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Abstraet. This paper gives what is believed to be a new discussion of Dirac
matrices and of the Dirac matrix description of Lorentz transformations. The five
anticommuting quantities y’ (J = 1, 2, 3, 0, 5) are treated on an equal footing and
recognition of the rule for expressing the three-fold product 7 yX % in terms of
one- and two-fold products and of invariant “five-space” tensors g7, ¢/ELPQ
allows all kinds of multiplication and trace laws for Dirac matrices to be derived
systematically. The “five-space” formalism for Dirac matrices affords a very
convenient vehicle for the Dirac matrix description of de Sitter transformations of
a space with quadratic form gg,;xZxf. By considering the subset of these which
leave the coordinate z° invariant, the Dirac matrix description of Lorentz trans-
formations is obtained. Not only does this description give the well-known formula
for any Lorentz transformation matrix L in terms of the matrix S, which enters
the transformation law of a Dirac spinor y(x) under L, it also gives an explicit and
apparently new inverse formula expressing § in terms of L.

1. Introduction

In this paper, we present what is believed to be a new discussion of
Dirac matrices and of the Dirac matrix description of Lorentz trans-
formations.

Our discussion of Dirac matrices differs from the standard one! in
that it treats on an equal footing the five anticommuting quantities
pJ = (p#, ) and gives their defining relations in the form [5]

P yE 4 pEyl =27 (1.1)
PIr=9979° (1.2)
1

p yKyl= gl Kyl — gILyK | gRLyJ — = eI KLPQypyy . (13)

* Research supported in part by the U.S. Atomic Energy Commision under
Contract AT (30-1) 3399.

1 Most of the algebraic properties of Dirac matrices were obtained first by

Pavurr [1] and are reviewed in [2]. Alternatively one may refer to any of a large

number of standard works on relativistic quantum mechanics and field theory,
e.g. [3] and [4].
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wherein all indices take on values 1, 2, 3, 0, 5, the metric tensor has
signature (—, —, —, +, —), and ¢ is the totally antisymmetric tensor.
These defining relations clearly contain the same content as the usual
description but the recognition of (1.3) yields a fast and systematic deri-
vation of and compact forms for a wide variety of multiplication and
trace laws. Translation of theselaws into space-time notation then provides
a more complete and readily extensible list of the algebraic properties of
Dirac matrices than seems to be elsewhere available (see [6]).

From the defining relations (1.1) and (1.3) it seems reasonable to
suspect that the Dirac matrix fromalism yields a description of trans-
formations in a five dimensional Euclidean space similar in nature to the
quaternion or Pauli matrix description of rotations in three dimensional
Euclidean space. This is indeed correct. One can thus obtain a Dirac
matrix description of the group R; of real rotations in five dimensions.
Just as the quaternion description of rotations rests on the homomorphism
of the group 8 U, generated by the quaternions to the group R, of rotations
in three dimensions, so also does the Dirac matrix formalism for E;
rest on the well-known homomorphism (see [7], p. 141, as well as [8])
of USp,, the symplectic subgroup of the group SU, generated by the
Dirac matrices, to R;. It does not, however, suit the purposes of the
present work to deal with the R;, USp, relationship but instead we
deal with the de Sitter group L, which leaves invariant the form
gsg®’ 2L of a pseudo-Euclidean space E,,; and the related symplectic
subgroup VSp, of a group SV, of pseudo-unitary transformations
generated by Dirac matrices. The prefix “pseudo’ as used here in connec-
tion with SV, has the following sense. If { is a point of the complex
vector space of four dimensions on which SU, and SV, act, SU, leaves
invariant the positive definite form {+{ so that § € S U, satisfies S+8 = 1.
However, SV, leaves invariant the indefinite form (+4°(, so that
8 € 8V, satisfies S+ 908 = 90, or S8 =1 where §* = °8+40 is the
adjoint of S with respect to the indefinite metric (see e.g. [9] or [10])
y%; i.e. 8 is pseudo-unitary or unitary with respect to the indefinite
metric 9°. In this paper, we present a detailed discussion of the homo-
morphism of V8p, to L, ,, thereby providing a Dirac matrix description
of L,,,. The discussion follows the pattern of a previous paper [11] on
the quaternion description of real and complex rotations in three dimen-
sions and of Lorentz transformations. In particular, it gives not only
an explicit formula for the mapping of V' Sp, on L,,, but also its more
useful and less obvious inverse.

