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Abstract. Using a finite form of local field equations some consequences of in-
finite mass renormalization are studied in a rigorous manner. The method is applied
to various models. For pseudoscalar meson-nucleon interaction sufficient conditions
are given for the equivalence to a direct Fermi coupling. Confirming a recent result
by KROLL, LEE, and ZUMINO it is shown that a vector meson field should be pro-
portional to the corresponding current if the bare meson mass is infinite. In the
conventional treatment of neutral vector meson theories this causes certain diffi-
culties which are analyzed in detail. In case of two vector fields coupled to the same
current it is found that the fields must be proportional provided the bare masses are
both infinite. In the Appendix finite local field equations are discussed for the
coupling of a neutral vector meson field to the current of a spin 1/2 field.

1. Introduction

To illustrate the purpose of this paper we consider the model of A*-
coupling. The model is described by a scalar, Hermitian field A (x) which
is an operator valued distribution

Af = f f ( x ) A ( x ) d x

defined for a suitable class of test functions on a dense linear subset D of
Hubert space. A(x) is supposed to satisfy the general principles in
Wightman's formulation of relativistic, local quantum field theory
[I— 3]1. In addition we assume that A (x) satisfies the field equation2 3

- ( D + m2) A (x) = lim j ( x ξ )

j ( x , ξ) = λZ1 (ξ)Z^(ξ):A(x +ξ)A(x)A(x-ξ):~ δm*(ξ)A(x) (1.1)

which has been verified in renormalized perturbation theory [8]. The : :-
product is defined by the usual vacuum subtractions

:A(xί)A(x2)A(xz):

A (x2) A (x3) - {A (xj A (#2)>0 A (x3) - cycl. perm.

1 Concerning the choice of the class of test functions see JAFFE'S discussion [3].
2 Field equations of this type were first proposed by VALATIN [4] for quantum

electrodynamics. The theory has been further developed and extended to other
interactions in ref. [5 — 9].

3 Throughout this paper lim will denote the spacelike limit with |2 < 0 and

^/Λ^T2 bounded. l">°
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m and λ denote the (finite) mass and coupling constants. Formally the
values of the functions 2 ,̂ Z% and <5 w2 at ξ — 0 represent the renormaliza-
tion constants of vertex function, wave function and mass respectively4.

The limit |-> 0 should be understood in the weak sense that (1.1)
holds for matrix elements

(Φ lv ..Φ 2) with 0^D1902^D2. (1.3)

Dl and D2 are dense linear subsets of D with the property that

(Φl9A(x) Φ2) , (Φl9A(x + ξ)A(x)A(x - I) Φ2)

are ordinary functions of x and ξ for

Φι£A>Φ 2 ζ£>2 and £ » < 0 .
We will derive a simple consequence of the assumption that the mass

renormalization is infinite, i.e.

oo (1.4)

Equ. (1.1) may be written in the equivalent form

-(Π + m*)A(x)= j(x, ξ) + o(x, ξ) (1.5)
where l irno (*,£) = 0.

ξ-*Q

Dividing both sides of (1.5) by <5m2(|) and taking the limit ξ^ O we
obtain with (1.4) the relation

for matrix elements of the form (1.3). As should be clear from the deriva-
tion equ. (1.6) is an identity which follows from the field equation provid-
ed the mass renormalization is infinite5. Moreover, (1.6) must be valid in
perturbation theory.

4 In terms of the functions α, β, γ of ref. [8] the functions Z19 Z2 and dm2 are
defined by

Z1(ξ) = γ(ξ)-\ Z2(ξ) = 1 +

5 It should be noted that (1.6) does not imply the relation

which would be inconsistent with the canonical commutation relations.
(*) does not follow from (1.6) because (1.6) is restricted to matrix elements (1.3) for
the field equation (1.1) is correct. For instance, in order to derive the vacuum
expectation value of (*) one would need (1.1) for matrix elements

(**) (Ω,... φ) and (#,... Ω)

But even iίZ^1 were finite the left hand side of (1.1) would not be defined for (**)
unless f κ2 ρ(κ2) dκ* < oo (ρ denotes the weight function of the propagator).
5*



68 W. ZlMMEBMAJSΓN:

The present paper will be concerned with polynomial field relations
of type (1.6) for various models.

We briefly review some previous papers dealing with polynomial field
relations. Usually the relations are formally stated as

A(x) = P(A(x),AI(x),...,An(x)') (1.7)

where P is a polynomial in the components of fields A, A19. .. An (and
their spatial derivatives) occurring in a Lagrange formulation of a local
and relativistic theory. If P does not depend on A (1.7) may be used for
eliminating the field A. It has recently been claimed [10] that the
possibility of expressing a field A by a polynomial (1.7) is

(i) equivalent to the condition ZA = 0, ZA being the wave function
renormalization constant of the field A,

(ii) equivalent to the compositeness of the particles associated with A.
Concerning (i) BRANDT, SUCHER and Woo [11] point out that ZA = 0

should not be expected to be a necessary condition. For the Lee model
they have shown that the F-field may be expressed in terms of the N-
and θ-field in a situation where Zv =f= 0, but δm\ = oo, in accordance with
the argument leading to (1.6).

