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Abstract. States of physical systems may be represented by states on B*~
algebras, satisfying certain requirements of physical origin. We discuss such
requirements as are associated with the presence of unbounded observables or
in variance under a group. It is possible in certain cases to obtain a unique de-
composition of states invariant under a group into extremal invariant states. Our
main results is such a decomposition theorem when the group is the translation
group in v dimensions and the B*-algebra satisfies a certain locality condition. An
application of this theorem is made to representations of the canonical anticommuta-
tion relations.

1. Introduction: J5*-algebras and states

The main purpose of this paper is to prove a theorem yielding an
integral representation of invariant states on a J5*-algebra in terms of
extremal invariant states. The theorem and related results are presented
in Section 3 to which the reader may proceed directly1. This first and
the second sections are devoted to motivation and some background
information. Sections 4 and 5 contain the proof of the theorem of Sec-
tion 3 and Section 6 an application to canonical anticommutation
relations. Other applications, to the states of equilibrium statistical
mechanics, will be presented in a forthcoming paper.

The use of ϋ*-algebras in physics, proposed by SEGAL and HAAG,
has been mostly restricted to the study of canonical commutation
relations and field theory. Other domains, like statistical mechanics, are
however potential fields of application.

1 After a first version of this paper was completed, I benefited from conversa-
tions with KASTLEE and ROBINSON. These authors and DOPLICHEE ([4], Section 5)
have obtained, independently, results corresponding roughly to Corollary 2,
Section 3, of the present paper. Furthermore, ROBINSON [6] has obtained important
generalizations of Lemma 4, Section 4, and Corollaries 1 and 2, section 3. Contrary
to what is done here, ROBINSON makes systematic use of Hubert space methods. I
am greatly indebted to KASTLEE and ROBINSON for discussing with me their
results, a large part of which is not yet written down [6], These discussions have
prompted me to make a few changes to the original version of this paper, notably
by replacing "local" by "asymptotically Abelian" [4] J5*-algebras and appending
two remarks (after the theorem in Section 3 and after Lemma 4, Section 4) which
relate the present work to the forthcoming paper [6] of KASTLEE and ROBINSON.
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If "observables" of a physical system are given as a collection of
bounded self -adjoint operators Ai in some Hubert space, one may think
of describing a physical state of the system by giving the expectation
values (A^ which it associates with these observables. In concrete
examples it is seen however that the expectation values {^A1 . . . A^) of
products are also physically relevant and describe correlations between
measurements. Naturally enough the expectation value of the identity 1
is 1 and the expectation value of a positive operator is positive. A state
is thus described as a linear functional { . }, positive and normalized by
(1) = 1, on the algebra 21 with identity 1 generated by the At. The
uniform closure of 2t is a self -adjoint uniformly closed algebra 21 of
bounded operators in a complex Hubert space, i.e. a 0*-algebra. A state
{ . } on 21 continues uniquely to a functional ρ on 21 which is again linear,
positive and normalized and such a functional is called a state on the
<7*-algebra 21, it is necessarily continuous.

An interesting feature of C* -algebras is that they can — as B*-
algebras — be described abstractly i.e. without reference to operators
acting on a Hubert space. A i?*-algebra 21 with or without an identity
is an algebra over the complex numbers with a norm: A -> ||.4|| and an
involution A -> A* satisfying the following conditions:

1. As a normed vector space 21 is a Banach space.
2. \\AB\\ ^ 11-411 . ||JB||, i.e. 21 is a Banach algebra.
3. The involution is a conjugate linear ((A -f- λB)* = A* -f λ*B*)9

involutary (A** = A), antiautomorphism ((A J3)* = B*A*) which
preserves the norm (||-4*|| = ||-4||).

4. Forall4£2l:μ*.4|| = μil2

It is seen easily that a (7*-algebra is a J5*-algebra. Conversely it can
be shown that a J3*-algebra may always be realized as a (7*-algebra of
bounded operators on a complex Hubert space.

If L is a locally compact space, the algebra ^^(L) of complex con-
tinuous functions vanishing at infinity on L is, with respect to the
uniform norm and involution given by complex conjugation, an Abelian
B* -algebra. Conversely, every Abelian -B* -algebra 21 is isomorphic to
^Q(L) for suitable L (this is the GeΓfand isomorphism). L is compact if
and only if 21 has an identity.

One defines an order on a 5*-algebra 21 by writing A ^ 0 if A — B* B.
A state ρ on 21 is then a positive linear functional on 2ί such that

||ρ||= sup

If 21 has an identity 1, this last condition is equivalent to ρ(l) = 1.
Given a state ρ on 21, the standard construction of GeΓfand-Segal

yields the following results
1. A complex Hubert space ίjρ.
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2. A homomorphism πρ of 21 into the bounded operators on §ρ.
3. A normalized vector Ω £ ξ)ρ such that πρ(3i)Ω is dense in §ρ

(cyclicity) and for all A ζ 21 :

The states on an Abelian .Z?*-algebra correspond via the GeΓfand
isomorphism to the positive measures of norm (= total mass) 1 on a
locally compact space2.

While it is natural and useful to represent states of a physical system
by states on a (7*- or J5*-algebra, in general only part of the mathematical
states are of physical interest for a given problem. For instance, a physical
theory has in general an invariance group and one may like to restrict
one's attention to invariant states. This problem is considered in the
next section.