While the discussion of L, in terms of Dirac matrices is of intrinsic
interest, the motivation for it is that one obtains a complete compact
development of the Dirac matrix description of the group L, , of Lorentz
transformations from it simply by considering the subgroup L,, of
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L,,, which leaves the coordinate #° invariant. The principal advantage
of the present approach to the Dirac matrix formalism for L, , over the
conventional one, aside from the debatable remark that we are here
probably looking at it within its most natural mathematical context,
is as follows. Not only do we give the well-known formula expressing
any Lorentz transformation in terms of the matrix S (L), which enters
the transformation law under L of a Dirac spinor, y(x) 7 S(L) yp(La),

but we also give explicitly the inverse formula for S(L) in terms of L.
This important result is believed to be new.

The reason for going to the Dirac matrix description of L, , via that
of L, , is that the latter can be formulated in terms of the compact five
dimensional space statement of the algebraic properties of Dirac matrices.
Similarly our desire to get the Dirac matrix formalism for L, , motivated
our study of L,, rather than R;. Also the occurrence of {*y°( as the
invariant form for VSp, is seen as the familiar £ of Dirac theory.

In section two, we discuss the algebra of Dirac matrices (multiplica-
tion, trace and completeness laws and B and D such that §/ = By’ B-1,
y/% = D »J D-1) in five space notation. In section three, the Dirac matrix
description of L, , is given, and, in section four, after a translation of the
multiplication and trace laws of section two for Dirac matrices into
space-time notation, our Dirac matrix description of Lorentz transforma-
tions is presented and briefly contrasted with the conventional discussion
as given in connection with the Lorentz invariance of the Dirac equation.

2. Dirac matrices

Our discussion of Dirac matrices differs from the standard textbook
discussion in that all five anticommuting Dirac matrices are treated on
the same footing. Our Dirac matrices are in fact defined by

9T pE 4 yK ol — 2gIK @.1)
=097, (2.2)
yJ,yKyL=gJK,yL__gJLyK+gKLyJ (23)

1
— 5 & ELPQypyy .

Herein all indices vary over the range 1, 2, 3, 0, 5 and summation con-
vention implies a sum over these values of a repeated index. The metric
tensor g’ X obeys

gPE=0, J+K; gl=g2=¢gB=_g00_g_ _1;
and the totally antisymmetric tensor ¢ is such that

£12805 — ] |
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Our description is equivalent to the usual one — for example (2.3)
yields 90 5 = 919?93 = or 9% =% 91 9293; we have simply recognized
the existence of the multiplication law (2.3). Products of four or more
7’s can be expressed in terms of one and two fold products and the
numerical tensors by iteration of (2.3) and use of familiar properties of
&’s. Explicitly, for the four fold product we have

yE yLyM yN — gRLyM )N _ gKM yLyN 4 gEN LM |
+ gMN YR L _ gLN K )M | gLM yK N 2.4)
— gELgMN | gLNGRM _ gLMgKN | cKIMNP,,

In order to deal with a set of sixteen linearly independent Dirac matrices,
we adjoin to 1 and ¥, the ten independent quantities

1.
GLM = ? ? [VI‘, 7M] 5 (2‘5)
which satisfy
GIM — QML (2.6)
GLM+ = HOGLM 40 2.7

We may easily now obtain from (2.3) and (2.4) multiplication rules
involving the GLM:

yEQEM — j(gKLyM _ gRM Ty _ (KLMPQG, (2.8)
[pK, GEA] = 24 (gKE M — gKM yL) (2.9)
GELGMY — j(gLMGEN | gENGLM _ gEMGLN _ gLNGEM _
— gUMgEN | gRMLN _ (KIMNP.,,., (2.10)
[GEL, GMN] = 2;(gLMGEN 1 gENGLM _ gKMGLN _ oLNQGEM) (211)