With regard to (ii) we remark that polynomials (1.7) may certainly
be used to construct local field operators for composite particles. But a
polynomial relation of the form (1.7) does not necessarily indicate that a
composite particle is associated with the field A. Equation (1.6), for
instance, can hardly be related to a composite structure considering that
it is valid in perturbation theory.

In two recent papers [12, 13] it was recognized that in some cases the
divergence of the self-mass is the relevant condition for (1.7). Making
formal use of the field equation HAGEN [12] derived polynomial field
relations from the condition of infinite self-mass. In a similar way KBOLL,
LEE and ZTJMINO [13] arrived at the conclusion that a vector meson field
should be proportional to the corresponding current provided the bare
mass of the meson is infinite.

There are, however, differences in interpretation. HAGEN argues that
for infinite self-mass the equation of motion degenerates into a constraint,
i.e. the field equation becomes meaningless and is replaced by a polynomial
relation. In contradistinction KROLL, LEE and ZUMΓNO maintain that
field equation and the proportionality of field and current are valid
simultaneously.

The rigorous argument given above for the ^-coupling makes
evident that the interpretation given by KROLL, LEE and ZUMΓNO is the
correct one. For the polynomial relation (1.6) is a simple consequence of
the field equation (1.1) if the self-mass diverges in the sense of (1.4). In
that case field equation and polynomial field relation hold simultaneously.
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The principal difficulty in such problems is that the field equations in
their usual form become meaningless if some of the parameters are
infinite. Ambiguities are likely to appear since there is no algorithm for
infinite quantities. However, the limit form of field equations — such as
(1.1) — is well defined even if the renormalization constants should be
infinite. On this basis polynomial field relations may be derived and
studied in a rigorous manner.

We finally mention a paper by NISHIJIMA [14] in which a method is
developed for checking the limit form of (1.7) directly in perturbation
theory. As sufficient for (1.7) NISHIJIMA finds the stronger condition that
the self -mass associated with the field A should diverge more strongly
than any corresponding vertex renormalization. This condition would not
suffice in case of a neutral vector field coupled to a conserved current
since the self -mass of the vector meson is only logarithmically divergent.
However, a corrected version of NISHIJIMA' s argument leads for the J.4-
coupling to the same result that the divergence of the self -mass should be
sufficient for the polynomial field relation (1.6).

The contents of the present paper is as follows. In section 2 polynomial
field relations are discussed for the meson-nucleon interaction. Divergence
of the meson self -mass implies an expression for the meson field which
involves ay; γ5ψ and an JΛterm — due to the presence of the ̂ -coupling.
Under more restrictive conditions, however, it can be shown that the
meson field may be expressed in terms of the nucleon field only

ξ—>0 25

Inserting (1.8) into the nucleon field equation one finds an equation for ψ
alone which formally corresponds to a Lagrangian with a direct Fermi
coupling. Under different conditions such an equivalence has first been
stated by JOUVET [15] on the basis of formal arguments.

Section 3 and 5 concern interactions of vector meson fields. Confirming
the argument of KBOLL, LEE and ZUMINO it will be shown that a vector
meson field Vμ is proportional to the corresponding current JP

F"=ρf (1.9)

provided the meson self -mass is infinite.
In section 4 this result is applied to the commutators of fields and

currents in a neutral vector meson theory. It is found that the usual
assumption of

U°(aO, F*(y)] = 0 for afl = tf (1.10)

is not correct if the meson mass renormalization is infinite. (1.10) is the
basic hypothesis in JOHNSON'S derivation [16] of the sum rule
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However, the sum rule (1.11) is valid in general and can be proved by a
method due to SYMANZIK [17]. SYMAEΓZIK'S method also provides the
complete set of equal time commutators of the meson field components
and their time derivatives. Combined with (1.9) one further obtains the
equal time commutators of the current components.

In section 6 the case of two vector meson fields coupled to the same
current is considered. It is shown that both fields must be proportional if
their masses are infinite. Furthermore the bare masses m01, m02 are equal
in the sense mgι(|)

~ *

This result shows that a system of two independent vector meson fields
coupled to the same current cannot be quantized in a consistent manner
if the bare masses of the fields are infinite.

The Appendix contains a detailed discussion of the local field equa-
tions in limit form for a neutral vector meson field coupled to the current
of a charged spin 1/2 field.

2. Equivalence of Pseudosealar Meson-Nucleon Interaction
to a Direct Fermi Coupling

For the model of pseudo-scalar meson-nucleon interaction the follow-
ing field equations have been verified in renormalized perturbation
theory [6, 9]

h(x) = Km Zαl (ξ) Zt(ξ)-i(A (x + ξ) (2.1)

A(x- I)) γδV(x) + δM (ξ) y (a?)J

= lim

with

φ(xξ) = ~ :ψ(*+ξ) γ*ψ(x-ξ)' + y :ψ(x - ξ) fψ(x + f): (2.3)

B(xξ)= :A (x+ξ)A (x) A(x-ξ): (2.4)

:<ψ (xj γ5<ψ (x2): = y (̂ ) γ*<ψ (x2) - (ψ (xj γ5ψ (a;2)>0 (2.5)

for (x1 - #2)
2 < 0 .

