l

^ [Δln(Γ),Δ2n(Γ)> ,4mCΠ] (7)

(The use of square brackets [. . .] for Δ is intended to help identify the
Δin as the changes induced on partition labels.)

Because the significance of the upper pattern for tensor operators is
rather different from that of a Gelfand pattern (which is defined com-
pletely group theoretically for U (n)) it is more appropriate to call these
upper patterns operator patterns to afford a distinction.

It will be recognized from the definitions, Eqs. 5—7, that an operator
pattern determines n additive quantum numbers, the Δίn. These quantum
numbers play a role precisely analogous to that of the n additive quantum
numbers defined by operators Hi (i = 1, . . . n) of the group U(n). (The
operators H{ — the generalized charges in quantum applications of
U(n) — are the generators of the maximal abelian (Cartan) subalgebra.)
The eigenvalues of the Hi define the weight of a given vector |(m)) of
U (n) it is very familiar that the weights do not uniquely identify the
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vector (the state labelling problem), and that it takes a complete Gelfand
pattern to specify a unique vector. Thus it is quite understandable that
the quantum numbers Δin fail to identify a unique tensor operator, and
that it takes in fact a complete operator pattern to designate a unique
tensor operator (assuming, of course, that the lower (Geifand) pattern is
already fixed).

I t can be demonstrated for U (2) that operator patterns have indeed a
group theoretic significance (this is the content of [11]); this explicit
example shows at the same time that it is neither an easy nor an obvious
task to give a precise meaning to the 'group of upper pattern space' in
general. For the purposes of the present paper it is fortunate that such
considerations are completely inessential (since all operator patterns
which occur below are uniquely specified by the Δin)

η.
The next essential concept is that of decomposing a U (n) Wigner

operator into a reduced Wigner operator and a U(n — 1) Wigner operator
[8]:

/(Γ)nΛ r(/%-i] I(y)n-Λ
Uir}n \= Σ \Wn (m«-i) . (8)

\M)nJ ω-sL^-J \{M)nJ
Iterating this result — for U(n — 1), U(n — 2), . . . £7(2) — establishes
the canonical decomposition of a U(n) tensor operator.

In Eq. (8) the symbol

(9)

denotes a reduced Wigner operator. Note that the operator pattern

is inverted as an upper pattern in the U(n — 1) Wigner operator, but
stands in uninverted form as the lower pattern of the reduced Wigner
operator. Both upper and lower patterns in a reduced Wigner operator are
"operator patterns".

(The order of the operators in Eq. (8) is not important. The result is not
different, though it might seem to depend on whether the reduced Wigner operator
acts before or after the U(n — 1) Wigner operators shifts the labels

7 It may be of interest, nevertheless, to summarize the present status of this
problem. We can show that there exists a generalization of the Weyl branching
law to tensor operators in U(n)9 such that the betweenness condition holds for
operator patterns, with the labelling determined uniquely by the dimensions of
the operators under splitting. The labelling so determined is unique once a Weyl
labelling for the state vectors has been chosen. We conjecture that a group theoretic
significance for U(n) operator patterns probably exists.
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of a vector belonging to irreρ[m]n_1. The point is that both the reduced operator
and the U(n — 1) operator are defined to "see" the same state vector in U(n — 1)
and — since they share the same U(n — 1) operator pattern — to cause the same
shift.)

Now consider the matrix elements of Eq. (8) between the initial
canonical Gelfand basis vector

and the final basis vector

(Π)

where [A (Γ)]n is the shift associated with operator pattern (Γ)n, and
[A (γ)]n-1 is the shift associated with a definite, but arbitrary (γ)n~1

which appears as a lower operator pattern in the reduced Wigner operator
in Eq. (8). The final labels (m')n_ 2 are left arbitrary. Then, from Eq. (8),
we obtain

= Σ (12)

where now the sum (γ')n_2 is over all operator patterns ί. ,,n j which
\\Y In — 2 /

have shifts [A (y)]w-i5 ^ n a ^ is> ^ n e s u m i s o v e r a ^ (yΊn-2 s u c n

operators
/(/)n-2\

( )

\(M)nJ
effect the same change [A (7)]^-! in the U(n— 1) labels [m]n^1.

Equation (12) expresses the basic decomposition of U(n) Wigner
coefficients into reduced Wigner coefficients and U(n— 1) Wigner
coefficients. To put this result in a more convenient, and compact form,
recall that, by definition, the reduced Wigner operator, Eq. (9), is in-
variant under SU(n — 1) transformations. Thus the matrix element of
the reduced Wigner operator in Eq. (12) is actually unchanged if we
introduce maximal U(n — 2) labels. Next we note that for maximal
U (n — 2) labels, this matrix element is fully specified by the two operator
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patterns in the reduced Wigner operator for an arbitrary but definite
initial state. It follows that we may write this matrix element (denote it
by # ) in operator form:

(9'a)
\(max)n_2

where

Mn-1

l(max)n_2/

and we have used the definition that Wigner operators between maximal
states are unity if non-vanishing.

We may further extend the notation (more accurately perhaps this is
an abuse de notation!) by restricting the admissible initial states to be
maximal in U(n — 2). Then under the reduced Wigner operators this
restriction propagates and we may consider products of reduced operators.
The importance of this extension lies in the fact that it enables us to
discuss operators in the space U(n): U(n — 1); we will call these ''pro-
jective operators", or, synonymously, ''projections", having in mind to
distinguish them from the different concept of projection operators.
Projections will be denoted by the same notation as reduced Wigner
operators.

(Strictly speaking projective operators should be distinguished from reduced
Wigner operators, and using the same notation for both makes for certain para-
doxical features. For example, a reduced Wigner operator is an SU(n—1) in-
variant; thus matrix elements must have the same 8U(n—1) labels in both
initial and final states. Yet the notation for both types of operator ascribes a
change [A(γ)]n-V

The paradox is easily resolved: A reduced Wigner operator is the SU(n — i)
invariant product of a U(n) and a U(n — 1) Wigner operator; the changes in
U(n— 1) labels induced by the U{n) part are exactly compensated by changes
induced by the U(n — 1) part; the matrix element of the U(n) part is a matrix
element of a projective operator; the U(n — 1) matrix element is unity, as befits a
unit tensor operator.

Once these circumstances are clearly in mind, the use of the same symbol for
both operators is no longer confusing.)

Equation (8) (and the resulting matrix element expression, Eq. (12))
is the first result basic to the present work.

The second significant result is the factorization lemma [4] for boson
opreators. The use of boson variables as a convenient realization for the
carrier space of U(n) is very familiar. In order to realize all irreps of
U (n) it is necessary to assume n kinematically independent copies of an
w-state boson variable that is, one takes the variables a)\ i, j = 1, 2, . . . n
with the commutators:
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all other commutators defined to be zero. The generators EiS of the
group U (n) are defined by the mapping:

It is clear, however, that these boson variables admit also of a second,
isomorphic, U (n) group generated by the operator mapping:

and that, moreover, the two sets of operators {Ea} and {Eίj} commute.
Thus this boson realization involves the direct product group Un x Un.

In fact, one sees at once that this boson realization {α|} really involves
the group Un* and all totally symmetric irreps thereof. This defines a
canonical imbedding of U (n) in the sequence of groups Un% 5 Un x
x Un D Un, in which moreover the irrep labels of the two U (n) groups in
Un x Un coincide (we denote this by Un * Un). This structure is precisely
the analog to that exhibited by the tensor operators of U(n), and
reference [4] discusses this canonical embedding in detail, proving the
factorization lemma to which we now turn.

