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Abstract. A general formalism for describing unitary representations of non-
compact semisimple groups is presented. It is applied to describe some general
properties of representations of SU(6, 6), of possible interest for the classification
of elementary particles.

1. Introduction

Recent speculation (e.g. see [2]) has suggested that Lie group theory
(particularly the theory of infinite dimensional unitary representations)
will play a role in classifying elementary particles. Of course, this must
follow experiment, since there is little general theory beyond the general
principles of quantum mechanics. Presumably, future discoveries of
particles will reveal supermultiplets of new groups and possibly infinite
supermultiplets defined by representations of non-compact groups,
just as experimental activity of the past 15 years has revealed the S U (3)-
symmetry. (The experimental situation at the moment seems not suf-
ficiently developed to proceed with confidence very far ,,beyond"
SZ7(3), although of course the $17(6) activity has had a few striking
successes.)

At any rate, these exciting possibilities suggest development of parts
of the theory of Lie groups that have been hardly touched by mathe-
maticians. For example, one basic question can be described as follows:
Given a sequence of integers (which are, say, dimensions of various
multiplets of particles) can one find groups K and G, with K a subgroup
of 6r, and an irreducible unitary representation of G which admits sub-
spaces invariant under K of precisely this dimension ? In turn, this
suggests a program of classifying representations of groups by prescribing
which representations of subgroups (say, the maximal compact sub-
group) may occur in the representation.

In this paper (hopefully, the first in a series) we treat a number of
topics that fit into this program, particularly emphasizing (following
FEYNMANN and GELL-MANN [2]) the need for generating representations
by "creation and annihilation operators". For background on notations,
etc., refer to [4, 5].
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2. Creation and annihilation operators

Let H be a (complex) Hubert space that is a direct sum H° + Hl-\ ----
of orthogonal subspaces. Suppose that F is another vector space. Suppose
given a bilinear mapping V x H -> H such that :

The image of F x Hr lies in Hr+1, r — 0, 1, . . . . Denote elements of
H by ψ, ipf, etc. Denote the inner product by {^|ψ')> the norm by

l lvϊ - Ϋ<φ\ϊ>>
For v £ F, define A* , the operator of "creation by v" ', as follows:
For ^ £ #r, J.+ (φ) is the image in #r+1 or (v, φ). Thus F* maps £Γr

into J?r+1. We can now define A~, the operator of ,, annihilation by v"
as the Hermitian adjoint of A* :

Note that A^ maps Hr into /71"-1. We can now define the skew-Hermitian
operator Av — A£ — A^. We require that for v, v1 £ F, A* commutes
with A+. After taking adjoints, we see that this implies that two an-
nihilation operators commute. Hence,

[Am AVι] = [A-, At} + [A+, A'] .

In particular, [Aυί AVι] is a skew-Hermitian operator on H mapping
Hr into Hr.

This suggests that we construct the Lie algebra G of skew-Her-
mitian operators generated by the [Av : v ζ F}. If G is a group whose
Lie algebra is G, and if the representation of G extends to a representa-
tion of G, we have obviously a unitary representation of G. We can
now let K be the subgroup of elements of G that map Hr into Hr, for
r = 0, 1,2, . . . , and K the corresponding Lie algebra of operators. Let P
be the subspace of operators of G spanned by the operators {Av : v £ F}.
Thus, [P, P] C K. We see that K has a structure very much like that of a
symmetric subgroup of a Lie group. In turn, we will see in the next
section how symmetric subgroups generate this sort of structure.

A useful modification can be made in the definition of Av. Suppose
also that, for v ξ F, A% is a skew-Hermitian operator on H which maps
Hr into Hr. We can modify Av as :

Av = A+ -A- + A*.

The Fock space construction [1, 7] in quantum field theory is one
typical case of this construction, which suggests that the more general
forms might be useful in elementary particle physics. COOK [1] has
shown that the operators iAv are self-adjoint in the technical sense of
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Hubert space theory, thus providing a firm analytical foundation for the
theory of free fields, at least. In Section 5 we will give a new easy proof
of this fact, and show that with natural assumptions it extends to more
general situations.

