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Abstract. The -s-wave scattering solution is discussed for a class of nonlocal (non-
separable) potentials. Existence and uniqueness theorems are given and the analy-
ticity domain in the ^-variable (k = wave number in the CM. system) is deter-
mined. Furthermore it is proved that solutions of the bound state problem exist
and a discussion of the square-integrable solutions, which can occur for a real
positive value of the energy, is given. Tn this last case the scattering solution also
exists but it is not unique. Finally the $-matrix is introduced and it is proved that
it is unambigously defined even if the scattering solution is not unique.

1. Introduction

In a previous paper [1] the Born expansion of the scattering solution

for a class of nonlocal potentials was considered. The analysis was

restricted to the s-wave Schroedinger equation

y"if) + Jc*y(r) = g f°°V(r, s) y(s) ds (1.1)
o

where g is a real quantity and the following assumptions are made on

V(r,s):

a) V (r, s) is a real and symmetric function

V(r,s)= V*(r,s) = V(s, r) (1.2)

in order to have a time-reversal invariant and hermitian interaction;

b) V(r} s) is a measurable function of both variables, 0 5g r < + oo,

0 5g s < + oo, and a real constant α > 0 exists such that:

-f oo + oo

C = f exr dr f seα s | V{r, s)\ ds < + oo . (1.3)
0 0



Nonlocal Potentials 129

The scattering solution is the solution of eq. (1.1) satisfying the
following boundary conditions:

, r) = sinJcr + Φ(k, r)

) = 0, lim [Φ'{k,r) - ikΦ(k,r)] = 0 . ^

In ref. [1] the problem expressed by the integrodifferential equa-
tion (1.1) with the boundary condition (1.4) was reduced to the problem
of solving the linear integral equation

+ 00

v(k, r) = vo(k,r) -f g f L(k; r, s) v(k, s) ds
o

-f oo

vo(k9 r) = f V(r, s) sinks ds

(1.5)
+ oo v '

L(k; r,s) = f V{r, t) G(k; t, s) dt
o

G(k;t,s)= — η-sin [k min(s, t)] exp [ik max(s, t)]

in the Banach space

X = \x(r):\\x\\ = f°lΛr\x(r)\dr<+oo\ . (1.6)

I o J
Of course we can write eq. (1.5) as a linear functional equation in X:

[l-gL(k)]υ(k,-) = vo(k, ) (1.7)

When eq. (1.5) is solved, the scattering solution ψ(k, r) is obtained by
means of v {k, r) as follows:

J- co

ψ(ky r) = sinkr + g f G(k; r, s) v(k, s) ds . (1.8)
o

In [1] we found that, if \g\ C < 1, then the Born expansion converges,
it is holomorphic in |Im&| < α and gives the solution of the integro-
differential equation (1.1) with the boundary conditions (1.4).

In the present paper we prove that, for the class of nonlocal potentials
characterized by conditions a) and b) above, L(k) is a compact operator
in X for each k in Im k JΞ> — α and therefore we can use the well-known
Riesz-Schauder theory [2] to discuss the solutions of eq. (1.7).

In fact this theory allows us to prove that, for an arbitrary fixed
value of g, ψ (k, r) exists, it is unique (in a class of functions to be specified
later) and is analytic in k in the strip |Im&| < α, except at those ^-points
where a nonzero solution of the homogeneous equation

[l-gL(k)]x = 0 (1.9)
exists.
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On the other hand we prove that, if a nonzero solution x(r) of eq. (1.9)
exists at k = k0, Im k0 ^ 0, then

χ(r) = fθ(ko;r,β)z{s)dβ (1.10)
0

is a solution of eq. (1.1) which satisfies the conditions

Z(0) = 0, 'f\χ(r)\*dr<+00. (1.11)
0

We obtain also some informations about the distribution of the
points (in Imk ^ 0) where a nonzero solution of eq. (1.9) occurs: these
points are contained in a circle of finite radius (for fixed g) and they can
lie only on the imaginary or on the real axis1. Furthermore they have no
cluster point except perhaps k = 0.

We can conclude that the nonzero solutions of eq. (1.9) are related to
bound states with negative binding energy if the value of k is pure
imaginary or to ' 'spurious" bound states of positive energy if the value
of k is real2 [3].

We prove also that, when a nonzero solution of eq. (1.9) exists for a
real value of k, then also eq. (1.7) admits a solution; in other words,
when a "spurious" bound state exists, then necessarily the scattering
solution exists too3. However the scattering solution is not unique. In
spite of this fact, it is very easy to show that the $-matrix is uniquely
defined.

Nonlocal potentials have been discussed elsewhere in the framework
of the Lipmann-Schwinger equation in momentum space [5]. On the
other hand our method works directly in configuration space, as is
usually done in the theory of local potentials [6].

In Sec. 2 we prove the main properties of the operator L(k). In
Sec. 3 the existence, uniqueness and analyticity in k of the scattering
solution is derived, whereas in Sec. 4 the bound states are discussed.
Finally Sec. 5 is devoted to the definition and properties of the ̂ -matrix.

2. Properties of the Operator L(k)

The main properties of the operator L(k)} defined by eqs. (1.7) and
(1.5) above, are contained in the following theorems.

1 This last fact is a consequence of the reality of g and of condition a) above.
2 One can find very easily examples of nonlocal potentials satisfying condition

a) and b), and such that "spurious" bound states exist. Such an example is the
"nonlocal square well", i.e. the potential: V(r, s) — 1, r, s ̂  ro; V{r, s) — 0 other-
wise. If g takes one of the following values: g = (2πn)2/rQ; n = 1, 2, . . ., then one
"spurious" bound state exists.