Another type of restriction on physical states comes about if some
observables of the physical theory are represented by unbounded self-
adjoint operators. Let H be such an unbounded operator on 3f ', and let
21 be the (7* -algebra on ffl generated by the observables. We may assume
that for every complex continuous function / vanishing at infinity on the
real line, / ζ^0(E), the operator A1 = f(H) belongs to 2t. We have then
a homomorphism h of #0 (R) into 2l

Any state ρ on 2l defines then, by restriction to Λ(^0(.R)), a positive
linear functional ρh on ^Q(R). This is a positive measure μ on the
spectrum of H, with obvious probabilistic interpretation. However,
while it is clear that ||μ|| ^ 1 it is quite possible that ||μ|| < 1, i.e. that
the total probability of finding some point of the spectrum be strictly
less than 1. This occurs for instance if H is a particle number operator
and ρ describes a system with an infinite number of particles.

It may be that for a given physical problem one is interested only in
the states ρ which correspond to a measure of norm 1 on the spectrum
of the unbounded operator H. If this is the case one has to require that
the restriction of ρ to the subalgebra &(^0(jR)) has norm 1. If instead of a
<7*-algebra one has a .Z?*-algebra 21, one may think of defining an un-
bounded operator "abstractly" by a homomorphism h : f -> Af of ^Q(R)
into 21. One may then ask if, for a state ρ with restriction of norm 1 to
Λ(^0(jR)), there exists a self -adjoint unbounded operator HQ in ξ)Q such
that

where πQ is the canonical homomorphism of 21 into the bounded operators

2 For a more detailed introduction to the mathematical theory of B* -algebras
the reader is referred to §§ 1., 2. of the book [2] of DIXMIER or to lectures [5] by
KADISON.
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on §ρ. Under certain assumptions a positive answer to this question is
given in the Appendix.

2. Invariant states

Let 21 be a J5*-algebra with an identity 1. The set E of all states on 21
is a convex weakly compact subset of the dual 2Γ of 2ί (see [2]). We
remind the reader that an extremal point ρ of E is one which cannot be

written in the form ρ = y ρx -f y ρ2 with ρl5 ρ2 ζ E and ρl φ ρ2 The

theorem of Krein-Milman asserts that a convex compact subset of a
locally convex topological vector space is the closure of the convex hull
of its extremal points. This applies in particular to E, the extremal
points of E, or extremal states, are called pure states.

Let G be a topological group with identity e. We assume that for
every g ζ G an automorphism τg of 21 is given such that

1. The mapping g -> τg is a homomorphism of G into the automorphisms
o/2l.

2. // A £ 21, g -> e implies \\τgA - A\\ -* 0.
If / ζ 21' is a continuous linear functional on 21, we define τ'gf by

r'gf(A) = f ( τ g A ) , all A 6 21

If τ'gf — / for all g ζ G we say that / is G-m variant.
Let £ be the subspace of 21 generated by the elements of the form

A — τgA and

Then, an element / of 2Γ is 6r-invariant if and only if it belongs to the
weakly closed subspace S-1-. Notice that if 5 is the closure of £ in 21,
ΆL is isomorphic as Banach space to the dual of 21/-S. The (^-invariant
states on 21 are precisely the elements of the convex (weakly) compact

set E ΓλS,-1.
If one performs the GeΓf and- Segal construction starting with an

invariant state ρ ζ E r\ S1-, it can be shown3 that there exists in $)ρ a
strongly continuous unitary representation U of G such that for all

U(g)Ω = Ω, U(g)πQ(A)U(g)-ι = πρ(τgA).

One can see that if G is compact or Abelian, E r\ S1 is not empty.
If G is compact and ρ ζ E the state ρ defined by

ρ(A) = ρ I / τgA dgl all A ζ 2t
Lβ J

is indeed 6r-invariant. If G is Abelian, the existence of a 6r-invariant
state follows from the theorem of MAEKOV-KAKUTANI (see DOPLICHEE
[3] Proposition I).

3 See SEGAL [9] or DIXMIEB [2] 2.12.11.



States of Physical Systems 137

We know by the theorem of KREIN-MILMAN that every ρ ζE r\ S1

is the weak limit of convex linear combinations of extremal points of
E r\ S-1 (i.e. extremal invariant states). An interesting case is that in
which ρ can be written as an integral over extremal points, i.e. is the
resultant of a measure over extremal points, specially if this measure is
unique. In that last case the study of (^-invariant states on 21 is effectively
reduced to that of extremal 6r-invariant states.

Let us first suppose that G is reduced to the identity so that
E r\ S-1 = E. In that case an element of E does not in general have a
unique integral representation in terms of extremal states (pure states).
However, if 21 is Abelian the set of pure states is compact and identical
to the space L of the GeΓfand isomorphism. In that case the desired
integral representation exists and associates with ρ £ E a measure μ on
L as explained in Section 1.

For a discussion of the existence and uniqueness of integral represen-
tations on a convex compact set K in a locally convex topological vector
space, we refer the reader to an article by CHOQUET and MEYER (see [1]).
Let us however mention some results which we shall use. An order
relation < among the positive measures on K is defined such that
μl -< μ2 <=> μl(φ) ^ μ^(φ] for all convex continuous functions φ on K.
If μ1 < μ2 then μx (γ) = μ2 (ψ) for all continuous linear functions γ on K,
in particular μ1 and μ2 have the same norm. Intuitively μl < μ2 means
that μ2 is "concentrated nearer to the boundary of K" than μv We shall
say that μ is maximal if it is maximal for the order -<. Let δQ be the unit
measure at ρ ξ K, then we may look for an integral representation of
ρ by trying to find a maximal μ such that δρ •< μ. Such a μ always exist
([1], theorem 3) but need not be unique or concentrated on the extremal
points of K. We shall use the fact that if K is metrizable a measure μ is
maximal if and only if it is concentrated on the set $(K) of extremal
points of K (see [1], Corollary 14) and that in any case a measure con-
centrated on $(K) is maximal ([1], proposition 15).