3. Creation operators generated by unitary representations

Our main goal is to construct interesting unitary representations
using the creation operators as a beginning. However, we can more easily
show conversely that unitary representations give creation operators.
For this purpose, we will sketch an approach to the problem of classifying
unitary representations that has been suggested and studied by THIELEKER
in his doctoral dissertation [9].

Suppose that G is a Lie algebra of skew-Hermitian operators on a
Hubert space H, and that K and P are subspaces of 0 such that:

G = K ® P ; [ K , K ] C K ; [K,P]cP; [P,P]CK. (3.1)

(K is then called a symmetric subalgebra of G). Suppose H° is a subspace
of H which is invariant and irreducible undre the action of K let us call
this representation σ. If G acts irreducibly the whole representation can
be built up out of products of the form:

X,. . . Xr(y], Xlt. . ., Xr £P, ψ £#o . (3.2)

Further, in such products we can regard the X's as only occurring in
their symmetric combinations, since [P, P] C K, and commutators of P
can be moved to the right and be absorbed in H°. The action of AdK
in P induces a representation that we can denote by AdPK. Thus, the
./^-content of the representation is obtained by decomposing into ir-
reducible representations the representations:

σ, σ ® AdpK, A d p K o A d p K Θ σ, etc., (3.3)

where ® denotes the tensor product and o denotes the symmetric tensor
product of two identical representations. Further details of this argument
will be found in Thieleker's work.

Of course, one still has to decompose the representations given in (3.3)
into irreducible components. Certain representations that abstractly
might occur in this decomposition in reality will not occur in the de-
composition of K on H. For example, consider a Casimir operator D
of G, i.e. a polynomial in the generators of G that commutes with the
action of AdG. Since the representation of G on H is irreducible, D will
be a scalar on H. Using the commutation relations (3.1) D can be written
as the sum of products of the form X±. . . Xr Yl. . . Ysί with the X's
in P, the 7's in K. We see immediately that the fact that this is to be a
scalar will give certain relations among the tensor products (3.3).

There is also a relation between this approach and the global methods
of GELFAND and NAIMABK, which involves finding homogeneous spaces
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of G on which K also acts transitively. For example, if G is semisimple
and if K is the maximal compact subgroup, the orbit of K on an element
of P will be such a homogeneous space. Now, talking about the Asymmetric
tensor products" of AdPK is just a fancy way of talking about the action
of K on the polynomial functions on the vector space P. One will obtain
representations of K that fit together into unitary representations of G
by considering the action of K on such polynomial functions after
restricting them to an orbit of K. Certain of these polynomials will be
constant on the orbit of K, which should correspond, in favorable cases,
to the relations among the tensor products that we derived from the
Casimir operators of G using Thieleker's algebraic approach.

Now we can describe the relevance of this to the creation- annihila-
tion operator formalism. Define the representation Hubert space H as a
direct sum of orthogonal subspaces H° + Hl + * * * in the following way :

HQ is as defined above, H1 is the orthogonal complement of H°
in the subspace of H spanned by HQ and the set of vectors {X (ψ) : X ζ P,
ψ ζ H}. H2 is the orthogonal complement of HQ + H1 in the subspace
spanned by H°, H1 and the vectors {Σ^ty) : Xv X2 ζ P, ψ ζ H0}.
Continue by induction to define Hr.

To provide the setup described ,,axiomatically" in Section 2, take V
as P, and define the bilinear map V xHr -> Hr+l used to define creation
operators in the following way :

Assign to X ζ P, ψ ζH, the projection in Hr+l of X(ψ). Having
defined annihilation and creation operators in this way from the re-
presentation one might ask conversely how the operators of P may be
expressed in terms of them.

