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Abstract

In this paper some practical stability results for nonlinear differential equations with
non-instantaneous impulses and state dependent delays are presented. The impulses
start abruptly at some points and their action continue on given finite intervals. The
delay depends on both the time and the state variable which is a generalization of time
variable delay. Some sufficient conditions for practical stability and strong practical
stability are obtained by the help with the appropriate modification of Razumikhin
method and an appropriate definition of the derivative of the Lyapunov function. Ex-
amples are given to illustrate the results.
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1 Introduction

One of the most investigated qualitative problems for differential equations is connected
with the investigations of various types of stability. Often Lyapunov functions and different
modifications of Lyapunov direct method are applied to study stability properties of solu-
tions without their obtaining in a closed form. One type of stability, very useful in real world
problems, is so called practical stability problem, introduced by LaSalle and Lefschetz [13]
and it deals with the question of whether the system state evolves within certain subsets
of the state-space. For instance, an equilibrium point may not be stable in the sense of
Lyapunov and yet the system response maybe acceptable in the vicinity of this equilibrium.

There are a few different real life processes and phenomena that are characterized by
rapidly changes in their state. We will emphasize on changes which duration of action
is not negligible short, i.e., these changes start impulsively at arbitrary fixed points and
remain active on finite initially given time intervals. The model of this situation is the
non-instantaneous impulsive differential equation. E. Hernandez and D. O’Regan ([7]) in-
troduced this new class of differential equations where the impulses are not instantaneous
and they investigated the existence of mild and classical solutions. We refer the reader for
some recent results such as existence to [15, 16], to stability [2, 17], to periodic boundary
value problems [4].

The state-dependent delays in differential equations are applied to model adequate many
problems, such as milling [9], control theory [18], haematopoiesis [5], economics [14]. For
a review of recent progress see [6].

In this paper we study an initial value problem (IVP) for a nonlinear system of non-
instantaneous impulsive differential equations with state dependent delay. The state depen-
dent delay is a generalization of both a time dependent delay and a constant delay ([3]).
Some sufficient conditions for several types of practical stability are obtained. Modified
Razumikhin method with piecewise continuous functions, appropriate definition of the Lya-
punov functions and comparison results with scalar non-instantaneous equations without
delay are applied. We study both cases of bounded state dependent delays and unbounded
state dependent delays.

Some examples illustrating the results are given. Some of the obtained sufficient condi-
tions are generalizations of results for practical stability of impulsive functional-differential
equations as well as for differential equations with time variable delays.

2 Preliminaries

In this paper we assume two increasing sequences of points {ti}∞i=1 and {si}
∞
i=0 are given such

that 0 < si < ti < si+1, i = 1,2, . . . , and limk→∞ tk =∞.
Let s0 = 0 and t0 ∈ [0, s1)

⋃
∪∞k=1[tk, sk+1) be a given arbitrary point. Without loss of

generality we will assume that t0 ∈ [0, s1).
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The intervals (ti, si+1), i = 0,1,2, . . . ,k are the intervals on which the differential equation
is given and the intervals (si, ti), i = 1,2, . . . ,k are called impulsive intervals and on these
intervals the impulsive conditions are given.

Consider the initial value problem (IVP) for a nonlinear system of non-instantaneous
impulsive differential equations with state dependent delay (NIDDE)

x′(t) = f (t, xρ(t,xt)) for t ∈ ∪∞k=0(tk, sk+1], i = 0,1,2, . . . ,

x(t) = Φk(t, x(sk −0)) for t ∈ (sk, tk],k = 1,2, . . . ,

x(t0+ t) = φ(t), t ∈ E0,

(2.1)

where the functions f : [0, s1]
⋃
∪∞k=1[tk, sk+1] × PC0 → R

n, Φk : [sk, tk] ×Rn → Rn (k =
1,2,3, . . .), ρ : [0, s1]

⋃
∪∞i=1[ti, si+1]× PC0 → [0,∞), φ ∈ PC0, and r > 0 is a given num-

ber. Here the notation xt(s) = x(t+ s), s ∈ [−r,0] is used, i.e. xt ∈ PC0 represents the history
of the state x(t) from time t − r up to the present time t. Note that for any t ≥ 0 we let
xρ(t,xt)(s) = x(ρ(t, x(t+ s))), s ∈ [−r,0]. The initial interval E0 ⊂ (−∞,0] depends on the prop-
erties of the state dependent delay ρ and it will be defined later. The set PC0 consists of all
piecewise continuous functions φ : E0 → R

n with finite number of points of discontinuity
τ ∈ E0 at which φ(τ) = limt→τ−0φ(t), endowed with the norm ||φ||0 = supt∈E0

{||φ(t)|| < ∞ :
φ ∈ PC0} where ||.|| is a norm in Rn.

