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Abstract. The thermodynamic limit of a quantum spin system is considered. It
is demonstrated that for a large class of interactions and a wide range of the thermo-
dynamic parameters the equilibrium state of the system is des crib able by an
extremal Z^-in variant state (a single phase state) over a 0* algebra of local ob-
servables. It is further shown that the equilibrium state may be obtained as the
solution of a varίational problem involving the mean entropy. These results extend
results previously obtained for classical spin systems by GALLAVOTTT, MIRACLE -
SOLE and RUELLE.

1. Introduction

In recent articles [Ί, 2, 3] the statistical mechanics of classical spin
systems has been considered and it has been shown that, for a large class
of interactions and values of the thermodynamic parameters, the state
of equilibrium can be described by an extremal (single phase) Zv invariant
state over a (7* algebra 21 of local observables. Further it was demon-
strated that the equilibrium state may be obtained as the solution of a
variational problem involving the mean entropy of the Zv invariant
states over 21. The purpose of the present article is to derive similar
results for a quantum spin system; our methods are those of [2] and [3].

2. Notation

Consider particles on a lattice Zv and assume that the occupation
number n.ι of every lattice point xi is restricted to take the values
0, 1, . . ., N where JV < + oo. We call such a system a spin system; this

terminology originates from the fact that ~^{^ni — N) may be viewed

as the value of a spin component.
To describe a quantum spin system we associate with each point

xi ζZv a Hubert space Jj?Xi of dimension JV + 1 and with the finite set
®

A = {xv . . ., xv} we associate the direct product space Jti?Λ = JJ Jf?Xi.
XiζΛ

Further we define the algebra of (strictly) local observables 91 (A) cor-
responding to A to be given by the algebra 25 (J^Ά) °f a π < bounded
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operators acting on 2tfΛ. Now if A1CA2ι an operator Ax ζ Ql(ΛΊ) may be
identified with an operator A2 ζ 3102) ^y setting A2 = Aτ ® i^/^ where
/^ is the identity operator on Jf^ and AΎ\A2 denotes the complement of
Aλ in yl2. This identification induces a norm preserving mapping 2( 0 ^ ->
->2(02) of the abstract (7* algebras and the isotony relationship
2(0 1)C2(0 2) ^ o r ΛλCΛ2. Due to this isotony relationship, the set
theoretic union of all 310) with A finite is a normed ^algebra and we
define the completion of this algebra to be the abstract (7* algebra 2(
of (quasi) local observables. We note that the group Zv of space transla-
tions is a subgroup of the automorphism group of 21 and we denote the
action of this group by A ζ 2(0) -> τxA £ 910 -f- x), x ζZv. Further, the
subalgebras 2(0) satisfy the commutation relations1

[2l0α),2(02)] = O if A,nA2^0

and 2( is asymptotically Abelian, i.e.,

We assume that the particles on the lattice interact through many
body "potentials" </>(fc)(.τ0, . . ., xlc-ι) £9l({#0, . . ., xk-.1}). We consider
an interaction φ to be a sequence φ = (φ^)k^ι of k body "potentials"
which we assume to have the properties

I. φ{kHx0, - - , #7C-i) i s Hermitian

IT. φ ^ (x0 + x, ..., a * - ! + x) =

and

Φ0

where the sum £ extends over all sequences of distinct points of Zv

different from 0. The interactions φ form a real Banach space 0& with
respect to this norm. We denote by J ^ the dense subset &SQC & of finite
range interactions, i.e., those φ = {φ^)k>\ ί° r which

unless {xv . . ., xk^1}cΛ for some finite A.
Next, for each φ ζ 38, let us define Aφ ζ 21 by

AΦ= Σ^ Σ + o Φ m ( o , a*,...,**-!)

(Aφ is the "interaction energy" at the origin). The mapping φ
1 For simplicity we have omitted consideration of spin systems with anti-

commutation relations (Fermi lattice gases, see [4]) but we remark that even such
systems can be described in terms of observables with commutation relations. For
such a description one would, however.choose 21 (A) to be a subalgebra of 23

φ is
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norm decreasing from ^ to Qί and the set {τxAφ\ x ζZv, φ £ ̂ 0} is dense
inQί iί φ ζ &0 then ^ is strictly local. These facts will be of significance
later.

We will start by considering a system of particles on the finite set A
and the energy operator Uφ(Λ) on 3f Λ corresponding to the interaction
φ will be given by

We Λvill be interested in studying functions ZΛ(φ), FΛ(φ) and PA(Φ)
which we define as follows

φ) and PΛ(φ) = V(Λ)^FA(φ)

where V(Λ) denotes the number of points of A.