Let j
ι/(jn-i\\

) (13)

denote a normaΠzed basis vector in Un * Un. In this notation, the first
U(n) refers to the U(n) group with generators Eij9 the second to the
U(n) group with generators EιK (These two U(n) groups are isomorphic
but distinct (and commuting); the placement of the indices is merely
a reminder as to which group is which ("upper" vs. "lower") — there is
no implication as to metric in this placement of indices. The star signifies
that the Casimir invariants of the irreps of these two groups coincide.)
Hence both

in Eq. (13) are Gelfand patterns, the second one being inverted. The
basis vector (13) may also be written in the form

/(Jf).-ΛV /(M')n-λ
\[M]n ) = ur-V« B[[M]n |0>, (14)

VΛ).-l// \W.-l/

where (B denotes "boson")
/(Λf).-i\

B [M]n (15)
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is a polynomial in each of the boson creation operators α|, the symbol |0)
denotes the vacuum ket, and ^# is the measure of the highest weight
tableau associated with [M]n:

+ » - < ) ! / Π (Min-Mjn + j - ί ) ,
Ϊ<? = 1 (16)

The introduction of J(~xl* into Eq. (14) defines the manner in which the
boson operators (15) are normalized: For example, if (M')n and (M)n are
maximal, i.e.,

M'it = Min, MH = Min (aRi.j),
then

/max \
:::i)M»-M*»", (17)

where αjl'. l is the determinant formed from the ^-bosons a) ifj^ k.
The boson operator (15) is clearly a tensor operator in either its lower

or upper Gelfand pattern with respect to transformations in the respec-
tive U(n) subgroup of Un * Un. As such it must be bilinear in the canoni-
cal Wigner operators which are defined, respectively, on the two U(n)
groups. The factorization lemma asserts that the precise form of this bilinear
relation is

f{M')nΛ
B [ ( ) (

W - J ί̂ -1 \M)nJ ι\(M')n

where Jί is an invariant operator of Un * Un which has eigenvalue equal
to the measure ^([m]n) for an arbitrary vector with labels [m]n. The
indices I and u designate the fact that the Wigner operators act, respec-
tively, on the lower and upper Gelfand patterns of an arbitrary vector
of EL*Z7n:

(19)

Note that when we apply the individual Wigner operators in Eq. (18) to
an arbitrary basis vector (19), we should consider the common labels
[m]n to be two identical sets of labels as indicated in Eq. (19). Note also
that the two Wigner operators in Eq. (18) commute since they act in
different spaces, and that the application of a single Wigner operator
carries a vector outside of Un * Un9 in the general case.
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The matrix element of Eq. (18) between the initial state (19) and the
final state

({μ%-i

(20)

— where (Γ)n denotes a particular, but arbitrary, operator pattern
appearing on the right-hand side of Eq. (18) — is as follows:

[[4

(21)

X

where the sum is over all (/")*_! such that (Γ')n has [Zl (Γ')]Λ = M (Γ)]n.
In particular, if

is non-degenerate, the right-hand side of Eq. (21) reduces to a single
term. Since the left-hand side is, in principle, a known quantity, JEq. (21)
already determines, except for choice of phase, all non-degenerate Wigner
coefficients.

The present paper may be viewed as a detailed exposition of the
consequences of this last remark; all of the results to follow are but
deductions from Eqs. (12) and (21), put in a rather more transparent
language.

III. The Fundamental Wigner Operators

In this section, the reduced Wigner coefficients of the fundamental
U (n) Wigner operators {1 0> and their conjugates <1 0) are given in
explicit form by the use of a diagrammatic technique, which we call "the
pattern calculus''. In the subsequent sections, the method is generalized
to larger classes of Wigner operators.

First, let us introduce a simplified notation for the reduced Wigner
operators
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associated with the fundamental operators {1 0) — since it is easily seen
that operator patterns are highly redundant for such simple cases. Notice
that the Δ -pattern of the upper (lower) operator pattern of {1 0) is always
of the form Δn(ϊ) = [0 . . . 0 1 0 . . . 0], where 1 appears in position
i (ί = 1, 2, . . ., n). Note, also, that each Δ-pattern, Δn(ί), uniquely
determines the corresponding upper (lower) operator pattern. We may,
therefore, map the operator patterns appearing in the notation (9) one-
to-one onto the integers 1, 2, . . .,n. That is:

[10L | ^ | [ 1 0 ] n | ( f o r M = l ,2 , . . . ,Λ) (22)
Mn-

denotes the (unique) reduced Wigner operator with the upper (lower)
operator pattern which has Δ-pattern Δn(i) (Δn(j)).

I t is our goal now to demonstrate a pattern calculus for the matrix
elements of <1 0). To present the method most simply we shall first
assert the rules, attempt to make them clear by examples, and after-
wards verify the correctness of the result. The first step in the dia-
grammatic procedure is a prescription for writing out the square of the
reduced matrix element

(23)

As discussed in Section II, we also call the reduced matrix element in
Eq. (23) a projection.

Let us now give the prescription whereby the square of the matrix
element (23) may be written out. There are six rules; [15]:

Preliminary Rules

Rule 1. Write out two rows, n and n — 1, of dots (n dots in each row)
in the manner displayed below:

• row n
• row n — 1 .

Rule 2. In row n} assign a 0 or a 1 to each dot according to whether
0 or 1 appears in the corresponding position in Δn (i) do the same in row
n- 1 using Δn(j).

Rule 3. Draw an arrow from each 1 (called "tail") to each 0 (called
"head"). This produces what is called an arrow pattern.

Rule 4. In the arrow pattern obtained (the Γs and 0's assigned to the
dots are now deleted) we assign to each dot i in row n the element
(called a "partial hook") pin Ξ= min + n — i, where min is the element
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i9 n in the Gelfand pattern belonging to the initial vector in Eq. (23).
Similarly assign Pjtn-i to dot j in row n — 1. (Note that we define
Pn,n-i a s a formal element assigned to dot n in row n — 1 this allows a
formally larger symmetry, which proves very useful.)

Rule 5. Assign to each arrow the algebraic factor

p (tail) — p (head) + e (tail),

where the piS are the partial hooks of Rule 4, and

(0 if tail in row n
β(tail) =

if tail in row n — 1 .

Rule 6. Write out the products:

N2 Ξ= product of all factors for arrows going between rows,

D2 ΞΞΞ product of all factors for arrows going within rows.
Then

i 2

r . i
[10]J = ^ 2 / D 2 . (24)

In this result pnin-\ is interpreted as a formally infinite element. All such
factors cancel out in the final result. Indeed, the nth dot in row n — 1 may
simply be omitted in the procedure (1) —(6), — and we shall do so in the
final version of these rules, Section VI.

Before writing out the general result (24) and verifying its correctness,
let us illustrate these results with an example in ?7(3). Consider the re-
duced Wigner operator:

1
1 0

1 0 0
1 0

1
= 11 o o

2
0

The upper pattern has Δ = [1 0 0] and the lower pattern has Δ = [010].
It is convenient to display the numerator and denominator arrow patterns
separately:

Numerator Arrow Pattern

= (PlB ~ Pl2) (#13 - PZZ) (P22 -PZZ+1) (̂ 22 - #33

Denominator Arrow Pattern

= (#13 ~ #23) (#13 ~ #33) (#22 ~ #12 + 1) (#22 ~ #32 + 1) .
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Thus,

1 I 2

H 0 __ (W_\ __ (PlS ~ Pl2) (P22 - ^23 + 1) (P22 - ^33 + 1)

L 0 -

Note that this is just the result obtained for the arrow pattern for

Δz = [1 0 0]

I t is clear therefore that we may suppress the formal element pZ2 from
the beginning and write Δz and A2 patterns as part of a composite

Δ-pattern (in this example the composite pattern is A = 0 i ) > which

(unlike the geometrically similar Gelfand pattern) does not obey be-
tweenness.

The general result (24) is easy to write out using these rules: I t is

in ~ Pi;n-l)Π{Pί.n-l ~ Vi>,n + 1) (25)

;"*< i ' Ή

ΐ'== 1 ; ' = 1

The validity of Eq. (24) with these factors above is now established by
comparing with the same result obtained earlier ([6]). Note, in particular,
that for j = n, the last product factor of Eqs. (25) and (26) cancel in N2/D2

}

justifying in the general case our elimination of the formal element pntn-v
The preceding result would be just a novel observation if it were not

a fact that the same method extends to a very much larger class of re-
duced Wigner operators, as will be clear in the sequel.