3 This fact Λvas already conjectured by A. MARTIN [4].
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Theorem 2.1. L(k) is a bounded operator in X for each k in Imk ^ — α;
furthermore \\L(k)\\ -> 0 if \k\ -> + oo in Imk ^ — α.

Proof. From the inequality

SlΠί (2.1)

the following bound on G(k; r, s) (defined in eq. (1.5)) is obtained

\G(k\ r, s)\ ^ Ί~TΊΊM~ e α ( r + s )» ^ m ^ = ~Oί ( .̂2)

Now, from eq. (2.2) we get

5 -\- OO

_ . . . . o Q

As a consequence of condition (1.3), the integral is convergent and there-
fore L(k) is a bounded operator if k is in Im& ^ — α.

If we change the order of integration and we write

a + oo -f oo -f co

(r,a)\dr (2.4)

both integrals are clearly convergent. For any ε > 0 we can choose α
such that

e«s ds J e«r\ V(r, s)\ dr < ~ (2.5)

o
and k such that

+ oo -r oo

\k\ > -- f e«° ds f c«r \V{r, s)\ dr. (2.6)
α 0

From eqs. (2.4), (2.5) and (2.6) it follows that

\\L(k)\\ < ε, Imk^ - oc (2.7)

and the Theorem is proved.

Theorem 2.2. L(k):X-+X is α compact operator for each k in
Im k ^ — α.

Proof. Let {a:n} be any bounded sequence in X, i.e. \xn\ ^ y (^ is a
constant independent of n).

We write yn = L(k)xn. We have to prove the existence of a sub-
sequence {y)h} (nj < nj + 1) and of an element y ζ X such that

l l y « , - y | | - o , ?-> + <». (2.8)



132 M. BERTERO, G. TALENTI, and G. A. VIANO :

We prove at first the following statements

(i) \\yn\ < γ\\L(h)\\
+ oo

(ϋ) sup/ |eα(' + %w(r-j-&) - e«ryn(r)\dr-*O, h -> 0 (2.9)
n 0

-f CO

(iii) sup/eα r |?/n(r)| dr -»0, R -» + oo .

Inequality (i) is a trivial consequence of the hypothesis ||.τw|| ^ y and
of Theorem 2.1.

For what concerns (ϋ), by means of the following inequality

I sin 21 ^ \z\ exp(|Imz|) (2.10)
one obtains:

\O(k;r,s)\ < reα( r + s>, ImJfc ^ - α (2.11)
and therefore

+ CO

sup / |e α ( r + Λ)?/n(r + h) - βα r?/n(r)| rfr ^
n ° +co +co (2.12)

^ γ f dr f te«t\e«(r + h)V(r + h,t) - e«rV{r, t)\ dt .
o o

The r.h.s. of eq. (2.12) tends to zero when h -> 0. This fact is a con-
sequence of condition (1.3) on V (r, s) and of the continuity, under the
integral sign, of the operation of translation.

For what concerns (iii), from the inequality (2.11) we have
+ CO + CO -f- CO

s u p / β α % n ( r ) | d r ̂  γ f ear d r f t e a t \ V ( r , t ) \ d t (2.13)
n Ii R 0

and also in this case condition (1.3) implies that the r.h.s. tends to zero,
when E -> -f oo.

Therefore (i), (ii) and (iii) are proved.
Now, if we write

wn{r) = e«ryn(r)^wn(r)ζLi(0,+^) (2.14)

from the statements (i), (ii) and (iii) and from the M. Riesz theorem [7]
the sequence wn(r) is a relatively compact set in 2^(0, + oo). — Therefore
a subsequence {wn.(r)} and a function w(r) £&((), + oo) exist such that

/ l ^ ( r ) ~ w ( r ) | i r - > 0 , j -> + oo . (2.15)
o

If we consider the subsequence {yn.{r)} = {e~arwn.(r)} and the func-
tion y(r) = e~xrw(r), then eq. (2.15) implies eq. (2.8) and the Theorem
is proved.

Theorem 2.3. Jc->L(Jc) is a holomorphic operator valued function in
the half-plane ϊmk > — α.
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Proof. We have to prove that, for each k in Imk > — α, a bounded
operator L (k) : X -> X exists such that

L(k L(k)
h

~L(k) • 0 , (2.16)

By means of the Cauchy Theorem and of the inequality (2.11) we get4

r
R

ρθί (r + S) (2.17)
€

where the path of integration C is the circle with center in k and radius
B = α + Irak; furthermore, if \hI < R, we also have

G(k + h r, s) - G(k;r,s)
h

2π

G(k;r,s)

(kf - k)*(k'— k-h)

(2.18)

R(R- \h\)

Now, let us define

L(k) x(r) = f L(k; r, s) x(s) ds

L(k',r,s) = f V{r,t)G(k',t,s)dt .

(2.19)

From eq. (2.17) we easily obtain

- oo -j- oo

\\L(k)x\\ ^ ~ J e«r dr j ds J dt\V(r,t)\te«(tJr8)\x{s)\ =-~\\x\\ . (2.20)
0 0 0

It follows that L (k) is a bounded operator in X (Im k > — α) and that

(2.21)

On the other hand, from eq. (2.18) we have

L(k + h)~ L(k)
-L(k)

-j- oo + oo

0 0

G(k +h;r,s)- G(k;r,s)
h

- (2.22)

and the Theorem is proved.