3. Thermodynamic Limit

a) The Thermodynamic Free Energy

Our immediate aim is to show how the methods of [2, 3] may be
used to define the thermodynamic free energy of a quantum spin system.
We begin by recalling that if A and B are n x n Hermitian matrices then
the following inequalities are valid [see for example [5], Eqs. (1), (2)
and (19)]

|logTr(e-^) - logTr(e-*)| £ \\A - B\\ (1)

and for 0 ^ λ ^ 1

logTrίe-^-ί1--*)*) < λlogTr(β-^) + (1 - λ) logTr(e-^) . (2)

These inequalities immediately yield
Lemma I. a. // Ax and Λ2 are disjoint the function A -> FΛ(φ) satisfies

WΛ^ΛΛΦ) - FΛSΦ) - FΛi(φ)\ -S WUφlΛ, VJΛ2) - Uφ(Λy) - UΦ(Λ2)\\ .

b. The function φ -> PA(Φ) ^S convex and continuous on 0$; for

φ, ψ ζ @ and 1 ^ λ ^ 0

pΛ(λφ + (l - λ)Ψ) ^ λPΛ(Φ) + (i - λ) PAΨ)
and, further

\PΛ(Φ) - PΛ(Ψ)\ < \Φ ~ Ψϊ • (3)

Proof. The first statement of the Lemma follows from (1) if we
choose A = UΦ(Λ1\J A2) and B = UφiAj) 4- Uφ(Λ2) and note that as
Λλ and A2 are disjoint

The convexity of PΛ{φ) follows directly from (2) if we choose A = Uφ{Λ),
B = ^ ( / l ) whilst (3) is a consequence of (1) and the inequality

\υφ-{Λ) - vψ{Λ)\ = i ί^_
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From this Lemma, we may conclude the following:
Theorem I. // φ £ £8 then the limit

P(φ)=\im -J—FΛ{φ)= Km PΛ(Φ)
Λ> oo V {Λ) Λ—> co

exists, where A tends to infinity in the sense of Van Hove (see [I]). The
function φ -> P(φ) is convex and continuous on the Banach space £$ and

\P(φ) - P(ψ)\ < \\φ - Ψ\\ .

The proof of this theorem is obtained by combining the arguments
of [2] and [5] we refer to these papers for details. The first stage in the
proof is to conclude the existence of P(φ) for φ ζ^0; this is discussed
in [5] for the case of A being a parallelepiped with sides tending to
infinity. The extension of the arguments of [5] to the more general type
of limit is easy. The second stage (see [2]) is to note that if the sequence
φn ζ ^ 0 tends to φ, i.e., if \\φn - φ\\ ~^^> 0 then PΛ{φn) tends to PΛ{φ)
uniformly in A as a result of (3). This is sufficient to establish the
existence of the limit P(φ). The convexity and continuity of φ -> P(φ)
follow immediately from the Lemma.

The connection between this theorem and the thermodynamics of the
spin system is given by introducing the inverse temperature β and de-
fining ΞΛ(β, φ) through

ΞA(β*Φ)=ZΛ(βφ).
Then ΞΛ(β, φ) is interpretable as the partition function of the set A and
the above theorem establishes the existence of the therm odynamie free
energy

p(β, φ) = β-*P{βφ)= β-1 lim - ^ L - logΞΛ(β, φ).

Other parameters than β, such as the components of an external magnetic
field, may also be introduced through the interaction φ. Bounds on
p(β, φ) may be easily obtained from (3).

b) The Equilibrium State

Let Λ! be a subsystem of a spin system confined to A. For A ζ 21 (/Γ)
define ρφ$Λ(A) by

The expectation values Qφ^i^ ) ϊP-ve information concerning the physical
properties of the subsystem A'. If the size of A is increased then physi-
cally the effects of the boundary of A should in many circumstances
become negligible in A' mathematically this would be reflected by the
ρφtΛ tending to a limit ρφ as A -> oo. The resulting limit function ρφ

would then determine a state over 21. We next consider the existence of
such a limit state.
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Notice that if ρ^ exists it will be a Zv invariant state due to the
assumed invariance of φ. This indicates another procedure for examining
the limit. If ψ ζό#Q then Aψ is strictly local and Qφ{Aψ) would give the
"energy" at the origin due to the interaction ψ. However, due to the
invariance this "energy" would also be equal to the "average energy"
due to ψ. Thus it would be expected that Qφ(Aψ) should also exists as the
limit of the expectation value of the "average energy" V(Λ)~1 UΨ(Λ).
We therefore consider the expectation values, 0Cφ)Λ(ψ), of the average
energies defined by

The above heuristic discussion is partially justified by showing that
as A -> oo the sequence 0CφtΛ(ψ) converges to a limit <Xφ(ψ). Finally, in
Section 5, we will prove the existence of a state ρ^ over 21 which is such
t h a t qφ{Aψ) = ocφ(ψ).