Let us illustrate this generality, in this section, by demonstrating the

apph'cability of the same rules to the Wigner operators (1 0)w, i.e., to the

Wigner operators belonging to the irrep [1 . . . 1 0], the conjugate irrep

to [1 0 . . . 0]. The reduced Wigner operator 'conjugate' to

I [10]. I

may also be denoted by the simplified notation

[10]. | , (27)
j
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where now this expression denotes the reduced Wigner operator which
has the unique upper and lower operator patterns corresponding to
An(i) = [1 . . . 1 0 1 . . . 1] (0 in position i) and An(j) =[1 . . . 1 0 1 . . . 1]
(0 in position j), respectively. [This specifies the precise sense — l<-»0
in the A -pattern — in which the term 'conjugate' has been used.]

Applying rules (1) —(6) we obtain

[ iθ]J =N*ID*, (28 a)

where

N* = Π (2V» - Pi.n-l) Π (Pr,n-1 - Pin + 1) (28b)

D* = Π(Prn - Pin) Π(Pffn-l ~ Pj,n-l + 1) (28o)

i'φΐ fφ?

This result may also be verified by referring to earlier results, [6].
We may summarize this section very briefly as follows: To every

Γ ( Γ ) 1
fundamental reduced Wigner operator [1 0]n we may associate a two-

l(γ) J
rowed composite A -pattern: (Γ Λ .• Ί

 n I. Applying rules (1) to (6) we obtain
\IΛ» {y)}n-l/

an explicit algebraic formula for the associated reduced matrix element,
to within a sign (±).

Using the iterative decomposition of Eq. (8) one thus determines,
step-by-step, the reduced matrix elements for each projection:

[Un:ϋn_1l[ϋn_1:ϋn_2l...,[U2:U1].

The rules thereby determine explicitly (to within a sign) all matrix elements

of the fundamental operators (10) in U(n), for arbitrary n, in a remarkably

simple way.
The reader is invited to apply these rules to determine all spin-1/2

Wigner coefficients, in order to convince himself of the utility and eco-
nomy of the pattern calculus.

The determination of the sign will be deferred until Section V. The
essential idea which we develop next is based on the observation that
the same rules actually work for the conjugate operators {10). The
rules, in fact, work for all elementary operators, which are defined and
discussed in the following section.
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IY The Elementary Operators

In discussing the construction of an arbitrary irrep of U (n) two types

of 'building block' may be distinguished on the basis of CART AN 'S work:

(a) the fundamental irrep [1 0] (or equivalently its conjugate [1 0]) from

which (by the Stone-Wigner proof of the Peter-Weyl theorem) all irreps

may be built by reducing direct products, and (b) the elementary irreps

[1 0], [ 1 1 0 ] , . . . [1 0], [1] from which an arbitrary irrep may be built by

taking the highest weight vector in a direct product.

These results may be extended, mutatis mutandis, to Wigner operators

in U(n), from the corollaries to lemma 7 of Ref. (4). It is useful to note

t h a t ( l ) = l Π Π β[inai , and hence the construction of U(n)

Wigner operators effectively reduces to that of SU(n) Wigner operators.

In particular, we define the elementary Wigner operators to be the set

of tensor operators {(I 0), <1 1 0), . . ., <1 0)} — that is, the set of

tensor operators {(lfc0n_fc)} for which the general operator transforms

as the irrep [1 .̂ 0n_k] having k l's and n — k 0's, k = 1 . . . n. This is

clearly the analog to the concept of elementary irrep, and includes the

fundamental irrep (and its conjugate) as special cases.

The reduced operator corresponding to an elementary Wigner

operator (lk 0n_fc) is denoted by:

(Γ)

[iA-
(y)

Once again, for brevity, it is convenient to use a simplified notation for
the upper and lower operator patterns, namely:

(29)

Here the ix < i2 < i3 < ik denote the k places iλ i2 . . . ik in the An pattern
where the l's occur (with 0's in all other places). Analogously the numbers
(h -jk) have the same significance with respect to An_1 in the lower
operator pattern. (Note that we have ordered these entries so as to have
a unique correspondence.)

To every reduced elementary operator we can associate then two rows
(Δn and An^i) of the A -pattern.

The essential remark now is this: Rules (I) to (6) apply to the matrix
elements of all reduced elementary operators (to within a ± sign).
8 Commun. math. Phys., Vol. 8

(Γ)
[i*ό
(y)

1

J

Γ(*i
-> [ i ,

I-Oi:

* 1 • • * * )

;2 jk)
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If we apply these rules, we obtain the explicit results:

N2=Π Π (Pis,n-Pr,n-l)Π Π (ίkn-l-ft'.n+l) (30a)

Π Π (Ά»n-l-ft.n-l+l)Π Π (ftfcn-ft'in). (30b)
l f ι l i ' l

(Note that in these equations the pattern consists of n dots in both
rows.) We defer the proof of these results to Section V.

At this point we might summarize by saying that rules (1) to (6) are a
very convenient — and easily remembered — prescription for com-
prehending all elementary operators. This, while true, is not the full
import of the rules: rather one should view these rules as assigning an
arrow pattern to a projective operator, and more importantly, arrow
patterns in consequence have a natural multiplication. Multiplication of
projected Wigner operators corresponds to multiplication of arrow
patterns, which in turn leads to the possibility of superposing arrow
patterns. It is convenient to introduce, in this multiplication, the
numerator and denominator arrow patterns as distinct entities, although
of course they are intimately related. When these ideas are carried out
(in Section VI), we arrive at a pattern calculus, i.e., a set of rules for
multiplying arrow patterns to produce product arrow patterns which
correspond to the product of the projective operators.

V. Proof of the J-Pattern Rules for Elementary Operators

In this section, two proofs are given that the rules (1)—(6) of Sec-
tion III yield the reduced matrix elements of all elementary Wigner
operators. The first proof is the simpler, but yields no information about
the phase; accordingly we merely sketch the essential ideas. The second
proof is straightforward, but lengthy and tedious; it establishes, how-
ever, the phase of all elementary reduced matrix elements (up to an
arbitrary convention). In both proofs, the important results, Eqs. (12)
and (21), play decisive roles.

The first proof is based on the properties of the matrix elements of the
fundamental Wigner operators under permutations of the partial hooks.
Namely, we observe that the projection

[10],
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can be obtained, except for phase, from the projection

4-1
simply by interchanging pln with pin and p^n^ with p3 tn^v

This result is in fact a direct consequence of the pattern calculus,
since it is obviously true from the rules — an arbitrary permutation
within each row of n dots takes an arrow pattern into an arrow pattern
of the 'same kind'. [Recall that for the fundamental Wigner operators the
rules have been demonstrated to be correct.]

It is important to note, however, that we have included the case
j = n in this symmetry; for this to be correct it is necessary to take the
limit 2>n,n_! -> oo after all permutations have been carried out.

From Eqs. (12) and (21), we see that this property extends to the
matrix elements of the boson operator a). (The limit pn,n~i -*• °° i s to be
effected after the permutations are completed.)

Since every boson operator in U(n) * U(n) is a polynomial in αj it is
clear that this permutational symmetry generalizes, provided only that
any necessary limiting process can be properly treated. [This is always the
case for the elementary operators, and the present heuristic argument is
fully justified in the more detailed second proof given below.]

The significance of this permutational symmetry is readily appreciated
in the calculation of the matrix elements of the reduced elementary
Wigner operators:

Except for phase, we can obtain the projection

[
(31)

(jl?2 h) J
from the projection

2 . . . Jc)i
»0-J (32)

L(l 2 . . . k)l

by the transformation:
(33)

Observe, however, that the reduced matrix elements calculated from
the rules satisfy precisely the above transformation property. Accordingly,
to show that the rules work for all elementary operators, we need only
show that they correctly give the result for (32).