Equ. (2.1—2) hold for matrix elements between suitable state vectors.
As in the case of ^-coupling (Section 1) one obtains from the field

equations (2.1—2) the relations

\ - g lim ̂ fi(g)(^(«-- -
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if

and

if
Zs(ξ)δm*(ξ)

I Mm <5m2 (f)| =

(2.7)

(2.8)

(2.9)

Equ. (2.8) cannot be used to eliminate the meson field since the right
hand side still involves A. In order to express A in terms of the nucleon
field only we will use some additional information. In perturbation
theory [9] the meson current (2.2) can be decomposed into two indepen-
dent currents which are separately finite6

j(x) = h(x) + j2(x) (2.10)

= Jimfroαίf) φ(xξ) + ga12(ξ) B(xξ) - δm\(ξ) A(x)} (2.11)

= lim (λaΆ(ξ) φ(xξ) + λa^(ξ) B(xξ) - δn%(ξ) A(x)} . (2.12)
£->o

galί(ξ)B(xξ)-δml(ξ)A(x)}

φ(xξ) + λa^(ξ) B(xξ) - dm%(ξ) A(x)} .

The two currents are independent in the sense

lim det (aik(ξ)) φ 0

lim

lim

Φ O

Φ O .

(2.13)

Under the additional hypothesis (2.10—13) the field A may be expressed
in terms of yj, ψ provided certain linear combinations of the mass renor-
malization constants δ raf , δ m| are infinite. For the proof we write (2.11—12)
in the equivalent form

h = 9 an Ψ

with
+ f - δml A

-0.

o2

From these equations B may be eliminated. One obtains

provided

(2.14)

(2.15)

6 It has also been observed by K. WILSON [18] that two independent finite
currents can be constructed from ifγ^'ψ and A2.
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Inserting (2.14) into (2.1) one sees that the spinor field satisfies a field
equation which formally corresponds to the Lagrangian

)*. (2.16)

Hence we have a certain equivalence of the pseudoscalar meson-nucleon
interaction to a direct Fermi coupling if the stated conditions are satis-
fied. It should be noted, however, that after elimination of the meson
field the model still contains four independent parameters A, g, M and ra.
Since m is arbitrary the meson cannot be interpreted as composite
particle in this context. The fact that a four parameter solution ψ may
correspond to a two parameter Lagrangian (2.16) merely reflects the
ambiguity in quantizing (2.16).

3. Proportionality of Vector Meson Fields and Corresponding Currents

We consider a model described by a local, relativistic Lagrangian £,
involving massive vector fields F£, . . . , F^. For the free Lagrangian $,k

of the field F^ we choose the Proca-Wentzel form [19, 20]

Zjc is defined as the sum of terms in £ which are quadratic in F£ and its
derivatives. The subscript 0 refers to unrenormalized quantities. The
field equation of F£ then takes the form

- 9, Fjf ' + mlo VI = Zrfl* g,CO % (3.2)
where

yμ _ ^-1/2 yμyk ~^3 VM

are the renormalized fields.
Since some of the constants mk 0 , gk 0 , Z^£ may be infinite we replace

(3.2) by the more meaningful equation

- 3,V*'(x) - Hm (ZΓ8

1/2(f) g**(ξ)%(*ξ) - ^ίo(f) V*(x)) (3.3)

with suitably defined currents j£ (x ξ) valid for matrix elements

(Φ 1 ? . . .Φ 2 ) (3.4)

taken between state vectors from appropriate domains D1 , D2 .
Assuming now that the bare mass associated with the field F£ is

infinite
(3.5)
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equation (3.3) implies

If furthermore the limit

= #(<*) (3-7)

exists for matrix elements (3.4) we have the result

- . (3.8)

This is a rigorous version of the argument given by KROLL, LEE and
ZUMINO that a vector field should be proportional to the corresponding
current in case of infinite mass renormalization.

The limit (3.7) formally corresponds to the unrenormalized current fy
as defined by (3.2). For a neutral vector meson field coupled to the
current of a spin 1/2 field the existence of (3.7) will be shown in section 5.

It should be remarked that for many models the current j% as defined
by the right hand side of (3.2) is different from the conventional current
J% which occurs in the minimal coupling to an electromagnetic field. We
illustrate this point at the example of an isotopic spin doublet tp of spin
1/2 fields coupled to a massive Yang-Mills field V%. For this model the
isotopic spin part of the minimal electromagnetic current is given by the
3-component of

# = V 0 y τ V o + 2fo, X ^"g

WP' = d»V'Q-3'VS + 2g0VSx V'Q.

The field equation of the Yang-Mills field, however, is

d,Wξ' + m&V" = grf (3.10)

so that the current defined by (3.2) becomes

f = >-23,(Fgx FJ). (3.11)

It is an essential assumption in the concept of field algebra [21, 22] that
in the weak and electromagnetic interactions of hadrons the currents j£
or fields V% occur rather than the minimal currents J£.