Lemma 3.1. For ψ ζ Hr, A% (ψ) = - (the projection of X(φ) in Hr~l).
Proof. Since A% maps Hr into Hr~l, A%, its adjoint, maps Hτ into

Hr~l. For ψ £ H, ψ' ζ Hr~\

which proves 3.1.
Lemma 3.2. [A%, A$] = 0 = [Aχ> Ay] for X, 7 ζ P.
Proof. AχAγ(ψ), for ψ ζHr, is obviously the projection of X Y(ψ)

on Hr +2, which is also the projection of 7 X (ψ) on Hr +2, since [X, 7] £ K .
Now, for X ζ P, ψ ζ Hr, define A^(ψ) as the projection of X(ψ)

on Hr. Then, we see that operator

satisfies the same commutation relations as does X : Assigning this oper-
ator to X then defines another skew-Hermitian representation of G,
which is identical to the original one only if
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4. Another general method for constructing creation operators

Let K be a Lie algebra that is either semisimple or the direct sum of a
semisimple and an abelian Lie algebra. Let C be a Cartan subalgebra of K,
i.e. a maximal abelian subalgebra such that for X ζ C, AάX is diagonaliz-
able as a transformation on G.

Consider an irreducible linear representation of K on a finite-dimen-
sional complex vector space F. The transformations of C can be simul-
taneously diagonalized the eigenvalues as linear forms on C, are the
weights of the representation. A partial ordering can be introduced into
the vector space over the real numbers generated by all possible weights
of all representations. There is just one weight of the given representa-
tion that is maximal relative to this ordering, and this maximal weight
serves to characterize the representation. Further, the maximal weights
form a lattice generated by c (= dimension C) "fundamental" maximal
weights. (All these facts are well-known in Lie algebra theory: see
JACOBSON'S book [6] or the summary given in [4].)

Suppose given representations of E on vector spaces V1 and F2,
with maximal weights w^ and w2. One can form the tensor product
representation of K on V1 Θ F2. It will be reducible. However, another
general theorem of representation theory asserts that there will be
exactly one representation of K in this tensor product with maximal
weight w1 + w2 Let us denote this subspace of the tensor product by
F3. F3 then results from combining the representations of K on V1 and
F2 in a definite way; we may call this the Cartan product of the two rep-
resentations. This method of construction provides a bilinear map
V1 x F2 -> F3 that commutes with the action of K on each space.

Let us apply this construction to build a Hubert space H=HQ-\- H1-]—
with creation operators in the following way: choose HQ as F1? F as
F2, H

l as F3, the Cartan product of V1 and F2. Similiarly, let H2 be the
Cartan product of Hl and F2, whose maximal weight is then w1 + 2w%,
etc. The bilinear mapZΓ7* x F2 -> Hr+l thus defines the creation operators.

This construction is a generalization of the Fock space construction
for bosons. (In fact, we obtain precisely this if we take K as U(ri), Vl

and F2 as the one and n-dimensional representations of K. One obtains
the Fock space for fermions by choosing K, V1 and F2 as the same, but
modifying the construction by requiring that the bilinear map
Hr x F2 -> Hr+1 be that which picks out the representation in the tensor
product Hr φ F2 that has minimal maximal weight. Again, there is just
one such irreducible representation in the tensor product.)

An interesting point about this construction and its possible usefulness
in physics is that it bears some resemblance to the procedure physicists
use heuristically to build up particles from basic ones, such as "quarks".
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A short glance at the examples should convince the reader that the
"degenerate series" of unitary representations of such groups as SL(n, (7),
S0(n, 1) come within this construction.

5. Analytic vectors

We have given methods for constructing representations of Lie
algebras by means of annihilation and creation operators. It is well-
known that this "infinitesimal" approach does not always lead to global
representation of the corresponding simply connected Lie groups. For
example, in the pioneering work of WIGNER and BARGMANN one notices
a certain amount of healthy caution as to this sort of pathology. However,
a strong technique for overcoming these difficulties in most of the situations
of practical interest has been introduced by HABISH-CHANDRA with the
notion of "analytic vector". NELSON took up this idea, and in a defini-
tive and powerful work [8] constructed very firm foundations. In this
section we will sketch how these ideas apply in a very natural way to the
situations of interest in this paper.