For the question of uniqueness of the integral representation, it is
useful to consider that K is the basis of a convex cone C with apex at the
origin, i.e. K is the intersection of C with a closed hyperplane not con-
taining the origin and which intersects all the generating lines of C.
Giving a convex cone C defines a (partial) order in the ambiant locally
convex space (x ̂  0 <*• x ξ C). We say that K is a simplex if C is a
lattice for this order (i.e. any two elements of C have a 1. u. b. and a
g. 1. b.). The uniqueness problem is then solved by the following theorem
([1], theorem 11): K is a simplex if and only if for every ρ ζK, δQ is
majorized by a unique maximal measure.

Let us come back to the case where K — E r\ S,-1 is the set of G-in-
variant states on a 5*-algebra 21. We assert that if 21 is Abelian, then



138 D. RUELLE:

each ρ ζ E r\ S1 is majorίzed by a unique maximal measure on E r\ S-1.
Let C be the cone of positive continuous linear functionals on 21, H the
hyperplane H = {/ ζ 21' : /(I) = 1}, then E=C r\H. Since (7 can be
identified with the set of positive measures on a compact set L, and is
thus a lattice for the ordinary order on these measures, E is a simplex.
We have also E r\ S,-1 = (C r\ S1) r\ H, and C r\ S1 is again a lattice
for the order it defines (the 1. u. b. and g. 1. b. of two G-in variant elements
of C is again 6r-in variant), hence E r\ S1 is a simplex and our assertion
follows from the theorem mentioned above.

The main purpose of this paper is to prove uniqueness for a case
where 21 is not abelian, but G is now taken to be the translation group in
v dimensions: Rv. The uniqueness theorem which we prove yields
explicitly the integral representation of ρζEnS,-1- by a maximal
measure, and is based on a locality assumption for 01. We collect this
new assumption together with the conditions 1 and 2 on the action of G
on 21 in the definition below of an asymptotically Abelian B*- algebra [4]
(with respect to Rv).

3. Statement of results

Definition. Let 21 be a B* -algebra with an identity 1. We assume that
for every x £ Rv an automorphism rx of 21 is given such that

(Al). The mapping x->τx is a homomorphism of the abelian group Rv

into the automorphisms of 21.
(A2). // A ζ 21, x -» 0 implies \\τxA - A\\ -> 0.
We shall say that 21 is asymptotically Abelian if furthermore we have
(A3). // A19 4a 6 31, α -> oo implies || [Al9 rxA2]\\ -> 0.
We adapt to the present situation G = Rv the notations of Section 2 :

E is the convex and (weakly) compact set of states in the dual 21' of 2t,
S, is the subspace of 21 generated by the elements of the form A — rxA
with A ξ 31, x ζ Rv, and £ its closure. We write

Then E r\ &1- is the convex compact set of translationally invariant
(i.e. ^"-invariant) states. If A ζ 21 we define a complex continuous
function A on E r\ S-1 by

We recall that S-1- ^ (21/5)', therefore a translationally invariant state
may be viewed as a continuous linear functional on 2l/£. Let 2K : 2ί -> 2l/£
be the quotient mapping. The main idea of the theorem below is that 221
can be approximated in some sense by an averaging operation 9Ώα : 21 -> 21
where <3naA1 commutes in the limit with 9Jία^42 f°

r a^ Alt ^42C2l. Here
α = (α1, . . . , av) £ J?^ with α1 > 0, . . . , a" > 0 and

WaA= F(α)-1 / dbr.A
Λ(a)
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where ^ = {x ξ.R* : Q ^ x* < α*}, F(α) = / / » * .
i = 1

The integral in the definition of 2ftα.4 makes sense in view of (A 2). We
shall write α-> oo for a1 -> oo , . . . , av -> oo.

As explained in Section 2, a partial order -< is introduced among the
positive measures on E r\ S1- such that μl < μ% means that for all
convex continuous functions φ on E r\ S-1-, μ1(φ) ^ μ2(φ). In particular

μ1(A) = μ2(A) and ||μι|| = /^(l) = μa(l) — ll/^ll We say that μ is
maximal if it is maximal for the order -<. We look for an integral re-
presentation of ρ ζ E r\ S1 by trying to find a maximal measure μQ > δρ

where δρ is the unit mass at ρ. In particular we have for all A ζ 21 : ρ (A)
= A ( ρ ) = δρ(A) = μρ(A). We shall show that μρ is unique and, in the
good cases (see part 5 of the theorem) concentrated on the extremal
points of E r\ S-1-.

Theorem. Let the B* -algebra 21 be asymptotically Abelian with respect
to Rv, v > 0.

1 . To every ρ ξ E r\ £ ^ there corresponds a positive normalized measure
μρ on the compact set E r\ S,-1- such that if Av . . . , A± ζ 21, then

μρ(A ..... A) = Mm

2. Zβί ρ1? . . . , ρn £ ̂  r\ S1 £mc£ α1? . . . , αn δe positive numbers such

that Σ MI — 1 5 ^e^ */ Q ~ Σ

3. μρ is the unique maximal measure on E r\ S,^ which major izes the
unit mass δρ at ρ ζ E r\ S-1- .

