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Iterated Crossed Box Diagram
in the Complex Angular Momentum Plane

and Bethe-Salpeter Equation*
By

M. MARTINIS**

Physics Dept., Imperial College, London

Abstract. The analytic properties of the iterated crossed box diagram are
considered in the complex angular momentum plane by using the partial wave
Bethe-Salpeter equation.

It is shown that the kernel of the Bethe-Salpeter equation is of the Hilbert-
Schmidt type in the domain

A (I, s) = {I, s; Re I > —3/2; Ims =f= 0}

having a simple pole at I — — 1 .
This pole produces in the whole amplitude a singularity found by GBIBOV and

POMEBANCHUK since the kernel is not of finite rank.

I. Introduction

In the last few years [1] the theory of the complex angular momentum
has been a very important and powerful tool for treating the scattering
amplitude at high energies.

One way [2] to introduce, in relativistic scattering theory, the
concept of the complex angular momentum is by an analytic continuation
of the partial wave amplitude into the complex angular I plane. Then the
uniqueness [1] of such an analytic continuation requires that the con-
tinued amplitude is bounded and analytic in some region of the complex
I plane. Generally, that can be satisfied if for the original amplitude
before the analytic continuation the validity of a dispersion relation has
been assumed.

Thus an analytically continued partial wave amplitude will be
analytic in at least a half-plane ReZ > lQ, where lQ is connected with the
necessary number of subtractions in a dispersion relation.

We consider the scattering of identical neutral spiritless particles with
equal mass. The relativistic amplitude written as T(s,t) may have,
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of course, both left- and right-hand cut in the t variable with respect to
the channel where t is energy. Then we shall say that our scattering
amplitude has a third double-spectral function, following the terminology
usual for the Mandelstam representation [3]. In that case the partial
wave amplitude Tl (s), where s is the total center-of-mass energy squared,
will be defined [1] by two different analytic functions of I which coincide
respectively with Tx (s) for even and odd values of I.

For the elastic scattering in the s-channel when s is in the elastic
region one may continue the two particle unitarity condition into the
complex I plane, thus getting generalized two particle unitarity [4].

The important fact which follows when Tx (s) satisfies the generalized
two particle unitarity is that Tl(s) is bounded for s ^ 4 m2, where m
is the particle's mass.

If one goes to the left of the branch point s = 4m2 then from general-
ized unitarity it also follows that Tt (s) cannot be unbounded on both
Riemann sheets. This means that Tl(s) cannot have an ^-independent
pole [1] at the point I = lx< lQ which one may reach by analytic conti-
nuation in the complex I plane.

When the third double-spectral function is present then the individual
terms of the perturbation series of the partial wave amplitude will have
poles at the negative integer values of I due to the properties of the
Qz function. Here, we have been ignoring possible subtraction in the
dispersion relation.

If the whole amplitude satisfies generalized two particle unitarity
the perturbation series will then develop singularities, found by GBIBOV
and POMEBANCHUK [5], at the negative integer values of I, which will
cancel these fixed poles. This simply means that if the such perturbation
series is obtained by an iteration process, each term will have poles of
increasing order at the above values of I.

The simplest case of the perturbation series [1] which has the above
behaviour may be constructed by iterating the crossed box diagram.

This case we shall consider in the complex I plane in some detail in
this paper.

When one iterates the crossed box diagram each term will have
a pole at I = — 1 and since the whole ampHtude, obtained by summing
up all iterated terms, satisfies generalized two particle unitarity this pole
should disappear.

One may try to see how this cancellation could happen by using the
method for finding the high energy behaviour of Feynman graphs [6, 7],
and then summing up the most singular terms.

The result will be that the structure of the coefficient cN(s) of the
variable t tending to infinity, for say N times iterated crossed box

8*
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diagram, remains unknown and one is unable to sum up the series
explicitly.

One possibility of getting over these difficulties is to consider the
perturbation series as a Bethe-Salpeter (BS) [8] integral equation
whose kernel is the single crossed box diagram. The whole problem will
then be reduced to finding a domain A (I, s) in the complex I <g> s plane
where the kernel of the partial wave BS-equation is square integrable,
i. e. of the Schmidt type [9, 10], and includes the point I— — 1 .