Let H be a Hubert space. Denote the inner product in H by { |̂ ̂ ')>
and the norm by ||̂ ||. Let Av . . ., An be a collection of operators defined
on domains in H. A vector ψ in H is an analytic vector for these operators if:

a) ιμ lies in the domain of the algebra of operators generated by
Alf . . ., An.

b) Σ T KAι + ' ' + An)j Mil < °° f°r some t > 0.
7 = 0 '

We will not attempt to summarize Nelson's results here, beyond
saying that if a collection of operators has a dense set of analytic vectors
most of the possible pathology is ruled out and much the same results
hold as for operators in finite dimensional spaces, particulary concerning
the question whether a Lie algebra of operators generates a global group
of transformations. As an example, we will describe one of the simplest
theorems:

Consider an Hermitian operator A defined on a domain D(A] in H.
Suppose that A is a closed operator. Then, A is self-adjoint if and only if
D(A) contains a dense set of analytic vectors for A.

(A is closed if it has the following property: Suppose ψl9 ψ2, . . . is
a sequence of elements of D(A) such that lim \p} = ψ and lim Aψ2 = ψr

j —>• oo j —>• oo

Then, we require that ψ ζD(A) and ψf = Aψ. Any Hermitian operator
can be extended in a unique way to give a minimal closed one. ,,Self-
adjoint" is taken in the technical sense of Hubert space theory. For
the purposes of both representation theory and physics the following
property of self-adjoint operators is the important one:
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An Hermitian operator on a domain D (A) is self -adjoint if and only if
there is a one-parameter group t-> U(t) of unitary transformations on
H of which A is the infinitesimal generator, i.e. ψ ζD(A) if and only if
lim (U(t)ψ — ip)jt exists and the limit is precisely iA (ψ). )

Now, let us consider the Hermitian operators constructed from
annihilation and creation operators according to the scheme described
in Section 2.

Let H be a Hubert space and leiHQ, Hl, . . . be a sequence of mutually
orthogonal subspaces of H whose direct sum is dense in H. Let A+

be an operator denned at least on each of these subspaces which maps Hr

into Hr+l, r = 0, 1, ____ Let A~ be its adjoint, and let A = ~ (A+ + A~).

Our goal is to find conditions that guarantee that each of the vectors of
Hr, r = 0, 1, . . ., is an analytic vector for A, hence that the minimal
closed operator defined by A be self -adjoint. For simplicity, we are
just considering the case of one such operator; a collection of such
operators can be treated with the same methods.

For r = 0, 1, . . ., let ar be the norm of A+ restricted to Hr. Thus,
1 4+^|| ^ ar\\ψ\\ for ψ ζ Hr, and ar is the smallest such number.

Lemma 5.1. The norm of A~ on the subspace Hr is no greater than

«r-l

Proof. Let ψ ζ H τ have norm 1 . Using the Schwarz inequality,

μ-y»2= (ψ\A+A-ψy g \\A+A-ψ\\ <ί a^lA-ψl .

Lemma 5.1 follows after dividing by ||^4~^||.

Now, \Aγ\* = ̂  μ+

V + A~Ψ\\2 = T (M^ll2 + H~Vll a) ̂

^ -r (a% 4- «?-ι) , whence

r, ar^) . (5.1)

Now let us turn to finding conditions that the elements of the Hr

be analytic vectors for A. Suppose that αn, r is the norm of An in the sub-
space Hr. We must estimate its value. Let br be the maximum among
the numbers α0, av . . . , an.

"2" (an-I>r+lar

αn-ι»r-ι)> hence :
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From (5.1), we have: α1?r ̂  br. Thus,

1

1 1

1

Continuing by induction, we see that:

and
r \\Any>\\tn ^ y an,rh\\tn ^ y (br+n_lbr+n_2...br)t*

n nl '~ ̂  nl ~~ Ίί n(n — I ) . . .

Applying the Ratio Test, this will converge if:

lim *•+*-! < —,
n-^oo n t '

or

^ -r < T (5 2)

Thus, we have proved:
Theorem. Let ar be the norm of A+ on the subspace Hτ of H. Let br

be the maximum among the numbers α0, . . ., an. If brfr is bounded as
r -> oo, then each vector of the subspace of H which is the union of J?°,
H° + H1

9 . . ., is an analytic vector for A. If further brjr -> 0 as r -> oo

then the series Σ nas an infinite radius of convergence for *ψ ζHr.

