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Abstract. It is shown that the %-algebra R of test-functions for a quantum field
is reduced, i.e. for each b ¢ R, b == 0, there exists a positive continuous linear
functional W(a) on R with W) +=0.

I. Introduection

In the Wightman axiomatical approach a quantum field is defined by
a continuous representation of a x-algebra of test-functions in an algebra
of (unbounded) operators in a Hilbert space with the same invariant
domain and a cyclic vector (vacuum). By the Gelfand-Segal-Theorem a
continuous cyclic representation of a x-algebra is given by a continuous
linear positive functional W (a) on R, i.e. a continuous linear functional
for which W(a*a) = 0, a € R, holds. For a quantum field the positive
functional W satisfies certain further conditions, i.e. Lorentz invariance,
spectrality and locality. Such a functional is called Wightman-functional
(1], [2].

The mathematical structure of such a x-algebra is described in the
following section.

In this paper it is proved that there exists a set F of positive continu-
ous functionals on R, which all are bounded by one continuous norm on
(the linear space) R so that for every b € R, b == 0, there exists a W ¢ F
with W (b) & 0 and consequently, the algebra R is reduced [3].

It is not proved that there exist “sufficient many” Wightman-
functionals, but one may hope that the proved result is a step to the
solution of this problem.
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II. The *-algebra R

Let M be a topological space (M is the Minkowski space or the mass
shell, for example) and M ™ = Mz ...xM the Cartesian product of n
copies of M. C (M) is the normed hnear space of the continuous com-

plex-valued bounded functions a,(xy, . .., a,) ; € M, on M® with the

norm ||a,|lo = sup |a,(z,, . .., z,)|. Let Rybe the complex field C and for
T1yee 0T €M

n=1,2,... R, a locally convex linear topological space (over the

complex field) of continuous complex-valued bounded functions on 2™
with a stronger topology as is determined by the norm | |, i.e. @,
a, € R,, is a continuous function on the topological space E,,.

Furthermore we assume that for a, (x;, . . ., ¢,) € R, b, (%, ..., T,) €ER,,
@, (X, - - ., %) is an element of R, and
Cn+m(x1> ERRE) xn-{—m) = a’n(xl’ ] 'Y"n) bm(xn+17 ) xn+m)

is an element of R, ,,, and that the so defined mappings from R, onto
R, resp. from R, x R, into R, ,,, are continuous.
The algebra R is the linear space

R= @ R, (topological direct sum [4]) . (1)

n=20

Consequently, every element a ¢ B has the form a= )} a,
n=0
Ay = @y (%, . .., x,) € R, and only for a finite number of indices is a,

different from zero. a,, is called the homogeneous component of the degree
n of a.
The multiplication for two elements a, b € R is defined by
(ab), (@1« o5 @) :L +§ ag @y, - - -, ) bl(xk+1> RN xn) (2)
c =nN
k

(the product on the right-hand side is the usual product of functions) and
the x-operation is defined by

(a*)n(xl’ ) xn) = En(rm ] xl) (3)
(the bar on the right-hand side labels the complex conjugate function).
In 1], [2]is R, = @ (M ™) resp. & (M ™) the well known Schwartz’
spaces of test-functions, but other spaces are regarded in the quantum
field theory, too [5]. Here M is the Minkowski space.
Let K, be the algebraical convex cover of the set of elements a*a,
a €R. Each element k € K, has the form

b — 2 a®*a® | g ¢ R
i=1 (4)
a® =3 aP(x,, ..., x,)
nz0
K, is a convex cone, i.e.
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a) for k, k' € K, and two arbitrary positive numbers s, { is sk +
+ tk' € K, and

b) if k € Ky, k== 0, then —k ¢ K,

The statement a) follows directly from the definition of K, and the
statement b) holds, because for each g € K|,

i) the homogeneous component ¢, of g with the smallest
degree, which does not vanish identically, has an even degree, i.e.,

gr :gzs

i) g, = ¢os(®y, . - ., Tos) is nonnegative on the set
F2s = {x = (xh R xzs); Xy = Lgg Ty == Lgg_15+ + +> Tp = xn+1} (5)
iii) for at least one £ € Iy, we have gy (&), . . ., £55) > 0.
Now we define for & € K
L= sup (|aPpR+ -+ [P, n=0,1,2,... .1 (6)
Tiyerny B €M

Lemma 1. For an arbitrary k € K, the following relations hold (k, is
the homogeneous component of the degree n of k):

uz¢%ww<zz (7)
Hzité?*aﬁwo:=l% (8)
allo = Z Lyl (9)
n
l% — 2zlln+vln_,, < “kzn”o’ n=20,1,2,... (_;=0). (10)