4. Let (2lα) be a countable family of self-adjoint subalgebras of 21, and
let 3 be the subset of E r\ S^ formed by the elements ρ such that the re-
striction of ρ to 2ία has norm 1 for each α. Then, μρ is concentrated on 3 if
and only if ρ ζ 3.

5. With the same assumptions, let there exist a countable family (At)
of elements of 21 such that if ρ ζ 3 and a ζE r\ &-1, ρ Φ σ, then Aί(ρ) Φ
=j= AI (a) for some i. Let $ (E r\ & ̂  ) be the set of extremal points of E r\ -S-1 .
If Q 6 3> ^e^ μρ ^5 concentrated on (ί(E r\ S1) r\ 3. Conversely if the
measure μ ^ 0 of norm 1 on E r\ S,-1 is concentrated on $(E r\ -2-1-) n 3,
ίΛeτι μ = μρ for some ρ ζE r\ S,1-.

The theorem remains true if J?*' is replaced by a closed subgroup
(=f=0). The consideration of states which have a restriction of norm 1 to
certain subalgebras is of interest for instance if there exist unbounded
observables (see Section 1 and Appendix).

Remark. It is of course a problem of interest to extend the above
theorem to more general locally compact groups G. Most of our arguments
are actually independent of the assumption β = Rv and the only delicate
10 Commun. math. Phys., Vol. 3
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point is the generalization of Lemma 4 in Section 4. Such a generalization
has been obtained by ROBINSON [6], permitting the extension of the
machinery of our theorem to various groups of physical interest, provided
that a physically meaningful "asymptotic Abelianness" may be postu-
lated.

Before starting the proof of the theorem we mention some of its
consequences.

Corollary 1. Let 21 be asymptotically Abelian with respect to Ev and let
ρ £ E r\ S-1 . We recall that in the space S)Q of the GeΓf and- Segal construction
there exist a representation A -> πρ(A) of 21, a unitary representation
x-> U(x) of Rv, and a normalized vector Ω cyclic for πρ (21) such that

ρ ( A ) = (Ω,πQ(A)Ω), U(a)Ω = Ω

U(x)πQ(A)U(-x) = πQ(τaA).

We assert that the commutant of πρ (21) w U (Rv) is Abelian.
Let A ζ 21 and let Clt C2 commute with πρ (21) and U(RV), we want to

show that

(πQ(A)Ω, C&Ω) = (πQ(A)Ω, C&Ω)
where we may assume that A, Clt <72 are self -adjoint of norm ^ 1. Given
ε > 0 we may choose self -adjoint A1} A2 ζ 21 such that

\\[Ci-πβ(Ai}}Ω\\<ε,

for i = 1,2, hence also
\\iCi -πQ(<ma

We have then

\(πβ(A)Ω, C^Ω) - (πβ(A}Ω, C&

4ε

Since this inequality holds for all a we see, using part 1 of the theorem,
that the left-hand side is < 4 ε, hence vanishes, which proves the corollary.

Corollary 2. With the notations and assumptions of corollary 1, let ξ>Ω

be the subspace of ξ)Q formed by the vectors invariant under U(RV). The
following conditions are equivalent

1. ρ is an extremal point of E r\ Q-1.
2. For all I and Alt . . . , At ζ<Ά,

lim
«!>..., aι-+

3. For all self -adjoint A £21, lim ρ((92ία^)2) =
α-^-σo

4. ξ)Ω is one-dimensional (spanned by Ω).
5. The set πρ(2l) \j U(RV) is irreducible.
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Conditions 2. and 3. are weak "cluster properties'' while 4. is usually
referred to as "uniqueness of the vacuum" in field theory.

1. <=> 2. From part 1 of the theorem it follows that 2. is equivalent to

..... 4) = Πe(Aι) = ΠMo) = -MA, - , AI)
hence to μρ = <5ρ, hence to the maximality of όρ, hence to 1.

2. =Φ 3. is obvious.
3. =Φ 4. If 4. does not hold, there exists ψ ξ§^ such that \\ψ\\ = 1,

(ψ, Ω) = 0; then for self-adjoint A ζ 21

\(Ω,πQ(A)Ω)\*= \(Ψ,πe(

or |(φ, πρ(A)Ω)\* ^ ρ((9nα^)2) - (ρ(A)γ and 3. implies that (φ,:
= 0, hence ̂  = 0, a contradiction.

4. =Φ 5. Let (7 be in the commutant of πρ(2l) u U"(-RV) then CΩ ζ $)Ω.
If 4. holds, for some scalar c we have <7β = cΩ and, since β is cyclic
for πρ(2l), (7 is a multiple of the identity: 5. holds.

5. => 1. Let ρ = 1/2 (ρl + ρ2) with ρl9 ρ2 £ J£ r\ S1 there exist then
(DiXMiEB [2], 2.5.1.) self-adjoint operators Gv C2 in the commutant of
πρ(2ί) such that

Since ρi(A) = ρi(t-xA)ί we have

hence Cl9 (72 belong to the commutant of τrρ(2l) w U(RV). If 1. does not
hold we may choose ρ! 4= ρ2 hence C^ Φ 02 and 5. does not hold.