8
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The direct calculation of (32) is a relatively simple matter. Thus,
from Eqs. (12) and (21), we have the result

max),,-! \ /(max)n_1\
A(12...k)

' "is:::*
,(max)n_2 / \(max)n_V/ (34)

- ( 1 2 . . . * ) Ί

L(l 2 . . . h)\

I Γ(1 2/ h)λ
I Here we have used the fact that the Wigner operators [ϊ& 0n_fc] have
\ L(l 2 . . . h)\
unity for their matrix elements between maximal initial and final

states. J

The state vectors that appear in the matrix element on the left-hand
side of Eq. (34) are maximal in the upper U(n) group and semi-maximal
(that is, maximal in U(n — 1)) in the lower U(n) group. These are
precisely the same state vectors used earlier [6] to determine the matrix
elements of the generators; the importance of the semi-maximal condi-
tion lies in the fact that the state vectors involve a single ('monomial')
boson operator and are easily given explicitly:

(35)

Here M denotes the measure of the semi-maximal state this factor may
be written down directly from the hook structure of the Weyl basis
tableau. It has the explicit form

M = ΓT feί»)! ^ (Pi.n-1 - ffj + l.n)* (Pin ~ P/.n-l ~ l)''

/J1 (Pin - Pnn) l

 iJjί1 (Vi.n-1 ~ Pj.n-l) ! (Pin ~ Pin) I *

To evaluate the matrix element on the left-hand side of Eq. (34)
most easily observe that the operator α};;;* causes precisely the shifts
Δ (12 ... k) in both the min and τnitn_1 labels. Hence the square of this
matrix element is just the ratio of the final to the initial measure:
[M (final)/if (initial)]. (In this very literal sense the A -pattern may be
interpreted as a generalized difference operator acting on the hook measure.)

We define the phase of the projection [ϊfc On_fc] to be + 1 this is in
1.(12 ...k)\

accord with the conventional (Condon-Shortley-Wigner) phase for SU(2).
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I t follows that for the desired projection we obtain the explicit
result:

(12 . . . k)-t

( 3 7 )

This is precisely the result given by the rules (1)—(6). Thus, we conclude
that the rules correctly yield all reduced matrix elements of the elementary
Wigner operators.

The careful reader will note that in proving this result we have
actually obtained an intermediate result of far-reaching significance,
namely that there exists a generalization of the Weyl group which applies
to the protective structures (reduced Wigner operators) of Un: TJn_x. The
operations of this symmetry group acting on reduced elementary opera-
tors interchange the partial hooks and carry the various projections into
each other to within phases (which are determined below). The existence of
this generalized Weyl symmetry group is significant for determining
tensor operator structures; for example, this symmetry is essential to
understanding 'symmetry-vanishings' of particular matrix elements,
as noted earlier [8] in discussing the Clebsch-Gordan series.

In the second proof, we establish the explicit expression for the
reduced matrix element (31) by induction. The result to be proved is:

1 4 + Δ (HH ...*7,) \ I Γ[J*5*'_' lk)] I / [ 4
[ 4 - i + Δ (hh ik)) ,. . n J I U 4

= (_l)*(*-i)/2 ]JS(h-ίs) (38)

* ' n (Pίι,n - Phn-l) " (ph,n-l - pin
X \ ι ? i 1 Mi (vjι'n-1 - &'"-1 + l)' i ? i (vίι>n - v i n )

L [?Φ(hh...h) tΦ(iii....<*)

ί+ 1 j ^ i

f o r i1<i2< * ik a n d j 1 < j 2 < ' t ' < jk> w h e r e S ( j — i ) = \ _ χ - ~ Z ^

and the square root is defined to be positive.
An arbitrary phase convention has been adopted in Eq. (38): the

phase of the matrix element of the reduced operator
(h H)1[
(h

has been defined to be + 1 . This choice is arbitrary, but, for k = 1, it
reduces to the choice made previously for the fundamental Wigner
operators, and it agrees with the usual convention for SU(2).
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We first observe that Eq. (38) is correct for general n and k = 1 ([6]).
Our induction proof then proceeds as follows: We assume the result
above is correct for fixed n and all integers 1, 2, 3, . . ., k — 1 we then
prove it holds for k. Since, however, the result is known to be correct for
general n and k = 1, this induction on k actually establishes the result for
general n and k.

In carrying out the proof, use is made of the boson operator identity:

Σ (39)

It may be helpful at this point to indicate the ideas behind the rather
technical (and involved) manipulations to follow. The main idea is to
apply the factorization lemma to both sides of the operator identity
above, and then to take matrix elements between very particular
initial and final state vectors in order to simplify the calculations.

Let us first apply the factorization lemma to the left-side of the
identity we can reduce the result to a single term by choosing the final
state labels [m']n = [m]n + A (^ . . . ik)} where [m]n denotes the initial
state labels. Moreover if we choose the upper U(n) labels to be maximal,
the upper U(n) matrix element is in its simplest possible form. We must
choose the [m]n_1 labels in lower U(n) to be arbitrary to obtain a general
answer and hence we impose the shift Δ (j±. . . jk) on these labels. There
is no loss in generality if we take the (m)n_2 sub-group labels (in lower
space) to be maximal. Thus we obtain, using Eq. (21):

ahh ..h ((max)

[4-

(max)n_2y

X
//[m] + Δ(% i ik)\ / ί 1 *" ' *' ikλ

\(h*> **)/

[ 4
(40)

The next step is to introduce the tensor operator decomposition, into
projections, by means of Eq. (12). In this step we are allowed to evaluate
the projections, using the assumed result Eq. (38), provided k is smaller
than the running value. Consider the lower space matrix element in (40)
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it reduces to :

/Wn

(41)

The first factor in the above equation is the desired general projection
which we seek to determine; the second factor refers to U(n — 1) and
may be evaluated from the assumed relation, Eq. (38). [Remark: To be
completely precise, the case given above requires jk Φ n. If j h = n, then
the Un_1 operator on the RHS has the partition (irrep) labels [ifc_! 0n_fc].
This latter case can be treated completely analogously and the final
result — Eq. (38) — does not distinguish the two cases. Hence we omit
the proof for the case j h = n.]

This evaluation affords an interesting application of the pattern calculus rules,
and provides a nice example of the practical value of the arrow patterns. The
evaluation proceeds by using the tensor operator decomposition; we obtain the
sequence of projections [?/„_!: Z7«—2]? •> [^2 : ^i] taken between maximal
states. Consider an arbitrary projection in this sequence; it has the form:

(h - ?*')

OΊ ?V) J maximal

where j k , ̂  n\nf ^L n — 1. This projection has the property that the shifts in the
rows n' and nr — 1 are identical; thus a typical element hi the arrow pattern will
have the form:

Since the initial state vector is maximal, the contribution of these two arrows to the
projection exactly cancel. I t is easily recognized from the pattern calculus that the
only projections not equal to + 1 in the decomposition are precisely the k' pro-
jections \Ujkf: Ujk,—i]9 [#7>-i> C^v_x—1]>... [Ujλ: ίZ^—i]. I t is now not difficult
to give the complete answer (written for general n and k):

(42)

The pattern calculus makes the curious structure of this result quite understandable
(in particular, the reason why the product "avoids" the points s = (jt... jk).
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The remaining matrix element in Eq. (40) is of precisely the same form
as the matrix element just evaluated. Although at first glance we are
not permitted to evaluate this matrix element by the formula above, in
fact the evaluation is justified in every case except that for which ik — n,
and a special argument removes this restriction. (The reason is that the
[Un: Un^] projection gives + 1 from the general property that the
direct product of maximal vectors is unique. For the case ik = n we
leave this projection undetermined and include it along with the general
projection being sought. This shows that evaluating this maximal
matrix element at this stage is merely a convenience in arranging the
recursion proof.)

Now let us apply the factorization lemma to the right-hand side of
Eq. (39), again taking matrix elements. We obtain:

<final|

X
Winitial + J ( h t a . . .*';

in all rows

X

x

+ Δ (H)
rows n to H

[ 1 0 ] ) | \W™™ = (max)n_ J/

[m]n IΛ (tΊta. . . ik

r / I M»-i I +
(max)n_2/ \in all rows 1 to n — 1)

(43)

Λ
x ί [Ί f c -iό n _ f c + 1 ]

\jih > JM-ih+i - h)

(intermediate))

X ((intermediate)
\

where

I (intermediate)) =
m rows n — 1 to jj

Before evaluating these matrix elements let us note various features
of this result. Firstly the invariant operator *J^(. ..) occurs in such a way
that only the initial and final irrep labels enter; in fact this term cancels
out from both sides of Eq. (39). Next one sees that the upper space
matrix element — since the states are maximal — allows but a single
intermediate state between the operators (!&_! 0n+1_ fc) and (1 0). The
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really essential point is to note that for the analogous step involving the
lower space matrix element, the Gelfand pattern conditions allow only
the intermediate states shown.