Proof. (7) follows immediately from the Cauchy-Schwarz inequality
by the definitions (2) and (6). Furthermore, we have

n2¢%wn=swlzd“ s @) P @ - s )| 2

T Y 1

g sup IZ 657?)(x1> s Ty ) ()(xl’ .t ':wn) = l72z
Tyyeens Ty 1
and from this, together with (7) for n = m, follows (8). (9) follows from
(7) by summing over all p, ¢, p + ¢ = n. From the definition of k,, we
y g P9 P4 an
obtain
Il Z alP* g (1) — | 2 2 a(z’;)z* va(z)”
1 v=20

vEn
and from this follows (10) by (7) and (8).

kzu”o

! The application of this expression has been proposed by T. GorxiTz, Karl-
Marx-Universitiat Leipzig.
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We need further a relation for a special infinite hermitian matrix H,

which is defined for a sequence oy, ¢, . . . of positive numbers by
H = (his)i,i=0.,...
5 5 — o, iftFjand 4 j=2r (11)
= % %4700, = and 4 + § is an odd number

Lemma 2. There exists such a sequence o, oy, . . . 0f positive numbers
that for an arbitrary infinite vector 1 = (l,, 1, . . .) for which only o finite
number of components are not zero the relation

2 hiilily = X 1 (12)
i =0 i
holds.

Proof. We construct by induction a sequence of positive numbers

s %y, - - - Such that

ZMJL_le m=0,1,... 13)
4,j=0

holds, with certain numbers ¢,, > 1.

For m = 0 we can set «, = 2. Now we assume that (13) holds for
m = n — 1 and show that we can choose ¢, so that (13) holds for », too,
with a certain ¢, > 1. From the definition of H we obtain

n—1
2 kzal l = 2 hul + O‘nl% - 22 dn—vlnln—-m’ .
i,j=0 ,j=0 v>=1

The sum on the right-hand side runs over all » for which the other indices
are nonnegative.

From this and the induction assumption we obtain with an arbitrary
positive f

n
. 20 hzalzla = ¢ 21 (ln 2v+1)2 - (“n ﬁz) l%
1,j = v
1 2
n—v n v _ln
(ﬁy 1“ 2 ﬂ ) +
2
Cp— 12 n—ov /32 On n 2v)

r=1

V

D4

v

%

Cn—lZ (n 2v+1 2 + (‘xn 132) lrzt +

r=1

o) g

n—1
Now we choose f such that ¢,_; — 52} «2>1 and then «, such that
i=0

&Ly — ﬁ> 1
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In this manner we have constructed an «, such that the relation (13)
holds for m = n, too.

Now let o, o, . . . be a sequence of positive numbers for which the
assertion of the preceding Lemma holds. Then we define for a ¢ R
lally = 2 o ]azo (14)
=0

where | ||, is the norm in C' (M @") and a,, is the homogeneous component
of the degree 2v of a. | ||; is a continuous semi-norm on R which gives a

continuous norm on R;= (P R,, (the topological direct sum).

Y=

Let | ||, be another continuous semi-norm in R such that for each
acR and r=0,1,... |@y,41lo < Mors1l@]. holds where a,,., is a
homogeneous component of @ and u,,,,; are positive constants. Then

| |l is & continuous norm in R, = (P R,,,, and

v=10
lal = laly + lalu, acR (15)
is a continuous norm in E. Beside the basic-topology we regard in R a
second topology which is determined by the norm | ||. This topology is
called the norm-topology or | |-topology. With this topology is R a
(uncomplete) normed linear space, but not a normed algebra.

In the usual cases, where M is the Minkowski space and R, = & (M ™)
or P (M ™), the Schwartz’ spaces, the semi-norm | ||; is Lorentz invariant
and consequently, we can choose || |, such that the norm || | is Lorentz
invariant, too.

Now we state and prove the main relation for the proofs of the
theorems:

Lemma 3. For every k € K holds the relation

2 0= |k, (16)

n=0

where 1, are the expressions (6).
Proof. We obtain from (10)

2 “nl?z - 22 2 o‘nln+v ln—v = 2 o‘nsznHO

n=0 n=z0r=1 n=0

and in consequence of the definition (11) of H this is equivalent to

Zo hill; = 2 |kl -

1,j= n=0

From this the relation (16) follows, because «g, &, . . . is a sequence for
which (12) holds.
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III. Main Theorems

After the preparations in the preceding section we state and prove
here the main theorems.

Theorem 1. The topological closure K., of K, in R with the norm-
topology, which is determined by the norm (15), is a cone. Consequently,
the topological closure K, of K, in R with respect to the direct sum topology
s a cone, too, because K K.