4 We indicate with an upper dot differentiation with respect to k.
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3. The Scattering Solution

From Theorem 2.2 and the Riesz-Schauder theory [2] it follows that,
for fixed k in Im k ^ — α, the resolvent

B(k,g)= [l-gL(k)]-i (3.1)

is a bounded operator in X for every value of g in the complex ^-plane,
except at most for a countable set of values, say gn(k). Each gn(k) is an
eigenvalue of L(k) of finite multiplicity, i.e. the number of linearly
independent solutions of the homogeneous equation (1.9) (with g = gn{k))
is finite and nonzero.

However the main interest does not lie in the properties of R(k, g)
as a function of g for fixed k, but in the properties of R (k, g) as a function
of k for fixed g.

Let us suppose that g is a fixed real quantity.
We shall call Ω the set of ^-points in Im k ^ — α such that g belongs

to the resolvent set of L(k); and Ωf the set of ^-points in Im& ^ — α
such that g belongs to the spectrum of L(k). Ω and Ω' are disjoint sets
and their union is the half-plane ϊmk ^ — oc. R(k,g) exists and it is
bounded in X if k ζ Ω, whereas it does not exist if k ζ Ωr.

We shall analyze later the structure of the set Ω'. We observe only
that Ω' is certainly contained in a circle of finite radius. In fact from
Theorem 2.1 it follows that, for fixed g, there exists a ko(g) such that for
\k\ > ko(g), link ^ - a w e have

\g\ \\L(k)\\ < 1 (3-2)

i.e. gL(k) is a contraction in X. Therefore R(k, g) certainly exists and it
is bounded in X for \k\ > kQ(g), Iπik ^ — oc.

The main Theorem of this Section is the following.
Theorem 3.1. Let ΩQ be the intersection of the set Ω with the strip

\Imk\ < oc. For each k ζ Ωo there exists one and only one function ψ(k, r),
T ^ 0 such that:

(i) ψ(k, r) has an absolutely continuous first derivative,
(ii) ψ(k, r) is a solution of the integrodifferential equation (1.1) with

the boundary conditions (1.4)
(ϋi) the following condition

f e*r\ψ"(k,r)-{- k2ψ{k,r)\dr< + oo (3.3)
o

is satisfied.
Furthermore ψ (k, r) is holomorphic, for fixed r ^ 0, in Ωo.
In order to prove this Theorem we need the following Lemmas.
Lemma 3.1. Ω is an open set. k-> R(k, g) is a holomorphic operator

valued function in Ω.
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Proof. Let k0 £ Ω and let δ be given by

We prove that the open circle \k — ko\ < δ is contained in β.
As is well known, if A is a bounded operator which has an inverse

A~λ

3 then any operator B such that

IB-Al<~^ (3.5)

has an inverse B~λ which can be represented by the series (convergent in
norm)

B-1 - Σ [A-1 [A - BjfA-1 . (3.6)

We write:
A = l - gL(k0), 5 = 1 - gL(k0 + h) (3.7)

Λvhere \h\ < δ. Then, by Theorem 2.3 and inequality (2.21) it follows that

S-411 = \g\\\L(ko + h)-Z,(/L)|| < --MψL < —M*° =

l ! ( 3 8 )

\\R(ko,9)\\ μ - 1

and condition (3.5) is satisfied. Therefore J5"1 =- R(ko+ h, g) exists for
any h such that \h\ < δ and, as a consequence, Ω is open.

Furthermore, from eqs. (3.6) and (3.7) it follows

R(kwg) _ ^o_4^)_- i ^ ) ^

(3.9)

The norm of the r.h.s. of eq. (3.9) is bounded by

I! 1 + °° II

(3.10)
•ΪΓΓ Σ W \R(K g)\n+1 \\L(K + h) - L(ko)in <

n = 2

and therefore it tends to zero as |Λ| -> 0. It folloΛvs

(3.11)

and the Lemma is proved.
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Lemma 3.2. k ~> vo(k, •) (defined in eq. (1.5)) is a function with values
in X, holomorphic in the strip |Tm&| < oc.

Proof. We have to prove the existence of a function vo(k, •) ζX,
|Im&| < oc, such that

^ ^

Let us define

•0, | A | - > 0 . (3.12)

0

Then, if \Imk\ < oc
-j- oo +00

\\vo(k,')\\ ^ / e«rdr f s\V(r,s)\e\SImk\ds<C (3.14)
0 0

and therefore vo(k, •) ζ X.
Now we have

^ Γ exrdr J s\V(r,s)\
o o

and from the following relation

sin(& + h) s — sinks

+ h) s — sinks
hs

(3.15)

— cosks ds

hs
— cosks

we get

sin (A; + h) s — sin^s

Inequality (3.17), modified as follows

(3.17)

(3.18)

substituted in eq. (3.15) gives

vo(k + h,-) — vo(k, •) \h\G

h

which tends to zero as |Λ| -> 0, and the Lemma is proved. The Riesz-
Schauder theory, Lemma 3.1 and Lemma 3.2 imply:

Lemma 3.3. A solution υ(kf •) of the inhomogeneous equation

[l-gL(k)]v(kr) = v0{k, )

exists and is unique in X for every k ζΩ0. Furthermore k->v(k,
function holomorphic in Ωa.