All matrix elements in Eq. (43) can be evaluated from the assumed
validity of Eq. (38). This evaluation, although a bit tedious, is never-
theless clearly possible we give only the final results, written in the form
most convenient to the purpose at hand. For the upper space matrix
element we find:

— \ττ (Pti.rc — Vk,n) 1
1/2

(44)

X
( * i i a . . . i k )

For the two lower space matrix elements (the two terms in the sum
over q in Eq. 43) we first reduce each into a [U(n): U(n — 1)] projection
and a U(n — 1) matrix element. That is:

lmln-l I + I Δ (/i/a jk)
(max)fl _ 2/ \in all rows 1 to n—\j

(intermediate))

__//wn + zi(M2...^) \ [HH -. H)

[ϊ f c_ 1On_*+ 1] /Wn +

+

//W«-i \ , (Λ(hJ2 . ,jk)\
\\(max)w_2/ \in all rows /

(45 a)

X
Wn-l
(max)ft_

(intermediate)

„ //M«-i \ , (Δ (ja) in rows\ I / iqΛ I /[m]n_! \\
X \l(max)n_J + U - 1 toί. j | V 1 °V |((max)n_J/Ξ

H

[10]

(45 b)
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The product of the two U(n — 1) matrix elements (B from Eq. (45a),
D from Eq. (45b) can be explicitly evaluated using Eq. (38). We find:

Ίe s - 1
(-)*- ' Π {PU,n-l - PJa>n-l) ' Π (Pή,n-1 - Pja,n-1 - 1)

•o -p. 1 = 8 + 1 1 = 1

Π {Ph,n-1 ~ PU,n-l) {Pjun-l - pja,n-l - 1)
1/2

(46 a)

The product of the two [£7(w): U(n — 1)] projections (J[ 0) may
also be evaluated explicitly in a similar way. The result is:

A-C

[

v
x

Ίe

2

Ίc
Π (Vh,n-l - piltn)

11

ft
77 te,w — piun) (piltn - pίhn + 1) X

2

X 7 7 (2Vi,n-l - Ph,n-l) (pjun-1 - pja,n-l - 1)
J= 1 j

J

-11/2

Δ (h . . . ifc (46 b)

It is necessary to point out explicitly that the use of the
[U(n): U(n — 1)] projection in Eqs. (44) and (46b) above is a definition
(modelled, of course, on Eq. (38)) — we write it in this way solely for
convenience.

We have chosen to write the terms in this form since it is then clear
that upon introducing these results into Eq. (39) all projections and
matrix elements cancel nicely on both sides, leaving us with the following

sum:

π (p%un — piι,n + 1)

Π (Pή,n-l - pilfn)

X 8 k

Π {Pmn-1 - Pu,n-l)' Π (Ph,n-1 — Pjΰ,n-1 — 1)
11 1

(47)
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The induction proof will have been accomplished if we can demon-
strate that the formidable appearing sum above is precisely unity. This
final step in the proof is of little intrinsic interest, and is carried out in the
Appendix.

In summary, one sees that a direct application of the factorization
lemma to the boson operator identity (Eq. (39)) demonstrates, by
induction, that the result, Eq. (38), for the explicit matrix elements,
including phase, of all elementary projections is correct. The sole arbi-
trariness in this result lies in the phase convention which assigns + 1 to
the projections

"(h **)]

in accord with the Condon-Shortley-Wigner convention for 8U(2).
It is perhaps unnecessary to remark that the modulus of this result

(Eq. (38)) (that is, the projections omitting phase) is in agreement with
the result established by the pattern calculus rules (1) to (6). Since these
rules necessarily incorporate permutational symmetry, it thus established
that: all elementary projections satisfy a generalized Weyl (permutational)
symmetry.

VI Generalization of the J-Pattern Rules to Extremal Operators

The possibility of extending the rules for determining explicit matrix
elements to a true pattern calculus — in which patterns may be multi-
plied — has already been noted in Section IV. It is the purpose of the
present section to examine this possibility in some detail. In so doing
we are led to a natural generalization of the A -pattern rules and to the
concept of extremal patterns. It is shown that the matrix elements of
all extremal operators can then be explicitly given.

The elementary operators have the property that their operator
patterns were equivalent to their A-patterns, in that each implies the
other. Let us investigate this property further, assuming (somewhat
vaguely at the moment) that given the U (n) operator labels [M]ni then
[A (Γ)]n and [A (γ)]n denote, respectively, any A -patterns which uniquely
determine (Γ^^ and (γ)n^.1 in the operator patterns:

ί[M]n \ ί[M]n \
\(Γ)nJ ' \(γ)Λ-J *

The U(n) Wigner operator
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is then uniquely determined by [Δ (Γ)]n, and is therefore non-degenerate
(in U(n)). Furthermore, the U(n — 1) Wigner operator

is uniquely determined by [Δ (γ)]n, and is likewise non-degenerate in
U(n — 1) — hence the [U(n): U(n — 1)] projections are unique. We
therefore obtain the following result from Eq. (12):

The first term on the right in the equation above is the reduced matrix
element of the projection in [U(n): U(n — 1)]. Earlier, in Section II,
we have discussed the formal development whereby we may write this
projection as the projective operator:

This operator, by definition, carries an arbitrary vector with U(n) labels
[m]n and U(n — 1) labels [m]n_1 into a vector with U(n) labels [m]n +
+ [Δ (Γ)]n and U(n - 1) labels [m] n - 1 + [Δ (γ)]n^; that is,

where # is given by the reduced matrix element

(

c ^ ] "J |lwM_J/* -

In other words we have defined by abstraction, operators acting in the
space U(n): U(n — 1). Let now
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denote a second operator in which \Δ (Γ')]n and [Δ (γ')]n uniquely
determine (.Γ'JΛ-I and (γf)n-V respectively. Application of this operator
to Eq. (49 a) yields

ί ί Γ l ί S Γ 1 ! ([m] w \([mi+ίA{Γ)]+[A(ru w[m]n

where

* -

(50 a)

It should be noted that this result really demonstrates that the pro-
duct of any two projections has a well-defined meaning for vectors of
[U(n): U(n — 1)]; the specialization to operator patterns equivalent to
Δ -patterns is not necessary. The difficulty in defining products of pro-
jections lies rather in determining the circumstances under which a
product of projections is equivalent to a projection. A sufficient condition
is that the product of projections, for each of which (γ) <=> Δ (γ), is again
a projection if (yproduct) ̂  ^ (7)product We shall discuss this topic in more
detail presently.

For the moment, let us consider a few examples of products of pro-
jections in order to indicate the necessity of generalizing the Δ -pattern
rules. Consider the product of two [£7(3): U(2)] projections:

10 0 x 1 0 0 .

L 1 J L 1 J
The arrow pattern for each of the two projections is given by

For the product, we note that the first operator (reading from right to
left) shifts the state labels seen by the second operator: we indicate this

by the shift ^ ~ entered on the second arrow pattern below:

0

Let us next try to write this product of arrow patterns by superposing
them:
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We have seen that the product of two projections is associated with a
well-defined algebraic expression (determined by the rules). If we com-
pare this expression with the superposed arrow pattern we immediately
get a hint for extending the rules: Jc-multiple arrows correspond to
factorials of k terms. The shifts induced by the operators to the right in the
product accomplish the indexing for the factorial.

This example suffices to motivate the following generalization of the
rules. First we repeat the construction of the Δ -pattern.

The A -Pattern Rules:

Given a protective operator denoted by

Γ(A.-

U
To this projection we associate a Δ -pattern of two rows written in the
form of a Gelfand pattern, but without the betweenness condition. The
entries Δln (i = 1 , . . . n) are determined by:

Δtn(Γ)"ΣΓt{-ΣΓi,i.ι, ( i = l , 2 , . . . , » ) . (6)
" = 1 j = 1

Note the entries Ai<n_x (i — 1 , . . . , n — 1) are determined by the same
equation with (γ) replacing (Γ). Example:

r 1 -i
2 0 in

3 -

The Arrow-Pattern Rules:

Rule 1. Write out two rows of dots, as shown:

• n dots
• •• % n — 1 dots .