4. Field and Current Commutators in Neutral Vector Meson Theories

This section deals with equal time commutation relations of fields and
currents for neutral vector meson theories. The discussion is formal in so
far as we do not attempt to give a precise meaning to equal time commuta-
tion relations.
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We consider a neutral vector meson field coupled to the current of a
charged spin 1/2 field. For this model JOHNSON [16] derived the sum rule

where Zz is the wave function renormalization constant of the meson
field, mc the bare mass, ρ the spectral weight function of the propagator.
For the derivation Johnson used the Lagrangian of the Proca formulation

S. = &r + 2ίnt + 2

(4.2)

The renormaUzed field operators and coupling constant are

V =

The independent pairs of canonically conjugate fields are

(Vk, Vok) J f c = l , 2 , 3 .

In order to obtain the commutators involving V° one solves the field
equation formally by

and assumes
0 for a* = y^ j. = ι? 2, 3 .

(4.4) is the basic hypothesis in JOHNSON'S work which yields the equal
time commutator of Vk, VQ. The relation

[F*(αO, F«(y)] = ̂  3*ίβ(» - V) (**)

leads to the sum rule (4.1) provided the meson propagator has an unsub-
tracted integral representation7.

7 It is assumed here that m2 is the only square mass eigenvalue of spin 1 in the
interval 0 ̂  K* < Kt
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We will now show that assumption (4.4) is inconsistent if the bare
mass of the meson is infinite. We write the field equation in the limit
form (3.3) and obtain with g0(ξ) - Z,\^(ξ) g

(4 6)

provided
Km π& (ξ) = oo .
£-»0

According to the sum rule (4.1) the limit

m2=lim£3(|)m2(|) (4.7)

exists and is different from zero. Hence the limit of the current operator
exists and is related to the field operator by8

V(x) = JLj* (x),f (x) = limf (*, ξ) . (4.8)

With this result, however, the commutation relations (4.4) and (4.5) are
incompatible.

The source of the trouble is of course the formal use of the field
equation in (4.3) which is not permitted for divergent constants m0, g0.
Indeed, in this case the corrected version of (4.3) is precisely

Hence any assumption on the commutator [j° , Ffc] would anticipate the
commutation relations of F° and Vk.

The conclusion is that the canonical quantization rules of the Proca-
Wentzel formulation do not provide sufficient information for proving
JOHNSON'S sum rule. On the other hand this sum rule has been derived by
SYMANZIK [17] by quantizing first the Lagrangian (5.2) of the following
section. Defining then the Proca field Vμ by the gauge transformation
(5.12) the equal time commutation relations of Vμ, Vv are obtained
including (4.5). Relation (4.5) implies JOHNSON'S sum rule (4.1) provided
the meson propagator satisfies an unsubtracted integral representation.

The equal time commutators of Vμ combined with (4.8) yield the
current-field commutators as well as the commutators of the current
components

[V«(x)f(y)} = ~3M3 (x — y) x« = tf (4.9)
a

TO f ( y } ] = ίJ" (*) ?%)] = 0 *, ϊ = 1, 2, 3 (4.10)

iw2

[f (*) f (y)1 = i~rS" δ3 (x -y) (4.11)

8 For a more detailed discussion of this argument see Section 5.
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provided
lim πiQ (ξ) = oo .
£->0

Equ. (4.11) is in agreement with Schwinger's results [23]

It should be remarked that the commutators (4.9 — 11) cannot be
computed from the corresponding commutators of jμ (xξ) by taking the
limit ξ -» 0. As was pointed out in ref . [11] the relation

j r ( x ) = ]imjμ(xξ) (4.12)
£-*0

does not imply
[f (*) F° (y)] = lim 0* (x ξ) V> (</)] (4.13)

or XQ = y°

ϋμ(x) jv(y}} = £ϋm [jμ (xξ) f (y y)] . (4.14)
£,f/->0

The reason why (4.14) fails to follow is that (4.12) converges in the weak
limit only. (4.13) is not implied since the validity of (4.12) is restricted
to matrix elements (3.4) for which the field equation (3.3) is correct.
For instance, in order to derive the vacuum expectation value of (4.13)
one would need the field equation for matrix elements

(Ω,...Φ) and (Φ,...Ω)

Φ = f d 3 y V Q ( y ) f ( y ) Ω .

But for divergent Z^1 or ra0 the left hand side δv V0v(x) of the field
equation is not even defined for such matrix elements.

In conclusion we remark that JOHNSON'S hypothesis (4.4) is correct
for a finite theory (m0 =f= °°) and can be derived from the canonical
commutation rules of the Lagrangian (5.2).