(3.20)

•) is a
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We are now able to prove Theorem 3.1.
Proof of Theorem 3.1. Let us consider the following function

ψ(k, r) = s in&r + g f G(k;r,s) v(k, s) ds (3.21)
o

where v(k, •), k £ Ωo, is the solution in X of the inhomogeneous integral
equation (3.20).

We can easily check that ψ' (k, r) is absolutely continuous, and that
ψ (k, r) is a solution of the inhomogeneous differential equation

ψ"(k,r) + k*ψ(k,r) = gv(k,r). (3.22)

From this equation it follows that ψ(k,r) satisfies condition (3.3).
Furthermore, from the integral equation (1.5), inverting the order of
integration, we have

v(k9 r) = / V(r, s) [sinks + g f G{k; s, t) υ(k, t) dt] ds (3.23)
0 0

+ 00

= / V(r, s) ψ(k, s) ds .
0

Eqs. (3.22) and (3.23) imply that ψ(k,r) is a solution of the integro-
differential equation (1.1).

ψ(k,r) satisfies also the boundary conditions (1.4). In fact, writing
explicitely the obtained representation of Φ (k, r)

[
r 4 00 -I

eikr f -8-^^v(k,s)ds + ̂ ^ f ei*°v(ki8)ds\ (3.24)
0 r J

it is clear that Φ (k, 0) is zero furthermore, computing the first deriva-
tive, we have\Φ'(k,r) - ikΦ(k,r)\ = | / eikt8-rH(k, s) ds\ ^

+ 00 (3.25)

^ / exs\v{k, s)\ds-+0, r-> + 00
r

since v(k, •) ζ X. Therefore the existence is proved.
Now, let ψ1(k, r) and ψ2{k, r) be two solutions of the equation (1.1)

with the boundary conditions (1.4) and let them satisfy condition (3.3);
their difference

y(k,r) = Ψl(k,r)~ψ2(k,r) (3.26)
is such that

+ 00

y"(k9 r) + k*y(k, r) = g f V(r, s) y(k, s) ds (3.27a)
0

y(k,O) - 0 , lim [y'(k, r) ~ iky{k, r)] = 0 (3.27b)
y-> + 00

+ 00

/ e«r\y"(k, r) + k2y(k, r)\dr<+oo. (3.27c)
0
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If we write
u(k, r) = y"(k, r) + k2y{k, r) (3.28)

then eqs. (3.27a) and (3.27 c) imply
f CO

u(k,r) = g f V(r, s) y{k, s) ds (3.29a)
o

-f oo

/ ear\u{k,r)\dr < + oo (3.29b)
o

i.e. u(k, •) £ X.
Solving eq. (3.28) by means of the usual method of variation of

constants, from conditions (3.27 b) we obtain

-f oo

y(k, s) - / G(k; s, t) u{k} t) dt (3.30)
o

and substituting in eq. (3.29a) we have
+ CO + CO

u{k, r) = g f ds f V{r, s) G{k; s, t) u{k, t) dt. (3.31)
o o

It is straightforward to verify that the double integral of the r.h.s.
of eq. (3.31) exists as a consequence of eq. (3.29b); then we can change
the order of integration and write (3.31) as follows

u ( k , ' ) = gL(k)u(k, ) . (3.32)

By hypothesis k ζ Ω and therefore nonzero solutions of the homo-
geneous equation do not exist. We conclude that u(k, •) Ξ= 0; it follows
y(k, r) Ξ= 0 and the uniqueness is proved.

We still have to prove that ψ (k, r) is holomorphic in Ωo.
Let us define, if k £ ΩQ

ψ(k, r) — r coskr + g f G(k\ r, s) v(k, s) ds -j-
o

-r oo /O OQ\

+ g f G(k;r,s)v(k,s)ds K ' }

o

where v is the derivative of k -> v(k, •) (see Lemma 3.3).
We have to prove that the quantity

w(k + h,r) — w(k, r) , ,Ί , Γ sin(^ -\-h) r — ύnkr , Ί .
~Λ ^~^->- - ψ(k, r) - |-—^ 'Tι r coskή +

f°\G(k + h ; r , 8 ) v ( k + K , 8 ) - G { k ; r t 8 ) v ( k , 8 )
Λ-g J [ i (3.34)

o

- G(k\ r, s) v{k, s) - O(k\ r, s) v(k, β)l ds

tends to zero as \h\ -> 0, for any r ^ 0.
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For what concerns the first term in the r.h.s. of eq. (3.34), it is trivial
to see that it tends to zero. The second term can be written as the sum
of the three quantities

Γ \G(k + h;r,s)- Q(k;r,s) ή n .1 ., . 7 / o o κ χ

J 1^—v— jh -'- - G(k; r, «)J υ(Jc, s) ds (3.35a)

+A^^h±_ ύ{k>β)] β(k. r> a) ds (3.35b)

o

J
, ( i + A , β ) _ f , ( i > β ) ] ί ϊ β . (3.35c)

The first quantity (3.35a) tends to zero as a consequence of eq. (2.18)
the second quantity (3.35b) tends to zero because of the bound (2.11)
and of the definition of derivative of the function k -> v(k, •); the third
quantity (3.35c) also tends to zero as a consequence of the bound

(E is defined in Theorem 2.3) and of the continuity of v{k, •). Therefore
also the analyticity of ψ(k, r) is proved.

4. The Bound State Solutions

The problem studied in this Section is the analysis of the solutions of
the homogeneous equation (1.9) and the investigation of the structure
of the set Ω'.