4. Preliminary lemmas

Lemma 1. // ^41? A2 £ 21 αra2 321̂  = 93M2, ^eτι

lim l^α^! - 22ία^2l = 0 .
α—>oo

By assumption At — A2 ζ S hence, given e > 0, there exists AQ ζ $,
such that 1̂ ! — A2 — A0\\ < ε, and therefore

II07^ A OTy A 1 <̂ * QT^ xf \ c
V vV^j-CJL-J ~~ ^^V(T-^>-2 ^^ (f'^O l " *

We may write ^40 as a finite sum of terms of the form A — τxA and if
χa is the characteristic function of Λ (a) we have

3%a(A - rxA) = F(α)-1 / db[χa(b) - χa(b - x)]rbA

lim ||9Rα(4 —Ta,-4)|| g [|4|| lim V(a)'l\f db[χa(b) - χa(b - x)]\ = 0,

which proves the lemma4.

4 We may remark that if A £ 21, then lim II92L-4II = II 921̂ 1 II. This follows from
α->oo " " " "

Lemma 1 upon noticing that ||2Ke^4|| ^ ||-4|| and using the definition of the norm
in 21/5.
10*
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Lemma 2. // A19 A2 £ 21 and ε > 0, there exists α0 £ JR" «

liaiβΛ, 9Rβi4a]|| < ε
*7 aι > ao> independently of a2.

This is an immediate consequence of (A3).
Lemma 3. Let A self -adjoint belong to 21 and ρ ζ E r\ S-1-, then the

following limit exists and is finite

lim
α^fla-x

Let us write

and, for Lebesgue measurable yl C -βv

A(Λ) = fdbrbA .
Λ

For disjoint /l^, /t2 we have by the Schwarz inequality

μ (Λ) + -4 (Λ)II2 < M (Λ)la + 1̂  (Λ)lι (!)
Define

Z = i n f F(a)-i||4(/l(«))I2. (2)
α > 0

For all e > 0 there exists α0 > 0 such that

and since F(6)"1||-4(^l(δ))||2 is a continuous function of b, there exists
δ > 0 such that if \¥ — .α$| < ό for ό = 1, . . . , v; then

Fί^M^ίft^l^Z+e. (3)

For sufficiently large α, we may choose b and integers &1, . . . , kv such
that \b* — a{Q\ < δ and α* = k{¥. There exists then a partition of Λ(b)

V

into fJW translates Λx of /t(δ), and (1) yields

ί v \ / v \
ΠV) \\A(Λ(b)}\\ <(ΠV\ V(b) (X Hr ε) = F(α) (Z + e)

\i = ι / \i = ι /
where we have used the translational invariance of ρ and (3). From (4)
and (2) we obtains thus

lim ρ((22Vl)2) = X 2 . (5)

Denoting by — Λ(a) the symmetric of Λ(a) with respect to the

origin of Rv, we define

Notice that by translational invariance of ρ we have
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On the other hand
lim ||22ΐ_α2%^4 -

ίS->oo

therefore (5) gives

lim lim ρ(3R'bA . 3RaA) — lim lim
a-+oo b-,oo α_oo 6->oo

- lim ρ(WbA . A) = lim ρ((2Kα^)2) = X*
b—>oo ft—>oo

and we have

lim sup ρ((2%4)2) ̂  lim sup [sup ρ(ται3R6^ . τα29K6J[)l ^
b—>oo 5—>c» LΛι»βa J /^

The lemma results from the following formula derived from (5), (6), (7)

lim sup \ρ($RaιA . ^KasA) — X2\
α1,α2~

>0°

= lim sup lim |ρ [(921^4 - ^A) . 9Ώα2^.]| ̂

^ Urn Hm ρ [(3Rα ̂  - gR'bA)*]l/*X - 0 .
ίίj —> OO ft —> OO

Lemma 4. // Av . . . , Al ζ 51 α?ι̂  ρ £ J^ n S-1

lim ρ(2KαιΛ ..... 92V1 ) (8)
αi,... ,αι->oo x *

exists, if finite, depends only on the classes 3RA19 . . .,3RAl and is in-
variant under permutations of Alf . . . , At.

We may assume that Av . . . , Al are self -adjoint. We write

To prove the existence of (8), it is sufficient to show that for each j and
ε > 0 there exists α0 ζ E

v independent of av . . . , a^v fy+i, - , a>ι such
that

|ρ(Zί (9n.;Λ - 3R.»^)Zί')| < β (9)

if α?', a" > α0. By Lemma 2, for sufficiently large α0 we have

and by Lemma 3

which proves (9).
Lemma 1 shows that (8) depends only on the classes 3RAlt . . . ,

and Lemma 2 that (8) is invariant under permutations of Av . . . , AP

Remark. The fact that the limit (8) exists when av . . . , al tend
independently to oo and the fact that Lemma 4 holds for asymptotically
Abelian (rather than local) algebras turned up during discussions with
ROBINSON and KASTLEB. ROBINSON [7] has obtained a proof of our
Lemma 4 which extends to locally compact groups more general than
Rv and to averages over regions Λ of rather general shape. Furthermore
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he needs that 21 is asymptotically Abelian only to prove that (8) is
invariant under permutations of A^ . . . , At.