6. The Current Operator in Neutral Vector Meson Theories

In this section we propose an explicit form of the current operator
jμ (% £) f °r the model of a neutral vector meson field coupled to the
current of a charged spin 1/2 field. It will further be shown that the limit

f ( x ) = lim/" ( x ξ ) (5.1)

should exist in a consistent theory. The model has the advantage that it
can be renormalized by conventional methods9. So perturbation theory
may be used as a guide for finding a suitable definition oίjμ(xξ).
Using the Gupta-Bleuler metric the renormalization program has been

9 So far this has not been possible for Yang-Mills type interactions unless an
infinite number of counterterms is admitted.
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carried out in detail by SYMANZΓK [17] on the basis of the Lagrangian10'11

S = £Λ + Sint + S,

Q,— __ L / f AtJίV+-—<m*>A Λ^ — —^-ί^ Af*\**~A— 4 Λ0μvΛQ -t- 2 '"o^o^o 2 λa ^ 0'

Stat=-flΌJ^ (5-2)

The subscript 0 refers to unrenormalized quantities. The renormalized
field operators and coupling constant are

= 9 ψ = 2 0 ,

As a finite form of the meson field equation we propose

(5.3)

(D+A»)3^(a?) = 0, (5.4)

for matrix elements between suitable state vectors, λ is an arbitrary
finite and positive parameter which may be identified with the renormaliz-
ed mass12. For the current operator we propose

(5.5)

3" (* ξ η) = (fr (*ξη) + Qμ (x, -!,-»?)) (5.6)

x ξ η) = :ψ(x + ξ) γt>e~ ψ(x - ξ): (5.7)
10 For a discussion of (5.2) see, for instance, ref. [24], section 5 and ref. [25],

section 3.
11 Lagrangian (5.2) is closely related to the Lagrangian of the STUECKELBERG

[26] formalism

which is invariant under gauge transformations

AΌμ = A»μ + -^-SμΛ,B'=B+A
t~ ίίt,Q

Up to a divergence (*) equals £A + Qs with £B denoting the free Lagrangian of a
scalar field B of mass λ. Apart from a minor modification (*) was proposed by FUJΠ
and KAMEFUOHI [27].

12 In perturbation theory where m0 = oo it would be inconsistent to set λ = m0

because (5.4) holds for the renormalized field.
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This form is suggested by the work of VALATIN [4] and BRANDT [7] in
quantum electrodynamics13, x ± η are points on the straight line connect-
ing x — ξ with x + ξ. The integral is extended along this line.

: : denotes the generalized normal product defined recursively by

Ox . . . 0. = :0X . . . Qn: + Σ <O« . . . Oία>0 :Oία+1 . . . O,.: (5.8)

for field operators Aμ or ψ at spacelike relative distances14. The sum extends
over the subsets (iλ , . . . , &α) of (1, . . . , n) .

%< . . .<<«,<«+!< •< V
In perturbation theory (5.5—7) may presumably be replaced by the

simpler expression

j « (x ξ) = Z'z (I) y $" (* I) + 0* (x, - ί))

ξ) (5.9)

_

where only a few terms in the expansion of the exponential are needed.
Using the methods of ref . [4—9] it should not be difficult to check the

validity of (5.3—9) in renormalized perturbation theory.
For the limit form of the Dirac equation see the Appendix, equ. (A. 4).

Since the divergence dμ A
μ is a solution of the Klein-Gordon equation

(5.4) the commutators [dvA
v,ψ], [dvA

v,A**] must be well-defined solu-
tions of the Klein- Gordon equation in a consistent theory. As is dicussed
in the Appendix this leads to the requirement that

m2 = lim Z8(ί) mj(f) Φ 0, oo . (5.10)

In this argument it is not used that the meson propagator satisfies an
unsubtracted integral representation.

We will now derive the meson field equation in the Proca formulation.
Let p be the projection operator on the subspace of the physical state
vectors defined by

(dμA»(x))+Φ = Q. (5.11)
+ denotes the positive frequency part. The meson field operator of the
Proca formulation is then introduced by

γμ (x) = fo (x) p , fa (X) = A* (x) + -^ d»dvAv(x) . (5.12)

The definition of the Fermi field operator φ in the Proca formulation is
given in the Appendix. For Vμ (s) one obtains from (5.3) the field equation
in Proca form

- dv W (x) = lim (gZ^(ξ) j»(x ξ) - m|(|) V(x)}, 8μ V»(x) = 0 (5.13)

18 For the motivation of the exponential in (5.7) see for instance ref. [28].
14 This presciption should be applied to each term of (5.7) after expansion of

the exponential.
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(5.14)

As is shown in the Appendix the current operator jμ (x ξ) may be expressed
in terms of the Proca field by

<5 15>
f (x ξ η) = Y (Φ (xξη) + Q" (x, -ξ,- η)) (5.16)

x + n

Qμ(xξη)=: φ(x + ξ) γμe~ίff .'- , ̂ ^ φ(x-ξ): (5.17)

Finally, we derive the existence of the limit (5.1). If

lim mg (I) = 00 (5.18)

(5.10) and (5.13) imply *"**
Hm jμ (xξ) = — Vμ (x) is (5.19)

for all matrix elements for which (5.13) is valid. For these matrix
elements the existence of the limit (5.1) follows with the current defined

by ^2

?̂ ) = — Vμ(x). (5.20)

By definition jμ(x) is an operator valued distribution with the same
domain as Vμ(x).