The main Theorem of this Section is the following:
Theorem 4.1. Let χ(r) be α solution of the integrodifferentiαl equa-

tion (1.1), with Imk ^ 0, k φ 0, satisfying the following conditions:

(ϋ) sup |e- α r #(r) | <
0 ^ r < + oo

(iii) /

then

Φ)=Tv(r,8)χ(8)ds (4.1)
0

is a solution, belonging to X, of the homogeneous integral equation (1.9).
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Conversely, if x ζX is a solution of eq. (1.9) with ϊmk ^ 0, then

T,s)x(s)ds (4.2)
o

is a solution of the integrodifferential equation (1.1) and satisfies conditions
(i), (ii), and (iϋ) above.

If k is real, then one has

f sinkr dr f V{r, s) χ(s) ds = 0 . (4.3)
o o

Remark. One can easily prove that

{ b
0 ^ r < + oo

is the dual space of X 5 . — Condition (ϋ) of Theorem 4.1 implies that

We need the following Lemma:
Lemma 4.1. LetyΎ{r) and y2{r) be two solutions of the integrodifferential

equation (1.1), respectively with k — kΎ and k = k2; let y1(r) and y2{r)
satisfy conditions (i), (ii), and (iϋ) of Theorem 4.1. — Then

-f- oo

lim [yx(r) yf (r) - y[ (r) 2/1 (r)] = (if - hf) f Vl (r) yξ (r) dr . (4.5)
r-> +σo 0

// k = kt = k2 is real and if y(r) = yx(r) = y%{r) satisfies conditions (i) and
(ii) of Theorem 4.1. then

lim [y(r)y*'(r)~y'(r)y*(r)] = O. (4.6)
r—> + oo

Proo/. Multiplying the integrodifferential equation (1.1) in ^(r) by
y*(r) and the equation (1.1) in 2/f M ^y ^/i(r) a n ( ^ subtracting we have
[condition (1.2) on V(r, s) has to be used]:

^ \3/i(r) yf{r) - y[(r) yξ(r)] + (kξ* - k\) Vl{r) y*(r)

+ 00 (4.7)

= 9 f V(r,s)[y1(r)yξ(s)~y1(s)yξ(r)]ds .
o

Integrating over (0, -f oo), as a consequence of condition (in) the
second term in the l.h.s. of eq. (4.7) is integrable; the r.h.s. is also
integrable because of conditions (i), (ii) and the double integral is zero as
a consequence of condition (1.2) on V(r, s).

Therefore eq. (4.5) is proved.
If k = kλ = k2 is real and y(r) = y1(r) = y2(r), the second term in the

l.h.s. of eq. (4.7) is identically zero. Integrating over (0, +σo), the r.h.s.
5 ess. supp. means the essential least upper bound.
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of eq. (4.7) is integrable as a consequence of conditions (i), (ϋ) and the
integral is zero because of condition (1.2) on V(r, s).

Therefore eq. (4.6) is also proved.
Proof of Theorem 4.1. Let x ζ X be a solution of the homogeneous

equation (1.9), Imk ^ 0; we prove first that χ(r) denned by eq. (4.2)
is a solution of the integrodifferential equation (1.1). In fact, by means of
two differentiations we have that χ (r) is a solution of the inhomogeneous
differential equation:

χ"(r) + Wχ{r) = gx(r). (4.8)

Now, from the homogeneous equation (1.9), written explicitely as
follows,

- j - OO + O O

x(r) = g f x(s)ds f V{r, t) G{h\ t, s) dt (4.9)
0 0

by means of a change of the order of integration we have
-j- 00

x{r)= f V(r,t)χ(t)dt. (4.10)
0

Eqs. (4.8) and (4.10) imply that χ(r) is a solution of the eq. (1.1).
We prove now that χ(r) satisfies conditions (i), (ϋ) and (iii).
For what concerns (i) and (ii), from the bound on G(k; r, s), which

holds in Im h ^ 0:

\G(k;r,s)\ g r<~ear (4.11)

one obtains that χ(r), given by eq. (4.2), satisfies these conditions.
For what concerns (iii) we distinguish two cases: Im k > 0 and

Imk = 0.
A. Im& > 0. By means of the representation (4.2) and inequality

(2.10) we have:
r + oo

\χ(r)\ ^ \9\ r[e~rϊmIc f e s l m * | ; φ ) | ds + erImk f e~slmk\x{s)\ ds] . (4.12)
0 r

At this point we consider the two subcases: Im& < α and Imk ^ α. If
Imk < oc, then

\χ(r)\ ^ bl r[e~rlmk f eas\x(s)\ ds + e-
rlmk f eslmJc\x{s)\ ds] ^ (4.13)

0 r
< \π\\\τι\ rp~~τ

= \y\\\x\\ r e

On the other hand, if Imk ^ a, then

IzWI^bk f e-tr

L 0
[ r +oo -I

^ \g\r\ I e-α^-s>|aj(5)| ^ 5 + / e-«l°-r)\x(s)\ds\ ^ (4.14)
L 0 r J

< \g\ \\x\\ re-" .