Lemma 5, Let ρ ζ E r\ S,1-. For self -adjoint Aί9 . . . , Al ζ 2ί Let 2? be
the algebra of complex polynomials in the indeterminates
A linear functional Q on & is defined by the condition that

..... (9ZU,)*] = Km ρ [(9R,,, A)"1

-

a positive measure mAί Al with compact support in
such that

Let P be a product P — Pτ ® ® Pl where Pi is a polynomial in
the ^-th argument of P. With respect to the norms

|| PJ - max \Pt(t)\11 * ! i - i 1 '
the expression

] = lim

is a continuous multilinear form in Pl5 . . . , Pz because IP^^α^l^ll g
^ || P^ || . If P^ > 0 for ό = 1, . . . , Z there exist polynomials ̂  such that
•Pi = Qfβi hence, with Q = Qx ® <g> Q l s we have

= Hm
α— >oo

The complex continuous functions on the real line may be approxi-
mated by polynomials with respect to the norms introduced above, the
positive functions by positive polynomials. This shows that the above
multilinear functional extends uniquely to a multilinear functional
M(fι, . . . , fι) on continuous functions, such that f± ^ 0, . . . , fl ^ 0
implies M(fl9 . . ., /z) ί> 0. Separately in the ί-th variable, M is thus a
measure (with support in [— ||-4Z-||, +||4i||]), hence a distribution and by
Schwartz' kernel theorem there exists a distribution mAί Al in Rl such
that

if /1? . . . , / j £ §)($). The distribution m^...^ has its support in the
product of the intervals [- 1 |̂|, +||-4f||]. If 0 ̂  xt ζ $>(R) and α< tends
to DIBAC'S δ measure for i = 1, . . ., Z, regularization of mAl...Al by
α=α 1 ® Θ α l yields a positive function mAl...Al*& which tends
weakly to m, implying that w is a positive measure and the lemma is
proved.

Lemma 6. Let ρ £ E r\ S-1 A^ . . . , Al ζ 21 δe self-adjoint, and P be a
complex polynomial in I arguments, then

\^ sup
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Let Δ be the support of mAι Al and x ζΔ. Let χ ^ 0 be a con-
tinuous function with compact support on Rl such that χ (x) > 0 then

<* = ™>A1...A1(X)> °

We define a functional ρ'χ on the self -adjoint elements of A £ 21 by

ρ'χ(A) = arifdti . . . dtidtm^.^fa, ...,tl9t) χ(tv . . ., t,) . t.

One checks from the definition (Lemma 5) of rnAit AlA that if A ^ 0,
then mAι ,AlA

 nas ^s support in the product of A by the positive semi-
axis. Therefore ρ'χ is a positive functional. The support of the measure
mAt...Aιi is Δ x {1} hence ρ^(l) = 1. By considering the support of
mA1...AιAΆ",A' + λA" ί°r real scalar λ one sees similarly that ρ'χ is real
linear. By linear extension to non self -adjoint elements of 21, ρ'χ yields
thus an element ρχ of E r\ S 1. When the support of χ tends to x, we
have

and the lemma follows from the inequality

5. Proof of the theorem

1°) Extension by linearity from the formula

yields a linear functional μρ on the polynomials in the At. Lemma 6
shows that this functional is continuous for the topology of uniform con-
vergence on E r\ S,-1 . Let *$ (E r\ £ λ ) be the space of complex continuous
functions on E r\ S,-1 with the same topology. Since the A separate the
points of E r\ S1, the polynomials in the A are dense in Ή(E r\ S1) by
the theorem of STONE -WEIERSTRASS, and μρ extends to a continuous
linear functional on ̂ (^nfi1), i.e. a measure on E r\ S-1 , again noted μQ.

For self-adjoint A^ . . . , Al ζ2l ,and a complex continuous function
/ on E1, Lemma 5 shows that

If 0 ̂  φ ζ^(E r\ S1), one can approximate φ by functions of the form
f(Av . . .,Aτ} with / ̂  0 (e.g. taking for / the absolute value of a poly-
nomial) and it follows that μρ(φ) ^ 0. Finally μρ(l) = 1, which con-
cludes the proof of part 1 of the theorem.

2°) Part 2 of the theorem follows directly from the equation defin-
ing μQ.

3°) Let μ be a measure which majorizes δe, i.e. such that μ (A) = ρ (A)
for all A ζ 21. If φ ζ (E r\ S-1) and ε > 0 one can find a measure μ' with

finite support: μ' = Σ a*^> a*-> 0 such that |μ(φ) — μ'^)! < ε and



146 D. RUELLE:

Σ aiQi — Q (see [1]> footnote p. 141). If φ is convex we have thus

μ(φ) - ε ̂  μ' (φ) = Σ <*Λ*(<P) ^ 27 «</*w(?>) = M<P)

hence μρ > μ which proves part 3 of the theorem.
4°) If 2lα is a self-adjoint subalgebra of 21, let Bx = {Aζ2ίx:A = A*,

\\A\\ ^ 1}, the subset of E nS1 formed by the elements ρ such that the
restriction of ρ to 2lα has norm 1 is then

and we have

Since the FTO are open, their countable intersection 3α is measurable.
We prove first that if ρ £ 3α, then μQ is concentrated on 3α. Let

μρ = μ' + μ" where \\μ'\\ + \\μ"\\ = 1, μ' is carried by Vm and μ" by
$ n S1 - Fm. We have for all ̂  ζ Bx:

hence

ρμ) = (MρU) = ;M'(J) + /M"(J)^ IHI + \\μ"\\ (l-±)= 1 -A—^'ΊI

and therefore ||̂ "|| = 0. For all m, μQ is thus concentrated on Fw, hence
//ρ is concentrated on 3α.