Also, we have the trace properties

Tryk =0, (2.12)

TryE yL = 4gK L (2.13)

TryE yLyM =, (2.14)

Tr 7,K yL yM yN = 4(gKLgMN - gKMgLN+ gKNgLM), (2.15)
Tr yK }/LVMVNVP—‘—‘ 4ELMNP (2.16)
TrGEM =0 (2.17)

Tr yE QLM — 0 (2.18)
TrQELGMY — 4(gEMgLN _ gENgLM) (2.19)

Tr yK yLGMY — 4i(gEMgLN _ gRNgLM) (2.20)

TryXQLMQNP — — 4 gELMNP (2.21)
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It is to be noted longer traces can be worked out easily without comple-
tely evaulating the corresponding products of y’s.

The completeness relation for the Dirac matrices in the present
notation appears as

1
6abacd + (VK)ab (‘}/K)cd + 9 (GLM)ab(GLM)cd = 46ad6bc . (222)

Next we observe that the defining relations are form-invariant under
the substitution?

yK — '}7K , (2.23)

although not under yX — — $X, As a consequence of (2.23) and the uni-
tary nature of our 9’s, it follows that there exists a unitary matrix B
such that
§K = ByEB-1. (2.24)
From (2.24), the result
GLM — _ BGLM B-1 (2.25)

follows. As in the textbook discussion, we must have
B=-B (2.26)

as there can be only six linearly independent antisymmetric Dirac
matrices. These six are B and ByX, while all BGLM are symmetric.
The antisymmetric matrix B will be seen to play a crucial role in the
ensuing discussion.

Finally from (2.24) and (2.2) we obtain

yE* = DyED-t, (2.27)
where D is given by
D = By". (2.28)

3. Dirae matrix description of de Sitter transformations

The basis of the work of this section is equivalent to the wellknown
homomorphism of the group R; of real rotations in a real Euclidean
space E; of five dimensions to the group USp, of unitary symplectic
transformations in a unitary space C, of four dimensions. The group R,
leaves invariant the positive definite form

@) + (@ + @) + @+ @

in E;. The group USp, is the symplectic subgroup of U, the unitary
group which leaves invariant the hermitian form *¢ of Cy, ie. USp,
alsoleavesinvariant the antisymmetricform £ J ¢ where J is antisymmetric.
The matrix B of (2.24) is the obvious choice of a suitable matrix J.

2 In the following 7 denotes the transposed matrix, j* the complex conjugate.
10*
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Here, in view of our aim of ultimately obtaining the Dirac matrix de-
scription of Lorentz transformations, we consider not R, but the de Sitter
group L., of real transformations in a pseudo Euclidean space E,
five dimensions, i.e. the group of real transformations which leave in-
variant the indefinite quadratic form

— (%1)2 — (x2)2 — (x3)2 + ($0)2 _— (275)2
=dm NZ'M (L'N .
We shall present, in terms of the formalism of the preceding section,
a detailed analysis of the homomorphism of L,,, to a group VSp, of
pseudo-unitary symplectic transformations in a pseudo-unitary space Cy.
The group V 8p, is the symplectic subgroup of the pseudo-unitary group
V, which leaves invariant the indefinite form {*9°Z, i.e. V 8p, consists

of those four by four matrices S which satisfy the pseudo-unitary condi-
tion3

8T8 =90, (3.1)

and the symplectic condition
SBS=B. (3.2)
It should be noted that as a result of (3.1) and (3.2), such S also satisfy
S*=DSD-1, (3.3)

with D given by 2.28.