If lim mo(|) = m§ Φ 0 equ. (5.1) follows similarly with the current

definedϊy jμ(χ) = J ( _ d r yμ,(x) m* yμ(x)}

6. Impossibility of Coupling Independent Yector Meson Fields to the Same
Current

We consider two vector meson fields V{ and V% in the Proca-Wentzel
formulation which are coupled to the same current. It will be shown, that
F5 and F^ must be proportional provided their bare masses are both
infinite. We give two alternative formulations16 of the hypothesis that W{
and F§ are coupled to the same current.

16 (5.19) holds in perturpation theory up to an expression of the form
lim ZQ(ξ) dv Vμv(x) which should be considered to be zero.

ξ-+o
16 These formulations correspond to a free meson Lagrangian

(a) j*β = - -j Σ v*«μv nι + Y Σ ™ik v**μ nQΊc — 1 K — 1
and an interaction term

(b) .**»=- Σ MμVfa.

One can of course introduce mixing terms of the form Vίμv V%v, Vlμ V% in J2?0. It
can be shown that the mixing matrices must be made positive lest ghost states
appear in the theory. But then the meson Lagrangian can be brought into the
form (a) by a linear transformation of the field (see ref. [13]).
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(i) The fields F£, Vξ satisfy the field equations

- 3,V*'(x) = lim (fk(ξ)f(x I) - m|0(f) Fjf (a?) (6.1)

valid for matrix elements

(Φ 1 ? . . .Φ 2 ) Φ^D^Φ^DZ (6.2)
with suitable domains D13 D2

In this case we do not assume that the limit Km f(x |) exists.

(ϋ) The fields F£, Vg satisfy the field equations

- avF£" (x) = lim (/,(I) j g ( x ξ) - mf o (£) F£ (*)) (6.3)

valid for matrix elements (6.2). Here the currents may have a different
^-dependence, but it is assumed that they approach the same non-
vanishing limit

lim (Φ1? , J (x ξ) Φ2) = Bm (Φ1? jξ (x ξ) Φ2) Φ 0 (6.4)

for matrix elements (6.2).
In both cases it will be shown that F£ and F£ are proportional

provided
|lim ml0(ί)l = oo. i=l,2 (6.5)

We begin with case (i). Equ. (6.1) is equivalent to

a>ξ) + tf(xξ) (6.6)

with
lim
!->0

The hypothesis
|lim mfo(f)| = oo (6.8)

implies
lim p£(x ξ) = 0 .
I—>Q

Let ξn be an arbitrary sequence of spacelike points approaching the
origin. We choose a subsequence ξ'n such that the sequence

has only one accumulation point. We assume that

(6.9)

is finite. This is no loss of generality since

=oo (6.10)
v '
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can be reduced to (6.9) by interchanging F£ and Vξ. Multiplying (6.6) for

k = 2 by -r1 and taking the limit n -> oo we obtain
ίla

n — > oo ιlz\ζn) M'

Hence

h — lim

and

1

MO
*,(«)
= AF^. (6.11)

In case (ii) the field equation (6.3) is equivalent to

with
lim

If
lim 77
£-»0

we get

(Φ1? V$(x) Φ2)

It follows that

)ft(*£) + lΐ(*f) (6-12)

oj^(a;|) = 0.

?,|0(^) =5 oo

== lim Afc (|) (Φ19 ft (x ξ) Φ2) .
ί->0

hk = Hm hk(ξ) φ 0 , oo (6.13)
l-^o

exists and does not vanish. Hence

Ff == T-F§. (6.14)

In case (i) we can further show that

limJφlf) l (6.15)
£->0 Wao(£)

i.e. the bare masses of the two fields are equal. This result is an applica-
tion of the following uniqueness theorem.

Let Vμ be a solution of the field equation

- dr V'(x) = lim(/(f)f (a: ξ) - mg(|) F"(*)) . (6.16)

Then the equation

- dv W (x) = lim (/' (ξ) p (x ί) - «ί « (f ) V (x)) (6.17)
ς— >0

is satisfied by f and mό for the same matrix elements if and only if

6 Commun. math. Phys., Vol. 8
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Relation (6.18) implies

^ / 2 /" = 1 (6.19)

The sufficiency of (6.18) is obvious. In order to prove that (6.18) is
necessary we assume both equations (6.16) and (6.17) to be valid. Then
we have

— dv V
μv(x) + fftofc(£) Vμ(x) = fjc(ξ) jμ(x ξ) -f o^(x ξ) (6.20)

with
limogteί) = 0. (6.21)

Let ξn be a sequence with

£2 < 0 , lim £M = 0 , lίn ι->o n |S

To every accumulation point / of the sequence V*,Λ we choose a sub-

sequence ξ'n of ξn with

^M®L = f . (6.22)

We first assume

I/I ̂  i (6 23)
Form (6.20) we obtain

« = o<|-o£. (6.24)

The limit

exists because of (6.21), (6.23) and (6.24). So we obtain

(/ - 1) (- dv V«v(x)} Hr t W(x) = 0 .

Excluding the trivial case that Vμ statisfies a linear equation we get

/ = ! , ί = 0. (6.25)

For I/I 2> 1 we obtain in a similar way

which is included in (6.23). Since (6.25) holds for every accumulation point
(6.22) condition (6.18) follows.