Proof. We prove that the relations (5) ¢)—iii) hold for a g € K,
g == 0, too.

Let g + 0 be an element of K| . Then we can write g = }' g,, where

n=20
. is the homogeneous component of the degree » of ¢, g, = 0 for n > m.

There has to exist a sequence k' € K, with |[k* — ¢ < 1 and [[k* — g] — 0
for y - oo and consequently,
1&, = gallo—0 for v—oco, n=0,1,.... (17)
N,
Each % has the form & = Z a® *a(’) a(’) CR. Let ', n=0,1,2, ...,
i=17

be the numbers (6) of k”, then we obtam from (16)
2 EGP =Rl =lgl+1

n=0
and consequently, the sequence &, v =1, 2, . . ., is bounded for every =.
Because g == 0, there exists one s = 0 such that
lim =0 for 0==n=<s-1 (18)

I does not tend to zero for y — co.
Then follows from (9)

hm 1&lo=1gullo=0 for 0=mn=2s—1. (19)

Furthermore one has

}Ln:o 15500 = [g2slo + O - (20)
If this is not true, i.e. lim |£3;] =0, then we obtain hm 2= 0 by (10)

and the first assertion of (18), which is in contradlctlon w1th the second
assertion of (18). (19) and (20) are the assertion (5) i). Finally it remains
to prove the statements ii) and iii) of (5).

From (17) and (18) we obtain

lgss — 2 a(z)*a(l)"o = lg2s — 3sllo + “2 2 “(.fg*p“(z)”o
i p=20
?#s

gngs— s“o"*‘gzls ps-l—p—)o
for y — oo, i.€.

gzs(xlr cee x2s) = hm 2 a'(l) xs’ R xl) ?:i‘i)(xs+l’ Tt x23) (21)
[
11 Commun. math. Phys., Vol. 7
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(in the || |,-convergence) and consequently, g,, is nonnegative on I.
Because & does not tend to zero, we obtain straight-forward from (21)
that g,s(@y, . . ., %y,) is not identically zero on I',,. Hence, assertion
(5) ii) holds, too. KyC K|, holds, because the norm | | is continuous in
the basic-topology of R.

Theorem 2. For each b ¢ K|, b = 0, there exists a positive continuous
linear functional W,(a) on R with W4 (b) + 0 and W,(k) = 0 for k€K,
for which |Wy(a)| < |all, @ €R, holds. Consequently, the topologzcal
x-algebra is reduced (see [3] p. 270).

Proof. Let be b € K|, b = 0, then it is 0 ¢ b 4 K, because K, is a
cone. Further let U = {u:|u| <} be such a nelghbourhood of the
origin, that U N (b + K, ) = 0 holds. Now we define

L:{i(kl—k2):k1, szK} i‘,?:zz—l}
and
={k+s-b+s-ukcK ,s=0,ucU}.

L is a real linear space in R and K, a cone with the interior point b and
we find LN K; = {0} (the origin). For if a=i(ky — ky) =k + sb +
+suCLn Ky, kyky k€K, wcU, s=0, it follows a* = —a, ie.
k4 sb 4 su* = —k — sb — su and finally k& + sb — su, = 0,

Uy = -—%(u* + u) € U. If s >0, then it would be—é—!— b € U and this
is a contradiction to the construction of U. Therefore we have s = 0 and
consequently & = 0, too, i.e. a = 0.

Now we use

Lemma 4 (MazuURr, S.). Let K be a convex set with a interior point b in a
real locally convex space R and L a linear subspace of R, in which does not
lte an interior point of K. Then there exists a linear continuous functional
f(a) on R with f(k) = 0 for k € K, f(b) > 0 and f(a) =0 for a € L [6].

If we regard the algebra R as a linear space over the real field, it
follows from Lemma 4 the existence of a real linear functional f(a) on
R with fla)=01fora €L, f(k) = 0 for k € K; and f(b) > 0. Then W,(a)
= f(a) — 7f(¢a) is a linear functional on the complex linear space R with
Wy(b )# 0 and Wy(k) = f(k) — if(tk) = f(k) = O for k€ K, , because
tk € L. Wy(a) is a positive functional on the algebra R. Ev1dently, we
can choose W, (a) so that |W,(a)| < |a| holds.

From the last property it follows that the set {W,} is bounded in the
weak topology in R’ and consequently, by a well known theorem [4], we
obtain the

Corollary. The set {W,} of all these positive linear [unctionals of

Theorem 2 is a relatively compact set in the weak topology in R’ (the dual
space of R).
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