We shall confine our attention to the proper orthochronous de Sitter
group, refer to it as L,, and omit the qualifying adjectives hereafter.
If « is a point of ¥, ,, then the elements % of L, , are defined by

M .’iM = ,?MN:EN , (3.4:)

where
PUN — (F-1\NM (3.5a)
LN =1 det¥=1, (3.5b)

and & here stands for the matrix with &M at the intersection of the
M*™ row and N column. Clearly Z leaves gy yaM™2¥ invariant and in-
volves ten independent real parameters.

To find the relation of L,; to V' Sp,, we begin by associating with
each point X of B, , a four by four matrix X defined by

X = agyk, (3.6)

3 The forms of (3.1) and (2.2) may be seen to be quite natural as follows. If we
dealt with U,, we should have been concerned with C,, which has metric matrix 1
and should use hermitian y’s and unitary S. However, we deal with ¥, and Cj
which has indefinite metric 9°, and use 9’s obeying (2.2) and S obeying (3.1).
If we define M+ = y° M " 9° as the adjoint of a matrix I/ with respect to the in-
definite metric 9°, then our y’s obey y»’/+ = »’ and § obeys 8—1= 8%, so that
the transition U, V, corresponds to the replacement of Mt by the adjoint M =
with respect to 3°.
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the inverse relationship being
oF = 3 Tr(ykX) . 3.7)

We then consider the effect of the transformation
X-»>8X81 (3.8)

where S € V8p,, i.e. obeys (3.1) and (3.2). We shall prove that (3.8)
can be used to describe an element of L, ,. Evidently it is firstly necessary
that S X 8-1 be of the form £; y’ for some &, for then we can define &

by
@ = PTgak (3.9)

and proceed to prove & € L,,. For SX S to be of the required form,
the coefficients of 1 and GZM in its expansion with respect to a complete
set, of Dirac matrices must be zero, i.e. we must have

Tr(SXS8-1) =0,
which is trivially satisfied for any S, and
Tr(SXS1QEM) =0 . (3.10)

That S € VS8p, indeed satisfies (3.10) emerges as a result of (3.2) as
follows:

Tr(S X S-1GEM) = Tr[(S X S-1GLM)~]
= Tr[GEM§-1X§]
= —xg Tr[BGLM B-1§-1 B yE B-13]
= — g Tr[GEM(B-1§ B)-1 yEK (B-18 B)]
= — Tr(GFM§XS-1)=0.

Herein, (2.24) and (2.25) are used in the second line and (3.2) in the
fourth. Conversely it can be proved that, if (3.10) is satisfied by pseudo-
unitary §’, then §’ must obey a result of the form.

§'BS' = Be?i®
and the undetermined phase can be eliminated by a redefinition S’ — 8§
= 8’e~%9, so that S obeys (3.2).
Thus we consider the transformation
X->X=8X8"1, (3.11)

where 8 € V8p, and X = #,Exy +7. Since this holds for any point zx
of £y, we get

LEy =8 yE8-1, (3.12)
and hence

PIE _ %Tr(st yES-1) = L(SYE . (3.13)
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We must now prove that % as given by (3.12) satisfies (3.5) and hence
belongs to L,,,. Then, if the result
L(8) £ (8) = £ (5,8,) (3.14)

can be proved, it follows that (3.13) gives an explicit realization of the
2:1 homomorphism
+8 & Z(S) (3.15)

of VSp, to Ly,. It is convenient to establish (3.14) first. This is done
directly as follows
1, 1 —
ZL(8) x £ (Sa)Ep = vy (ST 97814 (YE)av g (YE)ea (S2 Sz Vae
1 _ —
=16 (ST 7 81)va (S2 yaSz Vae