The inequalities (4.14) and (4.13) imply condition (iii).
10 Commun. math. Phys., Vol. 6
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B. Im& = 0. We observe first that, as a consequence of eqs. (4.2) and
(4.10), χ(r) satisfies the following integral equation

-f- oo + oo

χ(r) = g f G(k; r, s) ds f V(s, t) χ(t) dt. (4.15)
0 0

By means of this equation and of Lemma 4.1 (eq. (4.6)), it is easy to
prove that χ(r) satisfies relation (4.3), which can be written (eq. (4.10)
has to be used) as

+ °o

f sinks x(s) ds = 0 . (4.16)
o

Eq. (4.16) implies that

+ CO -f- OO

/ \ Ί, Γ sinfcs sinkr C
χ(r) = getkr / —T—x(s) ds — g •—r— / etksx(s) ds —

r r

+ OO

\ '-x{s)ds (4.17)

and therefore

\χ(r)\ g \g\ f
-f oo +00

~ ! ) \x(s)\ ds ^ -jfl f \x{s)\ds^
W I (4.18)

I t follows that condition (in) is satisfied, except if Ic = 0. Vice versa we
prove now that, if χ(r) is a solution of eq. (1.1) which satisfies conditions
(i), (ϋ) and (iii), then x(r), defined by eq. (4.1), is a solution of the homo-
geneous equation (1.9).

Condition (ii) implies that x ζX. Furthermore, by definition we have

(4.19)

and the general solution of this inhomogeneous differential equation can
be written as

+ OO

χ(r) = cx sinkr + c2 coskr -f g f G{k; r, s) x(s) ds . (4.20)
o

If Im& > 0, we can prove, as in the first part of the Theorem that the
third term in the r.h.s. of eq. (4.20) belongs to i/2(0, -i-co). Therefore
condition (i) implies c2 = 0 and condition (iii) implies cx = 0.

Furthermore, if Im& = 0, condition (i) implies once more c2 = 0. By
means of eq. (4.20) (with c2 = 0) and Lemma 4.1 (eq. (4.6)) one easily
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obtains

[
+00 η +00

c* / sinks x(s) ds = — T - / sinksx(s) ds
0 J o

[ +00 -I

e2ikr c * f sinks x(s)ds\ + (4.21)
0 Jand from condition (ϋi) it follows cλ = 0.

Therefore in both cases Im& > 0 and Imk = 0, we have

-f- co

χ(r) = g f G{k; r, s) x(s) ds . (4.22)
0

Eq. (4.22), substituted in eq. (4.1), shows that x(r) is a solution of the
homogeneous equation (1.9) and the Theorem is completely proved.

Remark 1. We observe that eq. (4.15) (which holds for Imk ^ 0)
means that χ(r) is an eigenfunction of the adjoint of L(k), say L'(k),
whose kernel is given by

+ 00

L'(k; r,s) = f G(k; r, t) V(t, s) dt = L(k; s, r) . (4.23)
0

We can write
χ=*gL'(k)χ, χζX' (4.24)

the adjoint equation of eq. (1.9).

Remark 2. We observe also that if χ1{r) and # 2( r) a r e ^ w o solution of
eq. (1.1), satisfying conditions (i), (ii), (in), then necessarily χ1{r) and
X2{r) (and also their derivatives) are bounded as in eqs. (4.13) or (4.14)
or (4.18) and the l.h.s. of eq. (4.5) (Lemma 4.1) is zero; it follows that

+ CO

(kl-k**)fXl(r)Xt(r)dr = O. (4.25)
0

Now, if kλ = k2 = k and χx = χ2, eq. (4.25) shows that Imk2 = 0, i.e. k2

is real which implies that k is either real or pure imaginary. Therefore
solutions of the homogeneous equation (1.9) or (4.24) occur only on the
real or on the imaginary axis in the half-plane Im& ^ 0.

Furthermore, if k± =f= k2 and both k\ and k\ are real, eq. (4.25) implies
the orthogonality relation

TχΛr)χt(r)dr^O. (4.26)
0

10*
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In conclusion we can say that:
1. If at k = ib (b > 0) a solution of the homogeneous equation (1.9)

exists, then a bound state of energy E — — b2 exists and χ(r) is the
corresponding wave function (within a multiplicative normalization
constant).

2. If at k — b (b real) a solution of eq. (1.9) exists, then a "spurious"
bound state of energy E = b2 exists and χ(r) is the corresponding wave
function.

The degeneracy of the bound states and of the "spurious" bound
states is always finite.

The next Theorem6 contains some information about the distribution
of the bound states.

Theorem 4.2. The set of the bound-states and of the "spurious" bound-
states has no limit point except perhaps k = 0.

Proof. Let us assume that a limit point H O exists. Then we can
find a sequence of points {kn}, kn ζ Ω', such that \kn — k\ -> 0. To each
kn λve associate one solution of the homogeneous equation (1.9), say
xn ζX, and we normalize these functions in such a way that ||.τn|| == 1.

As a consequence of Theorem 2.3 we have

\\L(kn) xn - L(k)xn\\ g \\L(kv) - L{k)\\ -> 0, n -> + oo (4.27)

so that
\\xn ~ gL(k)xn\\ -> 0, n->+oo. (4.28)

Since L(k) is compact, from the sequence {gL(k)xn} we can extract
a subsequence {gL(k)xn.} which converges to an element x (- X

\\x-gL(k)xn.\\->0, j->+™. (4.29)

From the two inequalities

| K , - χ\\ £ \\gL(k) xn. - x\ + \\xn. - gL(k)xn.\\ (4.30a)

||a; - gL{k)x\\ < \\x - gL{k)x4 + \\gL(k) (xn. - x)\ (4.30b)

and from eqs. (4.28) and (4.29) we have

| K ; - a | | - > 0 , i - > + ^ (4.31a)

x = gL(k)x, W = l . (4.31b)

Let χn.(r) and χ(r) be the functions obtained from xn.{τ) and x(r) by
means of eq. (4.2). We want to prove that the sequence {χnj{r)} converges
to χ(r) uniformly in r, 0 g r < + oo. For this purpose we distinguish two
cases: k pure imaginary and k real.