In Sec. I I the symmetrized partial wave BS-integral equation is given.
Sec. I l l gives the structure of the kernel of the BS-equation for the

iterated crossed box diagram.
In Sec. IV we discuss the integrability of the kernel for the crossed

box diagram. The domain A (I, s) where the kernel Kx (s) is square
integrable is also given.

In Sec. V we consider the singularity of the resolvent Rf (s) in the
complex I plane when I approaches — 1 . Rf (s) is the resolvent defined
by the singular part of the kernel Kl(s).

II. Partial wave BS-equation

We consider elastic scattering of two identical scalar particles of
mass m. In the two particle approximation diagram given symbolically
by Fig. 1 we have in fact an integral equation of the form

rd^5d^s(P+p-~Pl--^F (2.1)
J (vl — m + * e ) (Vl — m 2 -\- l e ) v ' ' v ' '

F(12; 34) is an irreducible diagram not having two particle intermediate
state in the channel defined by the particles (1,2) and (3,4). The above

Fig.l

integral equation is known as an integral equation of BS-type [8]. The
BS-equation is an off-mass-shell integral equation and therefore depends
upon six independent scalar products of the four-vectors pt (i = 1,. . ., 4).

Since the integration in the Eq. (2.1) runs over four dimensional
space one may consider two scalar products as two independent param-
eters, usually taken to be complex.

For our further discussion we shall need partial wave projection of
Eq. (2.1).

In the center-of-mass system for the particles (1,2) and (3,4) one
may introduce the new system of coordinates usual for the BS-equation,
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that is

Pi + P2 = Ps + 2>4 = W s (j/7, 0, 0, 0) ,

Pi = (fto> ft) = ( j / y + ^V >

P2 = (Pw ftj) = (]/ Y — 0), —~qj , (2.2)

If we rewrite Eq. (2.1) in the following form, we can conveniently apply
the partial wave projection to obtain the partial wave BS-equation

T(s; I, I'; q • q') = F(s; £,?;q- q') + f & {" q"2 f> f ' X

x F ( s ; ftf"; g • $") !T(«; | " , I r ; q" ' gO (2-3)

where we have used the abbreviation

i^(<o,q) (2.4)

for the one dimensional space-time vector whose space coordinate
varies only through the region (0, oo). The hats on the q's mean take the
corresponding unit vector.

We define the partial wave projection as an integral over the Legendre
polynomial Pt of the form

2
- l

(2.5)

tis; I, f) = Fl(s; f, |') + 2rc/cP ?' x

^(^; S, n Tt(s; $", r ) ( 2 - 6 )

Using Eq. (2.5) one easily gets the partial wave BS-equation

The structure of the Eq. (2.6) shows that it is a singular integral equation
[11] because the denominators in Eq. (2.6) can vanish in the region of
integration. Under a suitable phase transformation and a very general
restriction on the energy parameter s these difficulties can be avoided,
but, of course, not for any kernel.
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It is convenient first to make a similarity transformation by introduc-
ing the function

Ri (s; I , *') = h (s, I) Tx (s;i,£')h(s;£') (2.7)
where

M*; I) = 1/2 7*i I?2 H - m * - ^ - ( l / ^ + a ) ) I x
(2.8)2-H-1/2

when Eq. (2.6) gets the simple form

Bl(s; | } f ) = *,(*, I, I') + / ^ 21" JT,(«; f, I") !*,(«; I", I'). (2.9)
Here -K'j means

ifi(«; f, I') = A(«, l ) ^ ( ^ ; I, I') ft(a; f ) . (2.10)

One will immediately recognize that Eq. (2.9) represents an integral
equation for the resolvent of the kernel Kl(s; £, £'). Symbolically we can
write the Eq. (2.9) as

Rtis) = Kt(s) + Kz(s) R^s) (2.9)

where Ri(s\ | , | r) is then simply expressed in terms of Rt(s) as

2?I(«,f,n = <£i*.(«)if> (2-11)
using Dirac's notation.

If kernel (2.10) is symmetric, as it will be in our case, it has optimal
bound [12].