1
[0av0ca + (YB)av (YE)oa + 5 (Gpglas (GF9),4al
1 _ —
=4 Tr(Sy Y78, 8y Sy )
=2 (S1S2)JM .
To obtain the second line, the results Tr(S,ySz?!) =0, and
Tr (S, Sz LGP Q) = 0, which is equivalent to (3.10), have been used.
Use of the completeness relation for Dirac matrices follows, leading to
the desired result. We now turn to the other points in order. The reality
of Z follows use of (TrM)* = TrM+, and [L(8) V& = L (S)K7
follows use of Z(S)!= #(S-!), which itself follows (3.14). Also
Z(8)0 = —i— Tr(S8*) = 0 implies that we are dealing with ortho-
chronous #. Finally to prove det.%¥ = 1, we use the results
det PcELMPQ — 8K'L’M’P’Q’gKK,gLL,gMM,gPP,gQQ, ,
and
eKLMPQy g yrymypye=1,

which can be obtained from (2.4) and familiar properties of &’s. Details
of the proof are

det 2 = detZ X LMPQy pyy yyr yp yg
= K UM P& (P, ye) (L y1) (LY yu) (LPp yp) (9% 7o)
= K TP S(yp yp yuwr v ye) S71=1,

use of (3.21) having been made.

To complete the discussion of V' Sp, and L,,, we need the formula
inverse_to (3.13). This shall be obtained by use of the consequence

818711+ SygS-1yK + %SGLMS*GLM —48(Tr8-Y) , (3.16)
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of (2.24). First, we use (3.12) to evaluate the second term obtaining

SygS1yE =Ly yE 3.17)
=Tr# — 1 A(Z)
where
A(F)= LygGTE. (3.18)

Next we evaluate the third term according to
SGryST M = — S (yrys — gru) S~ (yE yM — ghH)
=—=SyLyuStylyM+5

=—ZLpr LouyT yeyEyM +5 (3.19)
= (Tr &) — Tr L2+ 2i[4(L?) ~ (Tr L) A(L)] +
+ O(2),
where
O(L) = eporupLTPoLLMYE (3.20)

In the last line of (3.19), we used (2.4) and (2.5). We may now combine
(3.16), (3.17) and (3.19) to give

48(Tr8) = 1+ Tr 4 5 (Tr 2 — 5 e L2+ 5 B (L)
—iA(P) + i (P — i(Tr 2) A( L),

and it remains to evaluate TrS—1, which is easily done as follows. Since S
obeys (3.3), it must be of the form

(3.21)

8= s+ sgy% +5ispeGPQ, (3.22)
with s, sg, sSpg = — sgp all real. Hence

TrS =45 = TrS* = Tr8t = Tr8-1,
so that we get

TeS TrS-1 — (TrS-1)? (3.23)
— 14 o 4 5 (e Py — 5 Tr 2

directly from (3.21). Hence finally we can write the required inverse
formula in the form

S:[F($)+—é— O (L) +i (L) —i(1+Tr L) A(L)][16F (L) (3.24)

=8(2),
where @ and A are defined by (3.20) and (3.11) and F (%) is given by
F(&) = [TrS(@)P =1+ Te L + 5 (&P — s Te s, (3.25)

It can be seen from (3.25), (3.20) and (3.11) that S(%) as given by (3.24)
is indeed of the form (3.22), the real coefficients of 1, yX, G¥Q being given
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by
F2),
%EKLMPQQLMKPQ, (3.26)
2[$PJ$JQ - (1 + Tl‘g)gpQ],

apart from a factor [16F (£)]-1/2 .

4. Dirac matrix description of Lorentz transformations

Let a# (u = 1, 2, 3, 0) be a point of E, , (ordinary spacetime), and let
the metric tensor be g#*

g =0, ukv; gl=g2—gBo_g0_ _1,
The Lorentz group consists of those real transformations
ah— &t = Lt 2” 4.1)
in Ej,, which leave g,,2*2* invariant, i. e. whose coefficients satisfy
Lrr = (L1ye, (4.2)
which implies
detL = 41, (L%) 1.