We now show how this applies to the annihilation and creation opera-
tors in the Fock space construction. For simplicity, let us consider the
boson case. (In fact, these operators are bounded in the fermion case
anyway; hence the exponential series always converges for any vector
in H.) H1 is then an arbitrary Hubert space, HQ is one dimensional (the
"vacuum state"), and Hr (the "many particle states") is the r-fold
symmetric tensor product of H1, i.e. is spanned by elements of the form
γl o o ψr, with ψv . . ., ψr ζ H1. (o denotes the symmetric tensor
product.) The inner product in Hr is determined by the following for-
mula:

/ I / / V •*• «

where the sum is over all permutations (1, . . ., r) -> (ίv . . ., ί r ) of the
set of r integers. In particular, if ψl9 . . ., ψr are vectors from an ortho-
normal basis of H1, then j]^ o o ψr\\ ^ 1 and is equal to 1 if
ψί = ψ2 = = ψr. It is readily seen [1, 7] that, for ψ ζH1, A+ and A~
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are defined as follows:

A* (ψι o o ψr) = J/V + 1 ιj) o ψ-L o o ψr

A~(ψ! O - - O ψf) = — «V>| Vi> ^2 ° ' ' ' ° Ψr + ' '

t/^o o^r~ι) .

We see then that the norm of A+ restricted to Hr is (r -f 1)1, hence
όr is also (r ~j- 1)1. The theorem applies; in fact, since brjr -> 0, the radius
of convergence of the exponential series is infinite. In particular, the

operators Aψ = -^ (^4* -f ^4~) are self-adjoint after closure, which is

Cook's theorem [1]. Cook also deals with the case of ''mixed statistics".
In fact, it is readily seen that the norm of A+ is greatest in the boson
case, so that the analytic vector argument applies in the "mixed statistics"
case also. In the fermion case, br = 1, so that Aψ is a bounded operator
and the exponential series converges for any ψ in H.

6. Discrete series and symmetric bounded domains

Let G be a connected semisimple non-compact Lie group with finite
center and let K be a maximal compact subgroup of G. Then G, the Lie
algebra of G, can be split up by the Cartan decomposition:

G = K φ P , [K,P]CP,[P,P]CK.
We will suppose that the situation is "irreducible" in the sense that the
adjoint representation of K in P, that we denoted in Section 3 by AάPK9

is irreducible over the real numbers. (It may be reducible over the complex
numbers in fact, this is precisely the situation of interest in this section.)
It is then known [3] that either:

a) G and Gc are simple Lie algebras or
b) G is the complex Lie algebra Kc, and Gc is isomorphic to the direct

sum of two copies of Kc.
(Gc denotes the "complexification" of G, i.e. G = G -f *G> which may

be viewed either as a Lie algebra over the real or complex numbers.)
Examples of a) are such groups as 8 U (m, n), S0(m, ri), while examples

of b) are G = S0(n, (7), SL(n ,C). In this section, we will only be con-
cerned with situation a). Here there are again two main classes:

A. K is semisimple.
B. K is not semisimple, i.e K is the direct sum of a semisimple ideal

K£ and a center, which can be proved to be one-dimensional, generated,
say, by an element Z.

Examples of type A are: G = S0(n, 1), K = S0(n); G = SU(n),

K - 80(n). Type B: G = SL(2,K), K = 50(2, J8); β = 8U(m,n)9

K = 8U(m) X 8ϋ(n) X Z7(l);

β = 80(m, 2), K = 80(m) X 80(2) .
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The groups of type B have simply connected covering groups with in-
finite center. (Such groups have no faithful finite dimensional representa-
tions, however.)