Let now μρ be concentrated on 3α, hence on F2m. There exists then

a compact K C F2m such that μQ(K) > 1 — -̂  — . We may suppose that

2ία is a sub -B*- algebra of 21, and has thus an approximate identity (see
DIXMIEB [2], 1.7.2. and 2.1.5 (v)). Since KC F2w is compact one can
find, using the approximate identity, A0 ζ Bx such that

Under these conditions

hence ρ ζ Fw, hence ρ ζ 3α.
The above results generalize immediately from the case of one sub-

algebra 2tα to the case of a countable family (2tα) because 3 = Π 3α is
α

measurable, proving part 4 of the theorem.
5°) Suppose that the conditions of part 5 of the theorem are fulfilled

and let π be the mapping which associates to ρ £ E n S1 the sequence
(ρ(Aί}). Considered as a mapping of E n S 1 into the product of a
countable sequence of copies of the real line, π is continuous and its
image π(E n S,^) is thus compact. Corresponding to μρ, with ρ £9, a
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measure VQ on π(E r\ S1) is defined by

We have then VQ > δπρ on π(E r\ S1). We show that vρ is maximal. Let
indeed v > <5πρ. If ε > 0 and ̂  £ ̂ (π(E r\ -21)), one can find a measure
v' with finite support: v' = Σ at<^-> α*> 0> suc^ that l^(^) ~ v' (ψ}\ < ε

and Σ aiσi = π£ (see [1]» footnote p. 141). Let ρ^ ζ.Z£ A S1 be such
that πρ^ = σ^, then π(Σ &iQi) = πQ> hence by assumption ρ = Σ ^iQί
We have thus

v'(ψ)=Σ «<V(πβ<) = Σ ^ίμei(ψ°^) = μρ(^oπ) = rρ(y)
hence ?>ρ(y>) ^ ^'(^) ~ ε which shows that vρ is maximal. Since
π(E rλSl-L) is metrizable, it follows (see CHOQUET and MEYER [1],
Corollary 14) that v6 is concentrated on the set $ (π (E r\ -2-1)) of extremal
points of π(E r\ -S1). Therefore μρ is concentrated on

3 r\π~l<£(π(E A f i J - ) ) .

But, using the assumptions one sees 3 A n~l^(n(E A S-1)) C$(E A S-1),
hence / ρ̂ is concentrated on $(E A S-1) A 3.

Conversely let μ ̂  0 be a measure of norm 1 on E r\ S1, there
exists then ρ ζE r\ &1- (the resultant of μ) such that ρ(^4) = μ(Ά) for
all J. £ 2t, i.e. /^ > όρ. If /^ is concentrated on &(E A S1), it follows (see
CHOQUET and MEYER [1], proposition 15) that μ is extremal, hence by
part 3 of the theorem, μ = μρ. If μ is concentrated on $(E A S1) A 3,
part 4 of the theorem shows that ρ ζ 3, which concludes the proof.

6. An application to anticommutation relations

Let 3? be the Hubert space of the Fock representation of the canoni-
cal anticommutation relations (Fock space of the CAR). We take as
test-functions the real square-integrable functions on Rv, which form a
real Hubert space L\(RV). Let 210 be the algebra of bounded operators
on 2tf generated by the annihilation and creation operators α(/), #*(</)
with f,gζL\ (Rv) and let 230 be the subalgebra of 2t0 generated by the
monomials of even degree. We note 21 (resp. 93) the uniform closure of
2t0 (resp. 23 0). It is known that the states on 21 exactly correspond (by the
GeΓf and-Segal construction) to the cyclic representations of the canonical
anticommutation relations.

We call even state a state on 21 which vanishes on the monomials
of odd degree in the creation and annihilation operators (only even
states occur in questions of physical interest). There is then a natural
one-to-one correspondance between the states on B and the even states
on 21.

If x ζ Rv, an automorphism τx of the algebra 21 exists such that
τxa(f) = a(fx) where fx ζ L^(RV) is defined by fx(ξ) = f(ξ - x). With this
definition (Al) is obviously satisfied for 21 and 93. As is well known, the
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CAE imply ||α(/)|| - ||α*(/)|| = ||/||2. From this (A2) follows for 21 and 93.
It follows also that the algebra 93 of even polynomials in the α(/), α* (g),
where /, g have compact support, is dense in 33 and therefore (A3) is
satisfied for 93. Finally since L^(EV) is separable, 93 is separable.

The information collected above shows that part 5 of the theorem of
Section 3 applies to the translationally invariant states on B. We re-
formulate this result as follows.

Proposition. Let K be the convex compact set of even translationally
invariant states on the algebra 3i of the CAR. Let $ (K) be the set of extremal
points of K. There is a one-to-one correspondance between the elements ρ
of K and the measures μρ^ 0, of total mass I on K concentrated on $(K),
such that

ρ(A) = μQ(A) for all A ζ 21 .

That K contains many elements follows from [8] Section VIII.

Acknowledgements. I wish to thank R. KADISON who read the manuscript of this
article and made several illuminating comments.

Appendix

Let H be an unbounded self -ad joint operator in the Hubert space 3?
of a (7* -algebra 21, and let ρ be a state on 21. The aim of this appendix is
to give conditions under which an unbounded self -adjoint operator HQί

corresponding to H, can be reconstructed in the GeΓfand-Segal Hubert
space £jρ.

We shall however state our results somewhat more generally and
use the language of J3*- algebras. Throughout what follows 21 will be a
.Z?*-algebra and, given a state ρ on 21, we shall note ίjρ the Hubert space
of the GeΓfand-Segal construction and πρ the canonical homomorphism
of 21 into the bounded operators on §ρ. Ω will be the normalized vector
in §ρ, cyclic with respect to πρ(2l) such that (Ω9 πQ(A)Ω) = ρ(A) for
all A ξ 21.