We have considered the Dirac matrix description of the real proper ortho-
chronous de Sitter group L,, whose elements leave the form g; g’ 2K
in B, , invariant. By considering the elements
L|0

2= (%5i1)
of L, ,, i.e. those which leave 2® invariant, we obtain a treatment of the
real proper orthochronous Lorentz group L, since det & =1, 0 = 1
translate into detL = 1, L% = 1. Similarly by considering elements of
L, of the form

PRTER

0]—1
i.e. those which reverse 2% we get a treatment of real improper ortho-
chronous Lorentz transformations.

As a preliminary, we attend to a matter which is of major significance
in its own right, translation of the E, , discussion of Dirac matrices into
space-time notation. It is to be stressed that what is involved is mere
translation. However, the results which are obtained in a very brief
and systematic way afford an extremely complete description of the
algebra of Dirac matrices as used throughout relativistic quantum
mechanics and field theory. Of the many results listed below, some are
indeed both new and useful, but those which are not new, have seldom been
derived in a systematic way and usually have involved much more al-
gebraic effort. Of course, the systematic nature of the present discussion
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stems entirely from (2.3) which yields, in space-time notation, the re-
sults
YEYT YR =gty = gyt gyt — (4.3)
— & Ys s
and
. 1
Y=Y = g €Yo e (44)

All further results stem from these. However, it is faster to obtain the
following by simplification of the equations of section two. Using the
usual notation*

o — _3 iy 7, (4.5)
05 = ilye, 5] = iy, (4.6)
we can draw up & list of further multiplication rules

or R = —i(ghey” — greyk) — etreiag (4.7)

[o#”, y2] = = 2d(g"ey” — g ") , (4.8)

o1 — — 5 eieg,, (4.9)

[o#, 71 = 0, (4.10)

PGPS = ighv 55 — % enreig,, (4.11)

[y 6%] = 0, (4.12)

yEY YRyt = gty ph — gre Tyt 4 grhyr e
+getyry — ghyrytgeyryt (413
- g/.wggl + gyggvl _ gulgvg - 8’“’92 yl’) ,
PEYTYRYS =gyt — greyt Yt gty

ey, (4.14)
Guvggl — i(gvgo-ul + gylo.vg — gugavl - gvlo.,uv) 15
+ gyggvl — guzgve + Slwgl ys , ( * )

[0"'“', O-Ql] — 2,0( vgo.,ul_l_ ulo.vg_ ygo-vl - vlo-/lg ,
g g g g""a"?) (4.16)

oH? 0% = — geSgh

= i(geghs — greg”®) 4 ervety, (4.17)
oSS = — Y. (4.18)

We may also list trace properties, best obtained usually by trans-
lation of those given in, or potentially available from section two. This

4 We still have y; = — 95, (%)% = —1, of course.
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gives a very rapid approach to results such as
Tr (p# y* p2 9% %) = 4gtrec (4.19)
Te(yty” yey” v v*y°)

— 4(gyvaganl . g;zg Gvo’nl + gvg auaxl

+ ggoauvxl _ gvoeugx}. (420)

+ gugsvgnl + gxlapvgu) .

On the other hand possession of complete multiplication rules is very
useful for direct trace calculation. For example, (4.13) allows one to
turn knowledge of the fourfold trace into an explicit expression for an
eight fold trace. However, we refrain from presenting this or more com-
plicated formulae explicitly.

We now return to the specialization of the results of section three,
that gives the Dirac matrix description of Lj;. We have seen that the
elements % of L,; can be defined in terms of four by four matrices
S € V8p,, which satisfy

ST 08 =y, (3.1)
together with
SBS= B, (3.2)
or equivalently
S* = DSD-1, (3.3)
according to
L(8)E; ) = S yKS-1. (4.21)

To find what further properties are possessed by the elements S of
V' Sp, which describe proper Lorentz transformations, we consider
(4.21) for £ such that