6 The method of the proof is essentially the method used in ref. [8].
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A. k pure imaginary. Since

145

0 <^r < -f oo

•G(k;r9s)\ - \x(s)\ds

and

[ +00
|gr| / \G(kn.;r,s)-

_ 0

- \g\ / |G(]fc; r, *)| \xn(s) - a;(θ)| ί̂ 5 + (4.32)
0

\G{kn.\ ry s) - G(k; r, s)\ \xn.(s) - x(s)\ ds\

(4.33 a)

(4.33 b)

\G(k;r,s)\ <

X ^ θ(t;r,s) dk,

(where C is the circle with center in & and radius R = Im&) it follows
that:

\%ni{r) - χ(r)\ < \xnj - r

(4.34)

B. k-real and positive. We call k0 = min(&nj, k) > 0. In this case the
representation (4.17) holds for both χn.{r) and χ(r). I t follows

Xnj(r) ~ X(r)\ ^
0 ^ r < f 00

1 sup
0 SΞ; / < Ί~

sin A: (5 — r)

sin^?j (s — r) sin k(s — r)

xn,(s) — x{s)\ ds +

x(s)\ds

(4.35)

and from the inequalities

r)
r) ^ s <

sin ^ ( 5 — r) sin&(«s — r) ^ \kn. — k\ max
dk'

(4.36a)

(4.36b

c? s in A;'(5 — r)

7F" k'
1 — r) cosA 'f.s — r)_____ in&'(s — r)
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we have

\χnj(r) - χ(r)\ ̂  M \knj - k\ (1 + \\xnj - x\)
(4.37)

Eqs. (4.34) and (4.37) imply the uniform convergence of the sequence
{W')} to χ(r).

Now, χn.(r) and χ(r) are orthogonal (see eq. (4.26)) and they satisfy
condition (iii) of Theorem 4.1. Therefore we can write

+ CO +0°

/ \χ(r)\2 dr = f χ*(r) [χ(r) - χHj(r)] dr <£
0 0 +OO (4.38)

^ sup \χn.(r) - χ(r)\ / \χ(r)\ dr
0 ̂  r < + oo 0

and the integral in the r.h.s. of eq. (4.38) is convergent because of the
bounds (4.13), (4.14) and (4.18). Eq. (4.38) can be written

+ oo Γ-r °o Ί ~ 1

sup \χn,(r)-χ(r)\7zf\χ(r)\*dr\f\χ{r)\dr\ > 0 (4.39)
O^r< + co 0 LO J

and clearly contradicts eq. (4.34) or eq. (4.37). Therefore h 4= 0 cannot
be a limit point. The argument breaks down for k = 0.

Remark. A consequence of this Theorem is the fact that there exists
at most a countable set of bound states and of "spurious" bound states.

Theorem 4.3. // for k real, k φ 0 a "spurious" bound state exists, then
also the scattering solution exists.

Proof. This Theorem is a direct consequence of eq. (4.3) which can be
written

+ CO

fχ(s)vo(k,s)dS^O. (4.40)
0

But according to the Riesz-Schauder Theory, condition (4.40) is precisely
the condition which guarantees the simultaneous existence of a solution
both of the homogeneous equation (1.9) and of the inhomogeneous
equation (1.7); of course, in this case, the solution of the inhomogeneous
equation is no longer unique.

5. The Scattering Amplitude

The following Theorem defines the scattering amplitude.

Theorem 5.1. For each k ζ Ωo

lim |e-'*'Φ(ifc,r) - T(k)\ = 0 (5.1)
r > + oo
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where
+ oo

TIJA — —a I S1Π yffc β\ ds /£> 2 )

0

Proof. By means of the representation (3.24) for Φ(k,r) we have
-1- oo

e~ikrΦ(k,r) - T(k) ̂ -re'ihr f s in k(s - r)υ(k,s)ds (5.3)
r

and therefore (|Im&| ^ α)
-j-oo

\e~ikrΦ(k,r)- T(k)\ 0 — r Imk

(5.4)
+ CO X '

/ eas\v(k, s)\ ds -> 0, r -> + oo
?•

since v(k, •) ζ X. On the other hand, if k =• 0 ζ β 0 , then t>(0, •) ΞΞ 0 ==>
-> Φ(0, r) ΞE 0, T(0) = 0. The Theorem is proved.

Remark 1. From Lemma 4.1, eq. (4.6), it follows for real values of k
(observe that ψ (k, •) £ X')

lim fy*(&, r) ̂ '(&, r) — ψ(1c, r) ψ*'(k, r)]

= 2ik\T(k)\2- 2iklmT(k) = 0 '
i.e.