The following theorem is due to GALLAVOTTI and MIRACLE-SOLE.

Theorem II. Let T C & be the set of φ such that the graph of P{φ) has a
unique tangent plane at φ, i.e., there exists a unique a,φ in the dual &* of
0$ such that for all ψ ζ&

P(φ + ψ)^ P(φ)-*φ(ψ)
then for φ ζT and ψ ζ &

aφ(ψ) = lim aφ,A(ψ) = lim _ J _ _ i - γ T r ^ (e~*Φ™ Uψ(Λ))
Λ—>oo Λ—>oo V (/I) Zί/i{φ) Λ

where the limit Λ —.> oo is in the sense of Van Hove.

The proof of the theorem is identical to that of [2] once one notes
that for finite A the function φ -> PΛ(φ) has a unique tangent plane
namely <XφiΛ. We omit the details.

As φ-*P(φ) is a convex function one may obtain rather good
characterizations of the set T for which the above limits exist (see [2]).
For example one may deduce that for a dense set of interactions φ ζ £3

Kβφiψ) = lim ocβφ,Λ{ψ)
Λ—>oo

for almost all β. We have postponed to Section 5 the completion of the
argument of the existence of the equilibrium state ρ .̂ We will also show
that when ρ^ can be defined as a limit of the type considered in the
theorem then ρ^ describes physically a single thermodynamic phase.
Thus the exceptional points for which the limits do not exist correspond
in the physical interpretation to the points for which the coexistence of
phases is possible. Thus for a large class of interactions the state of
equilibrium is a single phase situation for almost all temperatures.

Note that although we have aimed at introducing a Zv invariant
state to describe equilibrium this does not rule out the possibility of
spontaneous symmetry breakdown.
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4. Mean Entropy

a) Definition

Our next aim is to describe how one may associate an entropy per
site, or mean entropy, to each Zv invariant state of the quantum spin
system. Discussions of the mean entropy in quantum statistical mechanics
are given in [4] and [6].

Each state ρ over the algebra 21 is locally describable by a density
matrix ρΛ £ 21 (/I), i.e.,

TryfJQ/iA), A

The family {ρΛ} of density matrices has the properties

and

II Tτ^Aί(ρΛiVJΛ2)^ρΛ2 if, A1ί\A2 = Q.

Introducing an entropy SQ (Λ) by

Se(Λ) =-Tr^Λ(ρΛlogρΛ)

we may conclude [4] that

0^8Q(Λ)^ V(Λ)log(N+l) (4)

8Q (A, \j Λ2) g Sρ (Λx) + Sρ (Λ2) if Λ1nA2 = β. (5)

Now let us consider invariant states. We will need to consider not
only Zv invariant states but also certain periodic states, i.e., states
invariant under a subgroup of Zv. We do not need to study the most
general periodic state but, for each integer n, we define the set Kn by

Kn ={ρiE; ρ(A) = ρ(τnoA), A £ 2ί, α £ # }

(E is the set of all states over 21.) The invariance property implies that
for each ρ £ Kn there exist unitaries UQ which relate the density matrices
via

ΠI ρΛ + na=Uρ(na)ρΛUe(na)-1

9 a ζZv .

If for a — (alf . . ., av) ζ Zv, aλ > 0, . . ., av > 0 we let

A (no) = {x ζZv; 0 ^ Xι < nai9 i = 1, . . . v}

then we may prove the following:

Theorem III. The mean entropy Sn(ρ),

S (a) = lim S{Λ{na)) - inf 8{A{na))

n{Q) au..av-*co V(Λ(na)) ~~ a1} \ V(Λ(na)) '

exists and the junction ρ -> Sn(ρ) is affine, upper semi-continuous, τυith
respect to the W* topology, on Kn; 8n(ρ) ζ [0, log(iV+ 1)]. Further we
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have
lim SQ(Λ(na)+b) = H m 8ρ(Λ(na) & . ^

F(/L(wα)) α F(ΛL(raα))

A proof of all but the last statement of the theorem is given in [4],
Let us consider the last statement. Without loss of generality we may
assume 0 <bί<n and then, writing e = (1, . . ., 1) ζZv, we have from
(4) and (5)

8ρ(Λ (na) + b) <Z 8o(A(n(a - e)) + ne) + V(Λ^~^) log(N + 1)

and
Se(Λ(na) + b) > Sβ(Λ(n(a + e))) - V(A»fr + t)) log(N + 1)

where we have used A* to denote the complement of A (a) in A(b).
Dividing these inequalities by V(A(na)) and taking the appropriate
limit yields the desired results.