Rule2. Draw arrows between dots as follows: Select a dot i in row
n and a dot j in row n - 1. If Δin{Γ) > Δin(γ), draw Δin{Γ) - Δjn{γ)
arrows from dot i to dot ; if Δin(Γ) < Δjn(γ), draw the arrows from j
to dot i. Carry out this procedure for all dots in rows n and n — 1. This
yields a numerator arrow pattern with arrows going between rows.

Carry out this procedure for dots within row n and dots within row
n — 1. This yields a denominator arrow pattern with arrows going within
rows.

Rule 3. In the arrow patterns, assign the partial hook pitn to dot
i (i = 1, 2,. . . , n) in row n; Pj,n-i *° dot j (j = 1, 2,. . ., n — 1) in row
w - 1. (Pij
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Rule 4. In general, there will now be several arrows going between
two dots in the arrow patterns. Assign to the first arrow the factor

p (tail) — p (head) + β (tail)

to the second arrow, the factor

2? (tail) — 2? (head) + e(tail) + 1

etc., until all arrows going between the same two dots have been counted.
/ fl if tail of arrow on row n — 1\
Recall that e(tail) = J Λ .. #1 ,

\ [0 if tail of arrow on row n /

Rule 5. Write out the products

N2 = product of all factors for numerator arrow pattern,

2)2 — product of all factors for denominator arrow pattern.
The net effect of these rules (which we call the c 'extended pattern

rules") is to make the associations:

P ' 1 arrow algebraic

, . j pattern factor

Clearly the rules associate a well-defined algebraic factor to every pro-
jection, but this factor is, in general (that is, for arbitrary projective
operators), not the modulus of the matrix element of the operator. How-
ever, there is a non-trivial class of operator patterns for which the rules
do yield the square of the reduced matrix element. These are the
extremal patterns which we now define.

Consider any triangular array of n rows of dots, the dots being
arranged in the manner of the entries of a Gelfand pattern, e.g., for

••
The point (i, j) (i <: j = 1, 2, . . ., n) is said to be tied maximally when it is
identified with the point (i, j + 1), and we indicate this by drawing a line,
called a tie, between the two points. Similarly, the point (i, j) is said to
be tied minimally when it is identified with the point (i + 1, j + 1) The
w-rowed array, with ties, is called an extremaϊly tied pattern in row k — 1
if every point in row h — 1 which lies to the left (right) of any point i
(called the free point of row k) is tied maximally (minimally). Thus, the
most general appearance of row k and row k — 1 in an extremally tied
pattern in row k - 1 is:

row k

row k - . \ \ \ \ - \ Ί / • • • / /
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The w-rowed array, with ties, is called an extremal pattern, or
synonymously, extremal tie-pattern, if it is an extremally tied pattern in
each of its rows 1,2, . . .,n— 1. Clearly, there are n\ distinct extremal
patterns associated with every %-rowed triangular array of dots. For
example, for n = 3, we have 6 extremal patterns:

An operator pattern (Γ)n is said to be extremal if the only integers
which appear in it are Γln, Γ2n, . . ., Fnn, where [Γ]n = [ΓlnΓ2n . . . Γnn\
is the first row of (Γ)n. Clearly, we obtain all extremal operator patterns
by assigning Γίn to point i (ί = 1, 2, . . ., n) of row n in an extremal tie-
pattern. Notice that if Γln > Γ2n > > Γnn,we obtain in this manner
nl distinct operator patterns. However, if some of the Γίn are equal,
distinct extremal tie-patterns may yield the same operator pattern.
Conversely, each extremal operator pattern has associated with it at
least one extremal pattern.

Two extremal operator patterns (Γ)n and {Γf)n are said to have the
same tie-structure if they can be obtained from the same extremal
pattern. For example,

3 1 0 1 1 0

3 0 and 1 0
3 1

have the same tie structure since they can both be obtained from the
extremal tie-pattern

The A -pattern of an extremal operator pattern is always a permuta-
tion of [ΓlnΓ2n . . . Γnn], and every permutation occurs when we con-
sider all extremal operator patterns with first row [ΓlnΓ2n A J
Conversely, every A -pattern which is a permutation of [ΓlnΓ2n . . . Γnn]

uniquely determines an extremal operator pattern I rp ?) Furthermore,

if A is a permutation of [ΓlnΓ2n . . . Γnn\ and A' is the same permutation
°f [Γ'lnΓ'2n . . . Γ'nn], then the extremal operator patterns (Γ)n and
(jΓ')n have the same tie-structure.

In order to form a third Wigner operator from two given Wigner
operators, the two tensor operators must, in general, be coupled not only
in their lower Gelfand patterns, but also in their upper operator patterns



Pattern Calculus for Tensor Operators 121

[8]. However if we consider not only extremal operator patterns (Γ)n

and (jΓ')n of ^ n e same tie-structure (upper pattern), but also lower
Gelfand patterns (γ)n and (γ')n which are extremal and of the same tie-
structure (lower pattern), then the coupling assumes the simple form:

(51a)

Expressed in words, such Wigner operators 'multiply' by addition of
their patterns.

The following property of the projective operators can now be deduced
from the above result, Eq. (51a):

r(Γ%-n r(Γ)n^Ί r(Γ)n-t + (ΓOn-ii
[M% [M]n = [M]n + [Jf']n . (51b)

L(/) f t-J LMn^l l(γ)n-l + (/)«-! J

In this result, all upper and lower operator patterns are extremal, upper
patterns have the same tie-structure, and lower patterns have the same
tie-structure. An immediate consequence of Eq. (51b) is: All extremal
projective operators (both upper and lower patterns extremal) which have
the same tie-structures commute.

A second important result also follows: Every extremal projective
operator has a unique decomposition into an extremal projective operator
of the same tie-structure times an elementary projective operator of the same
tie-structure. (Note that an elementary projective operator is always
extremal): r(Γ)n_x-| ΓiΓ'^^i γ{iλi2... ik)i

\[M]n = [Jf']n [ i Λ - J . (52)

L(y)n-i J M/)«-J Ltfih -/*)J
In this expression, k denotes the first integer such that Mkn > Jffc+1>n.
It immediately follows from this result that every extremal projection
may be decomposed into a product of elementary projections of the
same tie-structure (hence these projections commute). Let us illustrate
this property with an example from U(S):

Γ ι Ί
1 0

3 1 0
3 1

_ 1 -

=

Γ 1 Ί
1 0

2 1 0
2 1

- 1 -

Γ ° Ί0 0
1 0 0

1 0
- 0 -

- 1 η
1 0

1 1 0
1 1

- 1 -

Γ ° Ί0 0
1 0 0

1 0
- 0 -

- o -
0 0

1 0 0
1 0

- 0 -
where the common tie pattern is

9 Comraun. math. Phys., Vol. 8
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Equation (52) is the basic result needed to give the proof that the
extended rules yield the square of the matrix element denoted by # in
Eq. (49 b) for all extremal operator patterns. The proof is by induction.
Assume the extended rules are correct for all extremal projections with
labels [M']n such that

ΣM'in<ΣMin.

Then we must show that the number obtained from the rules upon
application of the product on the right-hand side of Eq. (52) to an
arbitrary initial state is precisely the number assigned by the rules to the
operator on the left-hand side.

In order to give the proof of the aforementioned result, it is useful to
introduce the notion of 'opposing arrows' in two arrow patterns. The
arrow pattern for two extremal projections are said to have an opposing
arrow if for an arrow going between two points in the first arrow pattern
there is an arrow going in the opposite direction between the same two
points in the second arrow pattern. In general, the two arrow patterns
have a number of opposing arrows. The arrow patterns for extremal pro-
jections with the same tie-structure have no opposing arrows. The proof is
rather obvious, and we omit it.