III. Structure of the kernel Kt(s; §9 ?') for iterated crossed
box diagram

In this Section we shall consider the crossed box diagram given by
the Fig. 2. One can express this diagram using the Feynman parametic
representation [13] as

7 <%] 3

Fig. 2

where 0 is a constant including the coupling constant.
l l

= / • • • f doc, . . ., da4<
o o



Iterated Crossed Box Diagram 117

The function in the denominator of (3.1) is a known Feynman denomina-
tor [6] linear in s, t, <p\ and m2 where s is the total energy in the c. m.
system of the particles (1,2) and (3,4), and t is the square of the momen-
tum transfer. The explicit form of D is given in Appendix A. It is only
important to notice here that the coefficient g(oc) of the variable t in D
is not of definite sign in the domain of the a integration.

All the pf s should be considered as functions of the corresponding
co, q, co'', q' and s through the relations (2.2).

Since the sign of the g(oc) is not definite we make use of the relation

0(-g)=l (3.2)

which splits the integration in (3.1) into two parts

where

<r(a)=[D(t^O) + g(oc)((co-<0r-q2-q'2))[2qq'\g\r1 = ^ Y ^ (3.4)

and
2 = (q • <f) (3.5)

The partial wave projection of (3.3) is

Ft (s; S, f') = f- i^ J - ^ {6 (-9) + (-Y 6 (g)} Ql (a). (3.6)

For the analytic continuation procedure it is better to consider Ff1

instead of Fl9 where Ff is defined as

Ff (s; I £') = 4- 3 ^ / ^f- {0 i-9) ± 0 (9)} Qt (a) (3.7)
and corresponds to the usual decomposition [1, 2] of the partial wave
amplitude (3.6) into even and odd partial waves.

It should be noted that on the mass shell, when p% = m2 and there-

fore co = co' = 0 and q2 = q'2 = -j- (s — 4m2), .Ff will be identically zero.
Thus the whole amplitude Fl is determined on the mass-shell by the
behaviour of F*.

On the mass-shell Fl is given by [22]

( 3 ' 8 )

where g (w, 0 is the known Mandelstam double-spectral function for
the box diagram. This function, as is seen from the integral (3.8), will
have only the left-hand cut in the complex s plane which runs from the
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s — —oo up to the s = —8 m2 and the discontinuity across this cut is

±-A [<T*lFt(8; y? = m«)]

»-(.) (3-9)

where

t± (s) == 1 (4m* - s) ± y [s(8 + 8m2)]1/2 . (3.10)

It is now easy to see that the Eq. (3.9) will have poles of negative integer
values of I due to the Qz function.

Let us now return back to the Eq. (3.7) and consider only the " + "
superscript which will be omitted in the further discussion.

Since we can write (14)

O W « W <3n>
and

-^Qt(a) = -2-»-i V^-^^<r-l-2H(l,a-") (3.12)

where

H(l,o-*) = F(t^-,t±^;l+3l2;o-*) (3.13)

the Eq. (37) may be rewritten as

*-,(«; I f ) = C(l) (qq'Y+l f d*<x |jr|» [r(a)]- J-2 H(l, o~*) (3.14)
where

The representation (3.12), for the derivative of the Qt function is for
I or I > 1 a one-valued function regular in the complex a plane with cut
along the real axis from 1 to —oo when I is not an integer.

Therefore H will be a regular function for \o\ > 1 with properties

H -> 1 as \a\ -> oo

and when Z = —2 k, —2 k— 1, H turns out to be a polynomial of the
order n = k — 1. I t is shown in the Appendix A that when Ims 4= 0,
r(a) can never be zero in the domain of the a's integration. If we make
the following phase transformation* i. e.,

co -> co ei(p

* Here we would like to mention that generally speaking the phase trans-
formation does not leave the Hilbert-Schmidt norm invariant if it exists at all.
The reason is that the operator which does it is unbounded and the resulting func-
tion generally need not be square-integrable.
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where cp is a fixed angle satisfying

<p = arg]/s (3.16)

then the singularities of h(s; | ) [see Eq. (2.8)] also cannot be reached
and furthermore \a\ can be chosen greater than unity independently of
the £ and | ' . In that case we can weaken the condition Ims 4= 0 by
requiring only arg s =j= 0. We should notice that Eq. (3.14) in the given
form will not be regular for Hel ^ —1 because g{oc) vanishes in the
domain of the a integration (Appendix B). After an analytical continua-
tion it turns out that Ft has in fact a simple pole at I = —1.

Thus we have prepared the ground for finding the domain A (I, s)
in the complex I ® s plane where the kernel Kt(s; | , | ') will be square-
integrable.