This distinction between types A and B becomes important when one
tries to classify particles by choosing infinite dimensional unitary rep-
resentations of G. Assuming that K is the exact or approximate sym-
metry (in the sense, say, that it commutes or nearly commutes with the
strongest part of the Hamiltonian, whereas the operators of P have
something to do with the interactions between multiplets) we see that
in the type B case the center of K provides an additional additive quan-
tum number that commutes with all the other operators of K, For
example, one might try to use K = SU(Ά) x Z7(l), with the SU(3)-
part of K giving the Eightfold Way classification, while the C7(l)-part
gives something like the baryon number.

On the mathematical side, the representations of groups of type B
have a special feature, namely that they have certain { 'isolated" rep-
resentations which are called the " discrete series". (The name arises
from the role they play in the Plancherel formula, which will not con-
cern us here.) We will now describe the relevance of these discrete series
to the physical questions, relying on the ideas described in Section 3.

Suppose from now on that G is of type B, with Z the generator of the
center of K. Now, AάZ acting on P commutes with the action of Ad K.
Let us denote this transformation of P by J, i.e.

JX = [Z, X] for X ζ P .

Since exp (tZ) lies in a compact group, J has pure imaginary eigenvalues,
which must be non-zero. Since J is a real transformation the negative
of an eigenvalue is also an eigenvalue. Thus, Pc = P + ίΐ splits up into
the direct sum of two complex subspaces P+ Θ P~ defined by the eigen-
values ίa, with a > 0 and a < 0 respectively. Each of these subspaces is
isomorphic to P. If there were two eigenvalues with positive imaginary
part, Ad K acting in P would not be irreducible. Then by normalizing Z
we can arrange that the eigenvalues of J are ±i. In particular,

J2--/. (6.1)

We can use (6.1) directly to make P into a complex vector space. (This
is also implicit in the isomorphism between P and P4".) Namely, for a
complex scalar a + bi, with a and b real, define, for X ζ P:

This way of considering P as a complex vector space assures us that AάK
acts in P as a group of complex transformations; notice that J acts by
multiplication by i.

Commun. math. Phys., Vol. 2 7
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LeminaG.l. Let ¥+ = {X-iJX : XζP} and ?~~ = {X + i JX :
Then, P+ and P~ are, respectively, the ί and — ί eigenspaces of J. Fur-
ther, [P+, P+] = 0 = [P", P"].

Proof. That P+ is the ^'-eigenspace follows from :

J(X - i JX) = JX + ίX = i(X - JX) .
Let X, Y £ P.

[X-ίJX, Γ-<JΓ]= [X, 7]- [JX, JY]-i([JX, 7] + [X,J7])

[JX, J 7] = [[Z, XI [Z, 7]] = [Z, [X, [Z9 7]]] - [X, [Z, [Z, 7]]]

= -[X,J*7]=[X,Y].

[JZ, 7] = [Z, XI 7] = [Z, [Z, 7] - [X, [Z, 7]]

= -[X,JΓ].

These three identities show that [P+, P+] - 0. Similiarly, [P~ ,P~] = 0.
Now let us suppose that G is a Lie algebra of skew-Hermitian opera-

tors on a Hubert space H. Let us build up H as a direct sum HQ -f- jfiΓ1 +
of subspaces invariant under K, as explained in Section 3. Further,
suppose that

dimension H° = 1 .

(This type of representation seems of most immediate interest for the
classification of particles.) Then, we have

K£J?° = 0, since a semisimple Lie algebra admits no nontrivial one
dimensional representations. Let us look at H1, which is spanned by
vectors of the form {X(ψ0) :X ζ P}, where ψ0 is a fixed generator of HQ.
Let σ denote the representation of AάK in P, considering P as a complex
vector space. Let σ denote the complex conjugate representation.
Then, there are the following alternatives for the representation of K
mH1:

Either
(A) H1 splits into parts invariant under K, in one of which K acts

by σ, in the other by σ, or
(B) H1 is irreducible undre the action of K, and either P+ or P~

(but not both) annihilate ψQ. K acts via a or σ.
Proof, Consider the mapping Pc -> H1 which sends X + ί Y into

( X + i 7) (ψ0). It is clearly onto H1

9 and commutes with the action of K
on both spaces. Hence, the kernel is invariant under Ad^. But, we have
seen that the only such spaces of Pc are P+ and P~, and one goes into
the other under complex conjugation. (A) applies if the kernel is zero, (B)
if it is non-zero.