LEYE=LS¥ (J+5=u, K+5=%0),

LSy = LWPE=0 (J, K +5), (4.21)
LS5 =1.
This yields the definition
L(S)* = 5 Tr(y»8 " 871) (4.22)
for L € Ly, in terms of § € V. Sp,, as well as the K = 5 equation
y5 = 89581,
so that
8, 1= 0 (4.23)

is the required further property of those S which correspond to elements
of L, ,. Of course, the definition (4.22) is well known, as indeed are (3.1),
(3.3) and (4.23) although their role which we shall discuss below is not



Dirac Matrices and the Dirac Matrix Description 145

always adequately stressed. However, the inverse of (4.22), the explicit
expression for the S, which obeys (3.1), (3.3) and (4.23) and corresponds
to the general element L € Ly, is new in the present treatment. By
insertion of (4.21) into (3.24), we derive this result in the form

8= S8(L)
= [6(L) — 5 &urgo LA Lo + i T'(L?) (4.24)
_i(2+ TrL) I'(L)] [[16G (L)]2,
where
@(L) = 21 + TrL) + 5 (TrLy* — 5 TrL?, (4.25)
I'(L) = L0%. (4.26)

The restriction (4.23) on S herein reflects itself in the absence of y*,
o*b terms in (4.24). It can, of course, be established that (4.24) yields the
well-known forms for S(L) corresponding to L a spatial rotation or a
“pure” Lorentz transformation. In the case of a rotation 0 in a positive
sense about a unit spatial vector n, one inserts L% = 1, L0% = L*0 = (

— L’* = Ri* = cosf §'% + (1 — cos0) nin® — sinf 7% n!
into (4.1), i.e. 2% - £0 = af, o7 — & = Ri*ak,

Then using the identity [11]
(TrR)1 — E = (TrR)R — R?,

we can simplify (4.24) into the forms
[1 4+ TrR) — io¥ i

8, 0) = ~rr TR (4.27a)
— cos o — UDIRS i} sinJ- (4.27D)

2 2
where 2 2% = giikgti, In the case of a pure Lorentz transformation of
velocity v = tank y in the direction of a unit spatial vector m, we use
(4.1) with L% = coshy, L= —IL%% =m¥sinhy, and L =g 4
+ m?*m? (1 — coshy), and get the result

S(z,m) = cosh%+ o+ n sinh % (4.28)
with aF = 90 %,

If we return to where we obtained the Dirac matrix description of
proper orthochronous Lorentz transformations by looking at those of
elements % of L,, of from (4.21), we can similarly discuss improper
orthochronous Lorentz transformations by looking at elements £ of
L, of form

LIE=1r (J+5=u,K+5=v),
LI = PE =0 (J,K £ 5),
FH=—1.
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This yields the definition (4.22) for improper orthochronous L in terms
of those S € V.Sp, which also satisfy

— 5= 8,581, (4.29)

It is almost unnecessary to point out that the work of this section is
essentially equivalent to the standard textbook treatment of the matrix
which enters, via

L, pr = STyt 8, (4.30)

the proof of the Lorentz invariance of the Dirac equation. Of course, there
we meet (3.1) as a direct consequence of the definition (4.30) of S for
L¢L;,; (3.3) by requiring that Lorentz transformation and charge
conjugation of the Dirac wave function should commute; and (4.23)
as the consequence of (4.30) which tells us that ¢ %y is pseudoscalar.
Here we have proved that four by four § such that

8~1=908-190 S*=DSD-1, 8= 955(%1, (4.31)

constitute a group homomorphic to L, realised explicitly by (4.24).
It is of course a matter of opinion of to what extent it offers a major
improvement on the usual discussion to view the Dirac matrix descrip-
tion of L, within the context of the classical homomorphism of USp,
and R;. The role of the constraints on § is probably clarified. The first
one is a pseudo-unitarity condition implying § € V,, determined by our
desire to work ultimately in pseudo-Euclidean spaces; the second is
essentially a symplectic condition implying S € V' Sp,; and the third
enters as we pass to the subgroup of V §p,, which is homomorphic to
L ,. Further, (4.24), a vital ingredient of a complete discussion, is to the
best of the author’s knowledge new.
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