Let 2tx be a sub-5*-algebra of 21 and ρ a state on 2( such that its
restriction to 2lx has norm 1. Given ε> 0 there exists a self -adjoint
A! ζ 2tx such that

l-ε 2 /2 (Al)

This is a consequence of the existence of an approximate identity in 2tx

(see DIXMIEB [2] 1.7.2. and 2.1.5. (v)). Therefore

\\Ω-πQ(AjΩ\\<e. (Δ2)

Proposition 1. Let 2lχ be a sub- B* -algebra of 21; the following conditions
are equivalent

(i) The closed left ideal L (or the closed right ideal E) generated by 2lx

is a two-sided ideal.
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(ii) For all A ζ 21, A± £ 2ll5 ε > 0, £&ere ea^sfe α self -adjoint B ζOί^
such that

\\B\\ ^ I , \\BAAI-AAI\ < ε. (A3)

(iϋ) There exist self-adjoint subsets 21 and 2^ respectively generating
21 and 2^ f/or ί&β^r structures of B*-algebras) and such that for all A ζ 21,
A ζ 2ίι, ε < 0, there exists B ζ^ such that

\\BAAl-AAl\\< ε. (A4)

(i) =Φ (ii) If L is a two-sided ideal, then L^)E, hence L = R* c L* = E
and for all ε > 0 there exist A\ ζ 21, ̂  ζ 2ί1? i = 1, . . . , n such that

μA-i;^AΊi<£/3. (A5)
i = l

In view of the existence of an approximate identity in 2lt there exists a
self -ad joint _Z? ζ 2ίj such that

| |B| |^1, \\BBl-Bl\\. \\Al\\ <εβn (A6)

and (A3) follows from (A 5), (A 6).
(ii) =φ (iii) is trivial.
(iϋ) => (i). (A4) implies that SίS^ C-^, hence 2121^ ,̂ hence 2121^ ,̂

hence L cR, hence 7? = Z/* C -β* = ^>? hence ly = J? is a two-sided ideal.
Definition. We shall say that a sub- B* -algebra 2tx of 21 is clean if it

satisfies the conditions of Proposition 1.
Lemma. Let 2^ be a sub -B* -algebra of 21 and ρ a state on 21. // 2ίj is

clean and if the restriction of ρ to 2lx has norm 1 then, for all Φζ $)Qί ε> 0,
there exists a self -ad joint B ζ 2^ <mc& that

\\B\\ ^l,\\Φ-πβ(B)Φ\\<ε. (A7)

TΛe restriction of πρ to 2ίx ^s thus non degenerate.
There exists A ζ 21 such that

\\Φ-πQ(A)Ω\\< ε. (AS)

Choose also Aλ, B ζ 2lx satisfying respectively (A 2), (A3); then (A 8) and
(A 2) yield

||Φ-πρμΛ)β||< e(l + μ||). (A9)
We have

+ πβ(AAl - BAAJΩ + πβ(B) (^(AAJΩ - Φ) .

So that (A3) and (A9) yield

||Φ-πρ(£)Φ||<ε(3 + 2μi) (All)
proving the Lemma.

Let ^0(R) be the J3*-algebra of complex continuous functions
vanishing at infinity on the real line and let 3tf* be the dense ideal of
^0 (R) formed by the functions with compact support.

Proposition 2. Let h be a homomorphism of ΉQ(R) into the B* -algebra
21 and 2ίj = h%?Q(R) its image. Let ρ be a state on 21. if the restriction of
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ρ to ^ίj has norm 1 and if 2^ is dean, then πρh is non degenerate and there
is a unique self -ad joint operator Hρ on ξ)ρ such that for all f ζ^0(R)

πβ(hf) = f ( H β ) . (A 12)

It follows from the lemma that πρ(h^Q(R))ξ)ρ is dense in £)ρ. There-
fore also D = πρ(h^)f)Q is dense in §ρ. If g ζ 2tf we define g' ζ 2tf by

9'(t) = t g ( t ) . (A 13)

If πρ(hg)Φ = πρ(hg)Φ, with g,gζJ(?, Φ, Φ££j ρ , there exists α ζ ̂
such that g' = otg, g' = ocg, hence

πρ(hg') Φ - πρ(hoc) πρ(hg) Φ = πρ(hoc) π ρ ( h g ) Φ = πρ(hg')Φ . (A 14)

We may thus define a linear operator #' on D by

H'πQ(hg)Φ = πρ(hg')Φ (A 15)

and, α being as above, we have

The vectors in D are thus analytic vectors of H' in the sense of NELSON,
and since D is dense in £jρ, H' is essentially self-adjoint (see [7], Lemma
5.1). Let Hρ be the closure of H' . If P is a polynomial we have

P (Hβ) πρ (A?) Φ = πρ(Λ(P (α) . g))Φ . (A 17)

Therefore if P tends uniformly on (— \\h\\, \\h\\) to the restriction to this
interval of f ζ^Q(R)9 the right-hand side of (A.17) has a limit, and
therefore

f(Hβ) πe(h)Φ = ^(A(/(α) . gj)Φ = πβ(A(/ . jί))Φ = πg(hf) πβ(hg)Φ .

This shows that f(HQ) = πρ(hf) on D, hence on §ρ.
Remark. If in Proposition 2 we replace ^Q(R) by ^0(^), where S is a

closed subset of R, a self -adjoint operator HQ satisfying (A 12) is again
obtained and its spectrum is contained in 8.
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