IV. Integrability of the kernel Kf(s)

The Fredholm theory can be applied if one finds a domain A (I, s)
in the complex I ® s plane where

\Kds; I, l')l2 < °° (4-1)

holds. Then we can assign an analytic [15, 16, 17] operator Kz(s), in
the domain A (I, s) to the functions Kx (s; f, £'), if the functions Kx (s; | , f')
are analytic in A (I, s) for each £, | ' and the operator Kx (s) is uniformly
bounded in every interior subset of A (I, s).

One can also define a meromorphic operator in A (I, s). We shall
consider the Laurent expansion of Kx (s) only in I, keeping s in A (I, s)
away from possible singular points of Kl(s). The above definition of
operator analyticity will remain the same for an operator meromorphic
in A except at the finite number of points where Kl(s) could have
singularities of the pole type.

From the considerations in the previous Sections, which have led
to the conclusion that Ims should be different from zero in order to
avoid singularities inside the domain of the | and a integrations, one sees
that the norm (4.1) will be finite provided the contributions to the double
integral from the regions | , £' -> 0 and oo are finite.

The best way to see the behaviour of the kernel Kl(s; f, f') when |
and I' are both large is to make the following scale transformation [12]
on I, | r

where t is some real parameter.
Under such a scale transformation one has

, m2; \ , -^-) = t« Kx (s t\ m2 t*; | , f') . (4.2)
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It is easy to see that the asymptotic behaviour of the Ku when £ and f'
are both large, is now equivalent to putting t -> 0.

We should also note that under such a transformation when t -> 0
the a goes to a constant. The contribution to the double sum from the
region f, | ' -> oo will not be finite if

for a's in the region
lim \o{t*8,t*m* ; | , f ; a ) -> 1 _ ,. . , * (4.3)
«-*V ' of the integration

since in that case H(l, o~2), which enters in Kx and in fact is a hyper-
geometric function, will diverge. In Appendix A it is shown that this
is not the case if Ims 4= 0.

The contribution to the double sum (4.1) from the region where
I, f' -> 0 will be finite if ReZ > —3/2 and if either I 4= — 1 or g(oc) 4= 0 —
which conclusion follows simply from the Eq. (3.14).

Thus we have established that the kernel of the integral operator
Kl(s) satisfies the condition (4.1) when I and s are in the domain A (I, s)
given by

A (Z, s) z={l,s; ReZ > —3/2, l^ — 1; Ims + 0} . (4.4)
It follows also that Kz(s; f, £') is analytic in A {I, s) for all | and £'.

The operators satisfying (4.1) form the so called Hilbert-Schmidt
class [8, 10]. I t can also be verified that Kt(s) belongs to the trace class
[8] of Hilbert-Schmidt operators in the same domain (4.4), i. e.,TrKt(s)
< oo for I, s £A(l,s).

The trace of Kt (s) is defined as the integral

TrJ5r,(*) = / e P f * , ( « ; £ , £ ) . (4.5)

V. Singularities of the resolvent R\ (s) = [l — — y - K (1 ) (s)] "^

in the i-plane and conclusion

The Hilbert-Schmidt integral operator Kz{s) which is an analytic
operator [15—17] in the domain A (I, s) [Sec. IV. (4.4)] of the complex
I ® s plane is compact [9, 10] i. e. it transforms every bounded subset
into a set whose closure is compact [18]. A compact, sometimes called
completely continuous, integral operator has essentially discrete spectrum
[18], that is to say it has either a finite or a denumerable number of
eigenvalues. If Kl(s) possesses symmetric kernel its Hilbert-Schmidt
norm (4.1) can also be written in the form

where the Xin{s) are the eigenvalues of Kt(s). The eigenvalues of a
compact operator form a strictly finite sequence away from zero. They
may have only zero as an accumulation point if there are infinite number
of them.
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The number of eigenvalues defines the rank of the compact operator.
We have seen that our integral operator Kz(s), square-integrable in the
domain A (I, s), is in fact meromorphic operator in A (I, s) having a
simple pole at 1 = —1 (Appendix B). This pole appears because g(oc)
vanishes in the domain of the a integration.