Finally we apply the uniqueness theorem to case (i). According to
(6.1) and (6.14) the field Ff satisfies both equations

- dv V£»(x) = lim (£(£) f ( χ ξ) -

Hence we obtain (6.15) as a necessary condition.
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Appendix. Limit Form of Local Field Equations for a Neutral Vector
Meson Theory

( a) Formulation with Indefinite Metric

We consider the model of a vector meson field coupled to the current
of a charged spin 1/2 field. The Lagrangian (5.2) formally leads to the
following field equations of the renormalized fields

0 (A.I)

= g γ"Aμψ .

We list some of the commutation relations which follow from the canonical
rules and (A.I)

(x - y) (A.2)

(x - y) . (A.3)

We now propose a finite formulation of the field equations (A.I) and
the commutation relations (A. 2— 3). The field operators are supposed to
be operator-valued distributions on a domain ί> which is dense in a
Hubert space § of indefinite metric. Except for positive definiteness of
the metric the usual postulates of quantum field theory are assumed in
the form proposed by JAFFE [3].

As local field equations we propose (5.3—7) and

i γ«dμy(x) = Jim (g^(Aμ(x+ ξ) + Aμ(x-ξ))Ψ(x) + M0(ξ)ψ(x)) (A.4)

to hold for matrix elements.

(Φl9...φύ ΦieA.Φ eA (A 5)
A and J52 are dense linear subsets of ί> with the property that

(Φ1( A"(x + ξ) V(x) Φa), (Φj, ψ(x) Φ2)

are ordinary functions of x, ξ and η for

and η lying on the straight line connecting — ξ with + ξ 17. Since

A(x) = ±d,A (x) (A.6)

is a solution of the Klein-Gordon equation (5.4) the commutators of A (x)
17 εt* is chosen small enough that the matrix element (Φ19 . . . Φ2) of (5.7) con-

verges after expansion of the exponential.
β*



84 W. ZIMMEEMANN:

with y) (y) and Aμ (y) must be well-defined solutions of the Klein-Gordon
equation (5.4) to the mass λ. Hence for the theory to be meaningful the
limit

ϊή* = lim Z3 (f) tug (f) Φ 0, oo ( A.7)
£-»0

must exist and be different from zero18. Accordingly we postulate the
commutation relations

λ(x-y) (A.8)

[A (x) A" (y)] = - -p » &Δλ(x - y) . (A.9)

The last relation implies

[A(x)A(y)]=-i-jpAλ(x-y). (A.10)

Let §' be the closure of the subspace which is generated by applying
polynomials of creation operators

Af = f f ( x ) A ~ ( x ) d x

to the vacuum Ω. A~(x) is the negative frequency part of the free field
A (x), f(x) is a suitable test function. §' is spanned by the vectors

Φ' = Aj-ι...Aj-nΩ. (A.ll)
Since the commutator (A. 10) has the negative sign an indefinite Gupta-
Bleuler metric must be used in $)' .

Let § be the closure of the subspace of physical state vectors defined

by
AJ Φ = 0, Φζΰ. (A.12)

p denotes the projection operator on §. In § a positive definite metric is
used. The intersections of ΰ, £>1} jD2 with § are assumed to be dense in §
and invariant under p

The product Φ X Φ' of a physical state vector Φ and a vector Φ' of the
form (A.ll) is defined by

Φ χφ' = Aj-l...A£φ, Φ £ ΰ r\ $> . (A.14)

The linear span of all vectors (A.ll) is dense in $) and contained in ί>.
From (A. 10), (A. 12) it follows

(Φi X Φ[ , Φ2 X Φ5) = (Φ1 , Φ2) (Φ{ , Φί) . (Δ.16)

fδj Transformation the to Proca-Wentzel Formulation

The fields Vμ and y are defined by (5.12) and

Λf . - -
φ(x) = e m : e λ : ψ(x) .

18 For m— oo the operator A (x) would commute with ψ(y), ψ(y), Aμ(y), A(y)
at all times. In this case cyclicity of the vacuum state would imply A (x) === 0.
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The formal properties of these operator gauge transformations were
studied in detail by SYMANZIK [17].

Since Δ% diverges at the origin (A. 16) is not well defined. Therefore,
we replace (A. 16) by the weak limit

Λ. i-^φ(x) = lim e m*
ζ— >o

and demonstrate the existence of the limit. (A. 17) is supposed to hold for
matrix elements of the form (A.14). For a free field A (z) JAFΓE [3] has
shown that

is a well defined operator-valued distribution in his formulation of
quantum field theory. We study now the properties of

:β * v ':?(*) l '

(A.8), (A.10) imply the commutator

[φ(x ξ) A(«)] = ̂ (JA(a; - 2) - Δλ(x + ξ - «)) l(£ f) . (A.20)

Using (A. 12) one finds

(Φ1? φ(x ξ) Φ2) = (Φιψ(x) Φ2) (A.21)

for physical state vectors

Let Φί, Φ£ be vectors in §' of the form (A. 11). For the matrix elements
of φ(x ξ) between state vectors Φx X Φ(, Φ2 x Φ% of the form (A. 14) we
find using (A.20)

(Φ1 xΦ{,φ(xξ)Φzx ΦQ = (Φl9φ(x ξ) Φ2) ((Φί, Φί) + R(x I)) (A.23)

with
lim R (x, ξ) — 0 .