For the physical applications one is interested in representations
in which the representations of K appear the fewest number of times.
Thus, the representations satisfying (B) seem to be the most interesting
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candidates to investigate further. We will suppose from now on that

P+^o = 0 .

Consider that action of 7* on ψQ. We must have

ZψQ = ίocψo, for some real α .

If this is to be a global representation of G, α can have only a discrete
set of values. For, suppose that tQ is the first positive value of t for which
exp(ί0Z) — identity. Then,

α£0 is a multiple of 2π .

There is another relation provided by the second order Casimir
operator of G. Let B(X, Y) be the Killing form of G.

Lemma 6.2. For X, Y ζ P ,

B(JX, JY) = B(X, 7)

B(JX, Y)= -B(X,JY).

Proof. As we have seen, X — iJX is an eigenvactor of AdZ with
eigenvalue i. Hence,

Adexp (^πZj (X - ί J X ) = i(Σ - iJX) .

Taking the real and imaginary part of this relation gives :

That B(JX, JY) = B(X9 Y) now follows from the general fact that the
Killing form is invariant under automorphisms of G. Now,

B(X,JY) = -B(JJX,JY) = -B(JX, Y) .

For X £ P, [X + ίJX, X - ίJX] = 2i[JX, X]ζiK. (6.2)

For X ζ P, (6.3)

B([X, JX], Z)= - B(JX, [X, Z]) - B(JX, JX) - B(X, X) .

Since P+(^0) = 0, we have (6.4)

Z(Vo) = <JX(V>o) for Z ζ P .

Now, [X - ίJX, X + iJX] (Vo) - (X - iJX) (X + iJX) (Vo)

= X*ψQ + (JX)*ψQ - iJXX(ψQ) + iXJX(ψQ)

= , using (6.4), 2Z2^0 + (JX)*ψ0 - iJXXψQ .

But also, using (6.2), this is equal to

i[X, JX]ψ0^i(XJX<ψ0 - JXXψo) =, using (6.4), X2ψQ - iJXXψQ .
7*
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Putting these two calculations together gives :

- 2iJXXψ0 = (JX)*ψ0 - iJXXψQ , or

i [Z,

Now, suppose that dimension P = 2n. Suppose that (Xs), j= 1, . . . ,n,
is a set of elements of P such that (Xί3 JX$) forms a basis for P that is
orthonormal with respect to the Killing form, i.e.

B (X}, JXk) = 0 B (Xjt Xk) = δf fc = B ( JX» JXJ .

(Such a basis exists because of Lemma 6.2. Recall also that B is positive
definite on P, negative definite on K.)

Suppose that (Fw), u— 1, . . . ,m, is a basis of K# that satisfies:

Put Z'^Z-jΠ^z, ru)Γβ. Then, (Tl9 . . ., Ym9Z'l(-B(Z',Z'W9
u

Xj, JXj) is a basis of G that is orthonormal with respect to the Killing
form. The Casimir operator Δ is given by:

u j

Suppose that Δ (ψQ) = λψίoΐ all ψ ξ H. Let us apply this relation to ψQ.
Now, Yu (ψQ) = 0, hence

(Z')2φ0= -α2^0.
Using (6.5),

2; z? + (J-s:,)1 vo - < Σ>' >
Suppose that

[Z
Then,

Put β — — Σ β) Gathering all these relations together gives:

λ=-o?IB(Z,Z) + βx (6.6)

(This shows that the Casimir operator can have at most a discrete set
of values, which is one explanation for the term "discrete series".)

We can use (6.5) to derive inequalities. Consider X £ P. It is a skew-
Hermitian operator, hence Xz is a Hermitian operator, and

Hence,

This gives
β« < 0 . (6.7)
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In particular, α cannot be zero, i.e. ψ0 cannot be invariant under Z,
and α must have a fixed sign, independent of the representation, since β
is defined from G alone. We can also regard (6.6) as a quadratic equation
for α. Since α is a real root, its discriminant must be positive, i.e.