Therefore Kz(s) admits a Laurent expansion around this pole of the
form

^ + K^(s) (5.2)

where the integral operator K^ (s) is regular at I = — 1. K^ (s) is an
integral operator with kernel

Km(8;S,i') = h(8;$)Fm(s;$,£')h{8iS') (5.3)
where

FU(s; f, £') = » / # a d(g) [D(t = 0)]"1 . (5.4)

We shall denote the resolvent of the integral operator A KM (s) by
Rf (s) where A = \j{l + 1). Then the Rl (s) and the Rf (s) will satisfy the so
called second resolvent equation [15, 16, 17]

1 + Rz(s) = Rf (s) - Rf (s) Z | 2 ) ( s ) [Rz(s) + l ] , (5.5)

The formal solution of the Eq. (5.6) one may write in the form

R l (s) = [ 1 + R] (s) J E p > ( « ) ] - i Rf ( s ) - l . (5.6)

The resolvent Rf (s) can be represented as a ratio of two series in powers
of X in the following form [19]

,) | r > - - det(1 _\KM w)
where d means functional derivation. We shall consider only the denom-
inator of the Eq. (5.7) which is sufficient to show that an essential
singularity [5] is present in Rf (s) when I -> — 1, if KM (s) is not an operator
of finite rank. det(l — XKM(s)) is in fact a power series in 1 [19] i. e.

det(l-IKM(s)) = f (-) ̂ L f #Si9..,id2Sndet(n) ||Z(i) {8. (if | .) | | . (6.8)

If the integral operator KM (s) is of finite rank the series (5.8) will turn
out to be a polynomial in X [20] of order equal to the rank of KM («§).
In that case, the Eq. (5.8) will have pole type singularity where I -> — 1.
In fact we find that KM (s) is an integral operator of infinite rank having
thus an infinite number of eigenvalues. The situation now becomes quite
different since, when l-> — 1 and therefore I/A -> 0 one will reach the
eigenvalues of KM («§) which are placed in the neighbourhood of zero and
they have an accumulation point there.

To see this we notice that the functions

dn(s) = / # & , . . . , d? | n d e t w \KV> (s • St, £M (5.9)
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become equal to zero for all n > r, where r is the rank of the operator
KW(s), since the kernel K0)(s; |t-, £,,) is symmetric i.e., satisfies the
relation

*«*>(« ;£<,£,) = *(*>(*;£,,£<), (5.10)

it has a finite number of eigenvalues when and only when it is degenerate.
The kernel of an integral operator is degenerate if it can be written as a
finite sum of products of functions of f and functions of £' in the form

Here X^f) , . . ., X r(f); ^ ( f ) * • • •> ^ ( f ) a r e t w o s e t s o f linearly
independent L2-iunctions. Therefore, if the kernel has the property that
the dn are identically zero for all n > r it has to be of the form (5.11) and
vice-versa.

Since we are not considering the problem of analyticity in the s-plane
in this paper we can simplify the situation by putting cp = TT/2 [Sec. III.,
(3.16)] and let s -> 0, getting

Z«(0;f,f)sZa>(0,^fa). (5.12)

The explicit form of the (5.12) is

and

fJ
where we have put —£2 = t and

^(1 a2 a4) = 1 4- al + a | — 2(a2 + a4 + a2 a4) .

Explicit inspection of the Eq. (5.14) shows that (5.14) cannot be written
in the form (5.11) at least when r is finite.

Thus we have established that the iterated crossed box diagram has
an accumulation of poles in the complex I plane when we approach the
point I — — 1 . This conclusion is also in agreement with the result of
GRIBOV and POMERANCHUK [5] for the general scattering amplitude
possessing a third double-spectral function and satisfying the two-
particle generalized unitarity in the s-channel.

Appendix A

Properties of a (a)

<7 (a) introduced in (3.4) is defined as
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where
r(a) = D(t = 0) + g(oc) ((co - a/)2 - q2 - q'2)

D(t = 0) = /(a) «s + 27Ma) ?! — ™2

/(a) = —o^ag

Ma) = a^H- aj a3 (A.2)

A8(a) = a ja 4 + ax a3

A4(a) = a 3 a 4 + ax a3

gf(a) = a2a4 — ax a3 .
We want to show that r(a) can never be zero in the domain of the a
integration if and only if Ims =J= 0. Suppose that j/̂ T moves from the
origin along a ray defined by the angle cp then we turn the contours co
and co' through the angle cp, which is in fact a phase transformation that,
generally, does not leave the norm of an operator invariant [12, 15].
We need such a transformation in order to avoid the singularities of
h (*;£), [Eq. (2.8)], as well.