Now for the proof that the extended rules apply to all extremal
projections. Consider a typical arrow going from row n to row n — 1 in
the arrow pattern of the elementary projection in Eq. (52) let the arrow
start at point is of row n and terminate at point j Φ (?Ί?2 h) °^ r o w

n — 1. The Δ-patterns for row n and row n — 1 of the [Mf] projection8

are of the form

Δ* = Γ-M"' M.' . . . JMί' 1 a n d Δ' == \Ί^Lr JUL' . . . Mr 1

respectively, where τ x τ 2 . . . xn and ρ1ρ2 . . . ρn are permutations of
1 2 . . . n. There are N'isj = M'τ n — M''Q.n ̂  0 arrows going from
point is to point j in the arrow pattern for [M']. Similarly, there are
Nitj = M%n - MQ.n = (M'τ.gn + 1) - M'ρjn = N'igj + 1 arrows going
from point is to point j in the arrow pattern for [M]. These results are
a consequence of the fact that all three operators have the same tie
structure, hence, no opposing arrows. When applied to a state with
U(n) labels [m]n and U(n — 1) labels [m]n_l9 the elementary projection
in Eq. (52) carries these labels, respectively, into [m]n + Δ (i^ • ijc)
and [m]n_1 + Δ (j^^ - . -jκ)\ these labels, in turn, become the initial

8 The square brackets designate a projective operator in which the upper and
lower operator patterns have been suppressed. For brevity, this notation is used in
the remainder of this section, and is not to be confused with a partition [M']n.



Pattern Calculus for Tensor Operators 123

labels for the second operator. Thus, the rules assign the factor

(Pisn ~ Pj,n-l) (Pisn ~ Pj,n-l + 1) . . . (Pi8n ~ Pj,n-l + N'Uj) (53)

to the arrows going between points is and j : the factor (pigU — pjtn^-j
results from the action of the elementary projection on the state

« \\

the remaining factors from the action of [Mf] on the new state

But the factor (53) is precisely the factor assigned by the rules to the
Nigj = N'itj + 1 arrows going between point i8 and j of [M] when
applied to the initial state. Thus, the rule assigns the correct factor to all
arrows going between point is and j 4= 0Ί?2 •?&)• Clearly, a similar
argument applies to all pairs of points which have an arrow going between
them in the arrow pattern of the elementary projection. However, there
may still be pairs of points in the arrow pattern for [M'] which have
arrows going between them, but for which there are no corresponding
arrows in the arrow pattern of the elementary projection. Such points
then have either 1, 1 or 0, 0 at the two corresponding points of the ele-
mentary pattern. Accordingly, the effect of the elementary projection
is to shift the U(n) and U(n — 1) labels in such a way that the factor
assigned by the rules to arrows of this type when [Mr] acts on the new
state is independent of the initial shifts. Finally, the arrows for all such
pairs of points are exactly duplicated in the arrow pattern for [If], and
clearly the rules assign to these arrows the same factors that result from
forming the product. It now follows that the extended rules (1) —(5)
correctly yield \NjD\ for all extremal projections if they do so for all
elementary projections. Since this latter result was proved in the previous
section, we have then the desired result: The pattern rules work for all
extremal projections.

Next, let us turn to the question of commutivity of two extremal
projections. We have already noted that for commutivity it is sufficient
for the two extremal projections to have the same tie structure. This
condition is, however, not necessary as is evidenced by the fact that the
two operators

Γ ι Ί
1 0

1 0 0
1 0

- 1 -

and

Γ ι 1
1 0

1 0 0
0 0

_ 0 -
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commute, but nevertheless have distinct tie structures in their lower
patterns. These operators are peculiar in that the (denominator) arrow
patterns for three dots in both row 3 and row 2 have opposing arrows, but
the arrow patterns for three dots in row 3 and two dots in row 2 have no
opposing arrows. Observe that these two operators do have the same
tie structure in their upper patterns and the same tie structure in the
bottom two rows of their lower patterns. It is this property that charac-
terizes the general case.

Assertion. Two extremal projections commute if and only if their upper
patterns have the same tie-structure and their lower patterns have the same
tie-structure in the lower n — \ rows.

In order to prove the above statement, we must first prove: A
necessary and sufficient condition that two extremal projections commute
is that they have no opposing arrows in their arrow patterns of n dots in
row n and n — \ dots in row n — 1. The proof of this is fairly straight-
forward, and we omit it. What we will prove is that this property of no
opposing arrows implies that the extremal operators possess the alleged
tie-structures, and conversely. The arrow pattern for the extremal pro-
jection [M] which has Δ -patterns

Δn = [MXχnMx%n . . . MTnn]
and

4 » - i = [MQinMQin . . . MQn_in\

can be obtained from the arrow pattern which has Δ patterns

Δn = [MlnMZn . . . Mnn] and Δn^ = [MlnM2n . . . Mn_ln]

by applying the permutations 1 -> τl9 2 -> τ2, . . ., n -> rn and 1 -> ρls

2 -> ρ2, . . ., n — 1 -> ρ n - 1 to rows n and n — 1, respectively. In carrying
out these permutations, the heads and tails of arrows are to be carried
along with the Min. Now consider the arrow patterns associated with
any two extremal projections [M'] and [M]. Also, consider the new
arrow patterns obtained by applying a permutation P to row n and a
permutation Q to row n — 1 of the original arrow patterns, respectively.
If there are no opposing arrows in the original arrow patterns, there are
none in the permuted arrow patterns, and conversely. It is, therefore, no
restriction to take one of the extremal projections, say [M']> to be
maximal in its upper and lower operator patterns. Its Δ -patterns are
Δ n = [M'lnM'2n ... M'nn], Δn_x = [M'lnM\n . .. M'n_ln\. If extremal
[M] is maximal in its upper pattern and semi-maximal in its lower
pattern, its Zl-patterns are Δn = [MlnM2n . . . Mnn\ and Δn_x

= [Mln . . . Mi_linMi+ltn . . . Mnn] for some i = 1, 2, . . ., n. Clearly,
the arrow patterns for [M'] and [M] have no opposing arrows. Therefore,
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every two extremal projections [M'] and [M] commute which have the
same tie-structure in their upper patterns and in their lower n — 1 rows.
Now for the converse proof. If it happens that M\n > M'2n > >M'nn,
the denominator arrow pattern for maximal [M'] has at least one arrow
going from each particular point in row n (and row n — 1) to every point
lying to the right of the particular point. Since there are no opposing
arrows in the denominator arrow pattern for [M], we must have MXχn ^
^ Mx%n S ^ Mτnn in row n and MQιn ^ MQzU ^ ^ MQn_χU in

row n — 1, i.e., Mτ.n = Mύn (j = 1, 2, . . ., n) in row n and

[MQinMρzn . . . Mρn_in] = [Mln . . . 2f,_ l i ΛΛr<+ 1.Λ . . . Jf n w ]

(for some i) in row % — 1. Thus, [M] is maximal in its upper pattern and
in its lower n — 1 rows. In general, some of the [if'] labels may be equal,
and we must consider the general case M'ln = M\n = = M'hίn,
M'hχ + 1 ) W = = Jf'fcj + £2)W, etc., where fcj + &2 + •' = w. When both
numerator and denominator arrow patterns for [M] are considered, the
conclusion drawn from the condition of no opposing arrows is that the
Δ -pattern for row n has the following structure: The first Jcλ integers may
be any permutation of MlnM2n . . . Mkin; the second k2 integers any
permutation of Mkl + ltnMkt + 2tn- .M^ + ̂ y, etc. Row w - 1 has a
similar structure in which the first kx integers are some permutation of
the first kλ integers from [Mln . . . Mi_lt7lMi+Un . . . Mnn\ (for some i);
the second k2 integers some permutation of the second kz integers from
[Mln . . . Mi_ltnMi+lfn . . . Mnn\ etc. But this is precisely the structure
required such that [M'] and [M] have at least one tie-pattern in common
in their upper operator patterns and at least one tie-pattern in common
in their lower n — 1 rows. Thus, the condition of no opposing arrows in
extremal [M'~\ and [M] requires that these projections have the same
tie-structure in their upper patterns and the same tie-structure in their
lower n — 1 rows.

This proves the validity of our assertion above. I t follows then that
we have achieved our desired goal — the generalization of the pattern
rules to all extremal projections, and the beginnings of a pattern calculus
for projections.

Summary. The most general reduced Wigner operator for which the
extended pattern rules apply are the extremal projections. From an ex-
tremal projection we determine a Δ-pattern of two rows; application of
the arrow pattern rules determines an explicit matrix element, to within
a ± sign.

The sign of the matrix element is determined from the sign of the
elementary projections in the decomposition of the extremal operator
implied by Eq. (52).
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VII. Expansions of Reduced Wigner Operators

in Terms of Elementary Projections

In this concluding section we extend the pattern calculus to obtain
explicit matrix elements for the analog to the most general monomial
boson operator.