Next let us remark that we may associate with each state ρ ζ Kn an
averaged state ρ £ Kλ by the definition

e - ~ Σ <Q (6)
lί x£Λ(ne)

where

The above theorem immediately implies the following

Corollary. The entropies 81(ρ) and 8n(ρ) are equal.

Proof. We have

Sl(Q) = Sn(~ Σ <Q)=^T Σ <S«(τίρ) = Sn(ρ)

Λvhere we have used the affine property of 8n, and the last statement of

the theorem namely 8n{τ'xρ) = 8n(ρ), x ζZv.

This result will be used in the next Section.

b) Variational Property

The results of the foregoing Sections now allow us to reproduce the

results obtained in [3] for classical spin systems

Theorem IV. If φ ζ& then we have

Proof. The proof is similar to that in [3] and proceeds in two steps.
First we show that for ρ ζ K\

P(φ)^S1(ρ)-ρ(Aφ) (7)
11 Commvm. math. Phy?., Vol. C
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and secondly we exhibit a ρ ζ K1 with the property that

P(φ)<S1(ρ)~ρ(Aφ) + ε. (8)

Given £ > 0 w e may choose A sufficiently large that

X r~τ Λ X 7-7

and hence

But

Thus

V(Λ) xfA
V(Λ) < ε

~ ε< -

Ίxow if ψi is a complete orthonormal set of eigenfunctions of ρΛ with
corresponding eigenvalues ρi (0 ^ ρ̂• ^ 1,̂ 7 ρ̂  = 1) then

(VΛ) (9)

where the first step is a consequence of the convexity of the logarithm
and the second step is an application of a theorem due to PEIEKLS,
namely

y e-(ψi,Uφ(Λ)Ψi) < Tr(e~

(For a rigorous demonstration, due to JOST, of this theorem, see [7].)
Taking the limit A -> oo in (9) gives (7).

Next we construct a state ρ ζ Kn by giving the following prescription
for the family of density matrices {ρ^}. The sets Λ% = A(ne) + na with
a ζ Zv form a partition £Pn of Z\ Define

e ^ « = = - ^ Λ T Γ e~ Uφ(Λ")

and

ρ^f= Πfa for ^ = UΛ« (10)

where A is any finite subset of Zv. These density matrices are sufficient to
define the state ρ ζ Kn. If we then construct an invariant state ρ £ Kλ by
the procedure (6) the corollary to Theorem III tells us that
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However, as ρ has the product structure (10) we find immediately

1
^1\Q) ^n\Q) 1// A tγ. o\\ *-£ \QΛ{ne) *®& QΛ(ne))

1 m ,„ τ s . „ , „ (11)

But, noting that

it is easily seen that for each ε > 0 one can choose ?ι large enough that
both

and

\P(φ)- PMne)(φ)\<~. (13)

Combining (11), (12) and (13) yields (8) and concludes the proof of the
theorem.

The above theorem may now be used to complete the discussion of
the equilibrium state which was begun in Section 3b.

5. The Equilibrium State

We have shown that

(14)

Assuming that the supremum is attained for ρ = ρφ ζ K, then we
immediately have that for ψ

P(φ + ψ)> S^Qφ) - ρφ(Aφ+ψ) = P(φ) - QΦ{AV) .

Thus, since ψ —> Aψ is linear and continuous, the function ψ -> Qφ(Λψ) is
a tangent plane to the graph of P ( ) at φ. Now if we can deduce that
different states which yield the supremum in (14) also give distinct
tangent planes we may deduce that for φ ζT the supremum is reached
at exactly one point ρ^ £ K± and, due to the affine character of the
function ρ -> 81 {ρ) — ρ (Λψ), this state must be an extremal point of Kv

This final deduction is, however, immediately given by replacing <&{K)
in the proof given by RTJELLE [3] (cf. Theorem IV) for the classical case,
by 2ί. RUELLE'S proof does not depend on the Abelian character of £(i£).
Further, as 01 is asymptotically Abelian, an extremal invariant state can
be shown to correspond to a single thermodynamic phase using results
obtained earlier [8, 9].
n
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Formally, we may summarize the above statements together with

those of Section 3 b as follows:

Theorem Y. // φ ζ T the function ρ -> S1{ρ) — ρ{Aφ) reaches its

maximum at exactly one point Qψ^K-^ and, further, if ocφ is the tangent

plane to P{.) at φ then for all ψ ζ_&

Finally, for φ ζ T, the ί( equilibrium state" ρφ is an extremal point of Kλ

and hence describes a single thermodynamic phase.
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