The condition on cp is

s < cp = arg ]/s < n — s (A.3)
where e > 0.

Now it is easy to see the Imr(a) = T2(a) is given by the formula

Imr (a) - -~~ a (a) = r2 (a) (A.4)

where a (a) is always positive in the domain of the a integration and
has the form

( 2

The relation for Ret (a) = Tx(a) is

(a)-&(a) (A.6)

where a (a) is the same as a (a) in (A.4) and b (a) is always positive and
of the form

b (a) = [aj(a2 + a8) + a2(a3 + a4)] g
2 +

+ [a4(a2 + a3) + a i(a3 + a4)] q* + m2 .

We allow that cp can be equal to n/2 in the condition (A.3), since in that

case, although Ims = 0, the —rj-is equal to —1, and again r (a) is always
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different from zero in the domain of the a integration. If one makes the
phase transformation on the co's with an arbitrary angle tp then one
has to put an extra condition on s

Re j/s — ctgip Im ]/s\ < 2m (A.8)

in order to avoid the singularities of h(s, £).
If we consider det(l — Kz(s)) only, the phase transformation turns

out to be equivalent to a rotation of the oo, co' contours of integration by
an angle (p.

We should also mention that the absolute value of a(cc) is bounded.
This follows from the relation

k(a) |=-o—TVT^l/^^rFrl) =-^—7^r7^]/Ja^2abGOs2w + b¥) (A.9)

which says that |cr| satisfies an inequality of the form

One can show also, starting from (A. 10) with a little longer algebra,
that for any chosen cp from (A.3) |cr(a)| is greater than unity for all £, | '
and a's allowed by the condition 27 a = 1.

Appendix B

Laurent expansion of Ki(s; f, ?') near I = —1

The kernel K {s; f, | r) is given by the Eq. (2.10) where
Fl(s; £, f ) « O(i) (qq')l+1fd*oc \g(oc)\l {r(a)}-J-2 ^(«, cr"2) . (B.I)

Since r(a) can never be zero when Ims 4= 0, the only singularities in the
region ReZ > —3/2 come from the vanishing of g(oc) in the domain of
the a integration. That will happen when I = — 1 and ax a3 = a2 a4.

Let us consider the function

(MI.V«) = /d*«l?(«)|I ?>«(«) (B.2)
where 991 is analytic at least in the domain A (l} s) defined by Eq. (4.4)
where I = — 1 may be included.

Since V g 4= 0, that is easily seen from the structure of g (Appendix A),
and g is irreducible i. e., cannot be split as a product of the form gt g2,
we can introduce a local coordinate system {/?} and then identify g with
say pv

Transforming the coordinate system {a} to {/3} with the Jacobian

\P; \p19..., pj
We shall have

(\9\l,<Pi)=fdp1\W¥l(P1) (B.3)
— b
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where

&(|8)=9>i(a) (B.4)

b = ma,x\g(tx)\ .
a

The Laurent development of the l/y* near I = — 1 can be found in [20]
and is

I Al1 = 2 | ^ Y + IAI-1 + (I + 1) Ifth1 lflr |ft| + • • • (B.5)
where b

(\fi\-i UA f y(ft) + y(—ft)—2y(Q)Q(g—A) ^
(iPil X,Y) = J ^ rfft

with e > 0. °
We see that the Laurent development of (B.3) near I = —1 is of the

form

(\9\> l<Pi) = TTT ^ - i ( ° ) + t e r m s r e g u l a r at Z = - 1 . (B.6)
Now, we can go back to the original coordinate system {a}, by noticing
that

) J (J ) li==0

f Sti) (f-i(oc)doc.

The equations (B.6) and (B.7) show that (B.2) has a simple pole at
1 = —1 whose residue can be obtained by replacing \g\l with d(g) and by
putting I = —1 in (pi(oc).

From the above discussion it follows that the kernel Kl (s; f, f )
has a simple pole at I — — 1 and admits the expansion

Kx (s; i, f ) = j — KW (s; | , f ) + ^ j 2 ) («; 11'), (B.8)

where
Kl2)(s; I, f ) is regular at I = - 1 .
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