From Eq. (52) we know already that every extremal projection can
be expanded in terms of elementary ones. As a particular case, we have
the result:

i«)«-iΊ n (\(12 . . . k) i\Mkn-Mk + u n

[M]n \= Π U A - J , (54)

U J \ L J
which is in exact analogy to the boson operator result, Eq. (17).

This result generalizes to arbitrary extremal projections. In order to
write this result in the notation (29) for elementary projections, we first
observe that an operator pattern

which has
Δn = [JfT i nJf τ,n . . Mτnn] (56)

has Mkn in position ik (Jc = 1, 2, . . ., n) where (^i 2 . . . in) are the
numbers obtained by rearranging the columns in the permutation
l-+τl9 2->τ 2, . . .,n->τn:

v

In particular, for [M]n = [lk 0^.^], the Δn pattern (56) has 1 in positions
iv i2, . . ., ik. In general, these numbers are not ordered in increasing
magnitude to the right. Let Θii^i^. . . ik) denote the arrangement of
ixiz . . . ik which is ordered, e.g., ^(31) = (13). Then

is the elementary operator pattern which has the same tie-structure as
the general extremal pattern (55) with Δ given by Eq. (56). Every
extremal projection then has the following expansion (iterate Eq.

Mkn-Mk+1,n

m = π [i*6n-j , (58)
L ( β x t r ) U J k 1 \ l Θ ( j j j ) \ )

where the Zl's for the upper and lower patterns of the projection on the
left-hand side are respectively Δn = [MTinMTzn . . . MTnn] and Δ'n
= \MQi7lM6iU . . . Mρnn], and where the (jxj^ . . . jn) are determined from
the permutation 1 -> ρl9 2 -> ρ2, . . ., n -> ρn by the rule, Eq. (57).
Again, Eq. (58), is in exact analogy to the corresponding boson operator
result.
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We now ask: Can Eq. (54) be extended to include the semi-maximal
analogue to Eq. (35) ? The explicit boson operator result is

(59 a)

where
n-1

(59 b)

1 1

with the Pi3 being partial hooks, Pi5 Ξ= Mis + j — 1. We will, in fact,
now prove the corresponding result for projections:

2 . . . Ϊ

2

xΠ

(max)n_2J

First, observe that the elementary projections appearing on the right-
hand side are all maximal in their upper patterns and either maximal
or semi-maximal in their lower patterns. Hence, they all mutually com-
mute, and no problem of ordering arises.

To prove Eq. (60), we calculate the reduced matrix element directly
from Eq. (21); noting that maximal Wigner operators between maximal
states are by definition unity. The result is:

(61)

where zίn = [MlnM2n . . . Mnn\ and /!,,_! - [Iί l n-. 1if2 n-_ 1. . . Mn_ln_xl
The left-hand side of this equation can be evaluated explicitly by use of
Eqs. (35) and (59). Using this evaluation in Eq. (61), we obtain

Γ(max)n_1

.(max)n_2.

= N-χl* (Δ-pattern factor) , (62)
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where N is defined by Eq. (59 b). The second factor in Eq. (62) is precisely
the factor which results from applying the rules to the Δ -patterns Δn and
Δn_1 with phase assigned to be + 1 . From this result we immediately
deduce: The extended pattern rules, when applied to the reduced Wigner
operator

which has

and

(63)

L(extr)n_ 2.

Δ n = [MXinMτ%n . . . MτnK]

yield the reduced matrix element except for a factor, and this factor is the
N"1/2 of Eq. (59 b) times a phase.

Equation (62) gives the explicit expression (including the phase) for
the reduced matrix element in question. We next show that Eq. (60) also
yields the same result upon applying the rules to the terms of the right-
hand side (observe from Eq. (38) that the phase of the right-hand side of
Eq. (60) is +1). This is somewhat more readily accomplished by re-
cognizing that

n-Mjcn..! Γ(max)«_i

where

and

where

π
4 = 1 L ( 1 2 . . . ife — In)

M"in = Σ

Π
2 . . .

max)n_2J

- ΛΓ*.n-i), ί = 1, 2,

max)n_i

' = 0 .

Thus, Eq. (60) may be written in the equivalent form

"(max)n_i
[M]n

L(max)n_2J
L(max)n«i.

(60')

L(max)Λ
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Observe that both projections are extremal, they commute, and

M'in + M"in = Min for i = l , 2 , . . . Λ

M'in + M"M,n = Mi9n_1 for i = 1, 2, . . . n - 1 .

It is now tedious, but straightforward, to apply the rules to the product
operators and verify that Eq. (60') yields the same result as the direct
calculation (62).

Summary: Matrix elements of the most general ("monomial")
operator, Eq. (63), are given by the extended pattern rules to within a
phase and normalization. This normalization is given by Eq. (59 b).

VIII. Concluding Remarks

In preceding sections we have shown how the concepts of (a) a re-
duced Wigner operator (an operator acting on the space U(n): U (n — 1))
(b) the A -pattern, and (c) the arrow pattern of a A -pattern may be applied
to a large class of operators: fundamental, elementary and extremal
Wigner operators to yield explicit matrix elements in terms of the
A -pattern rules. For this class of operators the rules are both simple and
comprehensive. In fact, we feel that these rules almost eliminate the sub-
ject, since they can easily be incorporated in a computer to produce
arbitrary algebraic and numerical tables at will.

Obviously the class of operators not covered by these rules now be-
comes of the most interest. Of this class, the analog to the semi-maximal
boson monomial, given in Eq. (60), is the simplest: the rules require
almost no modification. It is for the remaining class of operators that we
feel the pattern calculus comes into its own, for these operators may be
composed out of elementary projections which no longer commute. The
pattern calculus applied to these non-commuting patterns is a subject
of much intrinsic interest which we have explored so far very little.
For £7(3) we can make one useful remark: By considering numerator
and denominator arrow patterns separately, all 17(3) projections with
extremal lower pattern may be written explicitly in terms of commuting
elementary numerator projections. This in effect classifies all 27(3)
projections completely.

One of the primary objectives of such a program is the task of ex-
plicitly defining the content of the canonical operator labelling. On this
problem, the pattern calculus for Z7(3) is definitive. We hope to discuss
this matter, and the generalization to U (n) further.

Acknowledgements. The authors would like to thank Drs. A. GIOVANNINI,
B. GRTJBER, and H. J. WEBER for many helpful discussions.
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Appendix

It is desired to prove that the following sum has the value unity:

s * I

X Π(Piun-l ~ ίV^n-l)"1 * Π(Pjun-l ~ Pja,n-1 ~ l)~X . (Al)
7 = 1 l=s I

Exchanging the order of the sums on s and q gives a term with the
following sum on s, which may be explicitly summed with the result
shown:

h 8 Ίc

(- 1) Σ Π(Pή,n-l - Pf^n-l)-1 • ΠiPή.n-1 ~ fn.n-X ~ V^
8=q1=1 l=s

l* * (A2)

= Π(Pt,,n-l- Plι.n-1)-1 •

With this partial summation accomplished the desired sum in
Eq. (Al) takes the form

Cf^Y JJ (VU,n-l — Viun+ϊ) . Λ (PJι,n-l ~ Ph.n)

QT1 ιJ2 (Pii,n — Pίun + 1) " / ^ (Pή,n-1 - Pia,n-l)

Π (M.n-1 — Pi»n) k Π (pjtt,n-l
___ x ^ _

Π (PH,n — p%ι,n + 1) <ί~1 (pjg,n-l - piltn) Π {ph,n-l - pjg>n-l)

The basic result now required is the identity:

Σ
Π(

for every set of numbers xt =j= x2 Φ Φ ̂ + i and arbitrary numbers i/,.
With the aid of this identity, we easily prove that:

Ίc Ίc

jc Π (Wβ,n-1 - Piχ,n + 1) 77 (pil9n — pihn + 1)
? 2 * 2

V
l α Ίc h

Q~X (Ph,n-1 - piltn) Π (PJun-1 ~ Pjq,n-l) 77 (Pή,n-1 - piXin)

Hence the sum on the right-hand side of Eq. (A 1) is unity, as required.
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