Hence the limit ξ -> 0 of (A. 19) exists and yields

lim (Φj X Φί, φ(x ξ) Φ2 X Φg) = (Φ1? ψ(x) Φ2) (Φί Φ^) (A.24)

By
φf(Φ X Φ') = (pψfΦ) X Φ' (A.25)

the operator φf is defined on the linear span of vectors of the form (A. 14).
According to (A.23) the corresponding distribution φ(x) is the weak limit
(A. 17) for matrix elements between vectors of the form (A. 14). For
matrix elements between physical state vectors (A.22) it follows

(A-2β)
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Using again the commutation relations (A.8), (A. 10) it can be shown
that (A. 17) is solved for ψ by

y(a?)= lim :elΎΛ(X + ξ): φ(x) (A.27)

(A.20) implies
[ φ ( x ) , A ( z ) ] = 0. (A.28)

Therefore
[φ(x),p] = 0 . (A.29)

One further obtains from (A.9), (A. 10)

[ Ϋ ( x ) , A ( z ) ] = Q, [f(aO,p] = 0. (A.30)

Hence the field operators

ψ(x) = 0(s) 2), F(α) = f (x) p, ψ(x) = 0(α) p (A.31)

leave § invariant. Restricted to ί) the domain of φf, φf and F/ is

As has been pointed out by JAFFE and SYMANZΓK [29] the Wightman
functions of φ are not tempered distributions if the Wightman functions
of ψ are as seems to be the case in perturbation theory. For this reason it
is advisable to allow for the spinor fields the more general concept of
JAFFE [3]19.

(c) Dirac Equation in the Proca-Wentzel Formulation

After these preparations we derive in the following the limit form of
the Dirac equation of ψ. Using (A.26) we obtain for matrix elements of
(A.4) between physical state vectors

Φj, φ(x) Φ2) = lim (y* Lμ(x ξ) + M0(ξ) (Φ1; φ(x)

Lμ (x ξ) = -i- (Φ1 ,Aμ(x+ξ)ψ (x) Φ2) + y (Φx , Aμ (x-ξ)ψ (x) Φj (A.32)

We rearrange

Lμ(x ξ) = 4 (Φlt fμ(χ + ξ) ψ(x) Φ2) + (Φ1; Ϋμ(x - ξ) y(x) Φ2)

by use of (5.12), (A.8) and (A.12). The last term vanishes for ξ2 < 0, hence

Lμ = y (Φlf (Vμ(x +ξ)+ Vμ(x - I)) φ(x) Φa)

19 If the Wightman functions of At*, ψ, ψ are tempered distributions the operators
may be defined for test functions / 6 §>(-K4) or Θ(-K4) on the domain generated by
applying Af9 ψf, ψf to Ω. This domain, however, is not dense in the physical sub-
space § necessarily φf given by (A.25) is definable for the same class of test functions
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because
(ΦI9 ΫμψΦ) = (Φι,pΫμP'ψpΦ<lί) = (Φi, VμφΦ2).

Thus the limit form of the Dirac equation in the Proca formulation
becomes

(A.33)

for matrix elements
(Φ 1 ) . . .Φ 2 ) ΦtζDt. (AM)

Comparison with (A.4) shows that the form of the Dirac equation is
invariant under the operator gauge transformation (5.12), (A. 17).

(d) Current Operator in Terms of Proca- Wentzel Fields

In section 5 the limit form of the meson field equation in the Proca
formulation was derived. It remains the problem to express the current

j « ( x ξ ) = pj»(xξ)p (AM)

in terms of the Proca fields Vμ and φ. Using (5.12) the operator Qμ

defined by (5.7) becomes

An/ f \ /c - ^ / i f t f ) i(A(x + η)-A(x-rΐ)\Qμ(xξη)=:(8e *-n eλ J:
with

With definition (5.8) and (A. 10), (A.29), (A.30) one obtains

for matrix elements (A.34) where Qf is given by (5.17). Hence relation
(5.15) follows with

V , Λ +

(A.36)

Y(ξη) _

Comparison of (5.5—7) with (5.15—17) shows that the form of the
current operator is invariant under the operator gauge transformations
(5.12), (A.17) provided the renormalization functions ZZί Y are trans-
formed according to (A.36— 37).

I am grateful to Drs. GASIOBOWICZ, HAAG, SWIECA, SYMANZIK, WESS, WICK,
K. WILSOK, ZUMINO and ZWANZIGEB for interesting and helpful discussions.
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Notes added in proof. As will be shown in a forthcoming paper an additional

term of the form ρ({) -^-dt*dv A(x) should be included in (1.1). Equ. (1.6) is

then modified accordingly. I am grateful to DR. K. WILSON for having pointed
this out to me.

Terms of the form Qk-^φ-dW A should be included in (2.11—12). Equ.

(2.14) is then obtained under the additional requirement.
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