A 3

β*+jwτv)>() (6 8)

Let us now turn from the algebraic study of these discrete series
representations to a method for actually constructing them. Ultimately,
one would want to perfect the algebraic method of construction using
creation operators; at the moment, the geometric method which we
shall use seems more efficient.

Let L be the subalgebra K -M'K -f- P~ of Gc. Let Ge be the connected
Lie group corresponding to Gc: It is the "complexification" of G. (For
example, if G = SU(m, ri), Gc — SL(m + n, (7)). Let L be the connected
subgroup of Gc corresponding to the subalgebra L. It is a "complex"
subgroup of Gc, i.e. is determined by complex-analytic relations, and the
coset space GJL is a "complex homogeneous space", i.e. local complex
analytic coordinates can be introduced in GJL so that the group trans-
formations are given in these coordinates by complex-analytic functions.
(See HELGASON'S book [3] for details about the facts described here.)

Let P+ and P~ be the connected subgroups of Gc generated by
the subalgebras P+, P~ of Gc. They are also complex subgroups of Gc.

Let pQ be the point of GJL representing the identity coset of L.
One can prove that:

G r\ L = K, i.e. the orbit of G on pQ is the coset space G/K, which
is in fact a symmetric space. (It is called a "symmetric bounded domain".
We will explain where the bounded domain comes in shortly.)
Dimensions are easily calculated:

real dimGJL = real dim(τc — real dimL

= 2 dimG - 2 dim^ - real dimP

-real dim P = dim GjK .

This proves that the symmetric coset space, realized as the orbit GpQί

is an open subset of GJL.
One can also show that P+ r\ L = the identity. Hence, real dimP+

= real dimGJL.
Which shows that the orbit P+pQ is also an open subset of GJL.

Now, we will use two facts proved by HABISH-UHANDBA. (See [3] for
proofs.)

a) D = Gp0 is contained in the orbit P*p0 .
b) Complex analytic coordinates (z1? . . ., zn) can be introduced into

the orbit P+pQ, so that the operations of P+ are just translations in these
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coordinates. With respect to these coordinates D = GpQ is realized as a
bounded open subset of the space of n complex variables. These complex
coordinates are determined linearly by choosing a complex basis for P+,
hence the action of K in these coordinates is just that linear action given
by AάK acting in P+.

We can now construct our Hubert space H as the space of complex
analytic functions ψ(z) of the variable z = (zv . . .,zn). The inner pro-
duct is given by integration over D :

(ψ I ψ'y = f ψ(z) Ψ (z) dz dz .
D

The action of G on H is now determined as follows : Let X ζ G, and con-
sider the one-parameter group £->Exp(ίJ£) of transformations of D
it generates. Represent these transformations in terms of the z- coordinates
by:

z'j = z'j(z,t) = zj + t A j ( z ) + ••-.

The vector field (Af) is then the infinitesimal generator of the one-
parameter transformation group. In these terms, the action of X on
an element of our Hubert space is :

For X £ KS or P+ the term Σ - is zero For x = %> tne element of
i a%

the center of K.
ΔZ _ ;~ΛJ — IZj .

Hence,

We can now let ψQ be the constant function 1. α is now -^ n. The rest

of the representation can now be built up by applying the operators of
P~ to the "ground state" ^0, as explained above. The "excited state"
representations with higher values of α are constructed along similiar
lines, using homogeneous "line bundles" on GjK. Of course, they can
also be obtained by taking tensor products of this representation with
itself a sufficient number of times.

We can readily see how this applies to the case G=SU(mίn),
Ks = SU(m) x8U(n). The representation of Ks in P~ can be computed
as the (ra, n) representation of 8U(m) xSU(ri)9 which is then also the
representation of Ks in H1. The higher representations of Ks in Hr are just
the symmetric tensor products of this basic one. The case G = SU(6, 6)
is of possible great interest in physics. As mentioned in [5] (using a
slightly different method) this representation is the one constructed by
FEYNMANN and GELL-MANN [2].
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