ImT 7 ^) = ^(y^)!2 (5.6)

and T(k) satisfies the unitarity condition. If we introduce the quantity

8(k) = 1 + 2iT(k) (5.7)
we have

I Of Ml 1 _v ,Q(h\ — 2̂̂ <5(fc) ψίhλ — p i ί (fc) «ain Λ ̂ \ ^ k\

where (5(̂ ) is a real function of k. Therefore Theorem 5.1 and cq. (5.8)
imply the following asymptotic behaviour for ψ(k, r), k real

ψ(k, r) ~ eiδW sinf^r -f δ(k)], r -> + σo (5.9)

and δ (k) is the usual <s-wave scattering phase-shift.
Remark 2. T(k) is uniquely defined for every real value of k. In fact,

if a "spurious" bound state exists, then the scattering solution exists but
it is not unique and its general expression is given by

where ψ^ (1c, r) is any solution of the scattering problem, the χ/s are
n linearly independent solutions of the adjoint homogeneous equation
(if n is the multiplicity of the eigenvalue) and the c/s are n arbitrary
constants.
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For each %j{r) eq. (4.40) holds, so that

{k, s) ds — — ηr I vo(k, s) ψ(k, s) ds =
o

-j-oo 4-oc

= ~ TI v»{k>s) ^ ( 0 ) { k > s ) ds ~ T / ci / vo(*»
o
4-co

and T(k) is independent of the c/s.
Theorem 5.2. T(k) is holomorphic in Ωo.
Proof. Let us define

Z(k) = kT(k) = -g f sin krv(k)r)dr (5.12)

and
+ CO f

Z(k) = —{7 / r coskr v(k, r) dr — g f sin kr v(k, r) dr (5.13)
o o

where v is the derivative of k -> ι?(^3 •). We have

Z(k +h)-
+ CO

4- I / |si

-Z(k)

v(k 4- h

sin(k + h)r — sin^r

f r ) - v(A;,
v(k, r) dr -f (5.14)

/ |sin(fc + h) r — s in&r| * \v(k + h, r) — v(k, r)\ dr .

From inequality (3.17) and inequality

r2exp[r(|Im&| + |ImA|)] < -.—ZΓ\Ϊ—^j—iϊ—ΰ7i" > |Ini^|-}- \lmh\ < α (5.15)

it follows that the first term in the r.h.s. if eq. (5.14) is bounded by

^ " l (α - \lmk\ - \Imh\)* ~* ° ' IΛI "^

For what concerns the second term, it is bounded by

and it tends to zero, as a consequence of the definition of v.
For the third term, by means of the following inequality

|sin(& + h) r - sin kr\ < \h\ r e l

(5.16)

(5.17)

(5.18)
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and of inequality (3.18), we have that it is bounded by

l£] ιi-y(jfc _j_ ]l} ή _ v(jCi .)|i (5.19)

and it tends to zero, since v(k, •) is holomorphic and therefore con-
tinuous in Ωo. I t follows that Z(k) is holomorphic in Ωo and clearly the
same result holds for T (k).

6. Conclusions

One of the main results of this paper is the proof that the scattering
solution exists, is unique and holomorphic in a nonvoid open subset of
the strip \lmk\ < oc for the class of nonlocal potentials satisfying con-
ditions a) and b), Sec. 1. In particular the solution exists always for real
values of k.

Of course the strip can be enlarged to the whole &-plane for the non-
local potentials such that the condition (1.3) is satisfied for unrestricted
values of α. Examples of such potentials are given by functions V{r, s)
which vanish outside some finite region in the (r, s)-plane or which are
of the type

V{r,s) = P(r9 s)e-a(γ2 + s2\ a > 0 (6.1)

where P(r, s) is a bounded, measurable function of both variable r, s.
We have also proved that, with our method, we obtain all the bound

states and the "spurious" bound states which satisfy the additional
condition (ϋ) of Theorem 4.1.

Some questions are still open.
The first question is that we cannot decide whether the number of

bound states and of "spurious" bound states is finite or infinite.
That the number of bound states is finite has been proved for another

class of nonlocal potentials [9]. Of course the intersection of the class
here considered and the class of ref. [9] in nonvoid and therefore, at
least for the potentials which belong to this subclass, we can say that all
the results of our work hold true and also that the number of bound
states is finite. However the method of ref. [9] gives no informations
about the number of the "spurious" bound states.

Always concerning the bound states, we have proved that they
appear as isolated singularities of the scattering solution but we have
said nothing about the nature of these singularities.

Another important question concerns the singularities in the strip
— α < Im& < 0. In the case of a local potential satisfying the condition

-f oo

frexr\V{r)\dr<+ooi α > 0 (6.2)
o
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these singularities are isolated and are related to the resonances or to
the antίbound states of the system. For the class of nonlocal potentials
here considered we have not yet such a nice picture. In fact we have no
informations about the distribution of the singularities in the strip
— α < Im& < 0, except that they are all contained in a bounded domain
(as a consequence of Theorem 2.1).

Acknowledgment. One of us (M. B.) wishes to thank Prof. K. BLEULER for the
warm hospitality extended to him at the Institut fur Theoretische Kernphysik.

References

1. BERTERO, M., G. TALENTI, and G. A. VIANO: NUOVO Cimento 46, 337 (1966).

2. YOSΓDA, K.: Functional analysis. Berlin-Heidelberg-New York: Springer 1965.
3. GOURDIN, M., and A. MARTIN: NUOVO Cimento 6, 757 (1957); 8, 699 (1958).
4. MARTIN, A.: Nuovo Cimento 7, 607 (1958).
5. TANI, S.: Ann. Phys. 37, 411; 37, 451 (1966) and other papers there quoted.
6. NEWTON, R. G.: J. Math. Phys. 1, 319 (1960).
7. DUNPORD, N., and J. I. SCHWARTZ: Linear operators, Par t i , p. 298—301.

New York: Interscience Publishers 1958.
8. HUNZIKER, W.: Helv. Phys. Aeta 34, 593 (1961).
9. GHIRARDI, G. α , and A. RIMINI: J. Math. Phys. 6, 40 (1965).