Remark 2.1. The functions Φk are called impulsive functions and the intervals (sk, tk],k =
1,2, . . . are called intervals of non-instantaneous impulses.

Remark 2.2. In the partial case sk = tk, k = 1,2, . . . each interval of non-instantaneous im-
pulses is reduced to a point, and the problem (2.1) is reduced to an IVP for an impulsive
differential equation with points of jump tk and impulsive condition x(tk+0)= Ik(x(tk−0))≡
Φk(tk, x(tk −0)).

Remark 2.3. Note NIDDE (1) is a generalization of non-instantaneous impulsive differential
equations with both a constant delay and a variable time delay.

Let J ⊂ R+ be a given interval. We will use the following classes of functions

PC(J,Rn) = {u : J→ Rn : u ∈C(J \∪∞k=1{sk},R
n) :

u(sk) = u(sk −0) = lim
t↑sk

u(t) <∞, u(sk +0) = lim
t↓sk

u(t) <∞, k : sk ∈ J},

NPC1(J,Rn) = {u : J→ Rn : u ∈ PC(J,Rn), u ∈C1(J
⋂
∪∞k=0(tk, sk+1],Rn) :

u′(sk) = u′(sk −0) = lim
t↑sk

u′(t) <∞, k : sk ∈ J}.

Remark 2.4. According to the above description any solution of (2.1) might have a discon-
tinuity at any point sk,k = 1,2, . . . .

Introduce the following conditions:

(H1) The function f ∈C([0, s1]
⋃
∪∞k=1[tk, sk+1]×PC0,R

n) and f (t,0) ≡ 0.

(H2) For any k = 1,2, . . . the functions Φk ∈C([sk, tk]×Rn,Rn) and Φk(t,0) ≡ 0.

(H3) The function φ ∈ PC0.
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(H4) The function ρ ∈ C([0, s1]
⋃
∪∞i=1[ti, si+1]×PC0, [0,∞)) and t− r ≤ ρ(t,u) ≤ t for any

u ∈ PC0 with E0 = [−r,0].

(H5) The function ρ ∈ C([0, s1]
⋃
∪∞i=1[ti, si+1]×PC0, [0,∞)) and 0 ≤ ρ(t,u) ≤ t for any u ∈

PC0 with E0 = (−∞,0].

Remark 2.5. In both conditions (H4) and (H5) the inequality ρ(t,u) ≤ t guarantees the delay
in the argument. For example, if ρ(t,u) = et+u2

−1 then the argument will be advanced. But
if ρ(t,u) = 1− et+u2

then the argument will be delayed.
In the condition (H4) the inequality ρ(t,u) ≥ t− r with r > 0 guarantees the bounded-

ness of the delay. For example if ρ(t,u) = 1− et+u2
then the argument will be delayed and

unbounded, but if ρ(t,u) = 1− e−t+u2
then the argument will be both bounded and delayed.

The properties of the state delay have a huge influence on the type of the initial interval as
well on the Razumikhin condition in the stability sufficient conditions.
Remark 2.6. In the case of unbounded delay in the general case the initial functions have to
be defined on (−∞,0] (see, for example, the book [12]).
Remark 2.7. Note the conditions (H1), (H2) guarantee the existence of the zero solution of
IVP for NIDDE (2.1) with the zero initial function ϕ ≡ 0.

Define sets:

K = {σ ∈C(R+,R+) : strictly increasing and σ(0) = 0},

S λ = {x ∈ Rn : ||x|| ≤ A}, A > 0,

where λ > 0 is a given number.
We will use the class Λ of Lyapunov functions, defined and used for impulsive differ-

ential equations in [10].

Definition 2.8. Let α < β ≤ ∞ be given numbers and ∆ ⊂ Rn be a given set. We will say
that the function V(t, x) : [α− r,β]×∆→ R+ belongs to the class Λ([α− r,β],∆) if

- The function V(t, x) is continuous on [α,β) \ {sk} ×∆ and it is locally Lipschitz with
respect to its second argument.

- For each sk ∈ (α,β) and x ∈ ∆ there exist finite limits

V(sk, x) = V(sk −0, x) = lim
t↑sk

V(t, x) and V(sk +0, x) = lim
t↓sk

V(t, x).

For any t ∈ [tk, sk+1],k = 0,1,2, . . . , we define the Dini derivative of the function V(t, x) ∈
Λ(J,∆) among the delay non-instantaneous impulsive differential equation (2.1) by

D+V(t,φ(0),φ) = lim
h→0+

sup
1
h
{V(t,φ(0))−V(t−h,φ(0)−h f (t,φρ(t,φ0)−t))}, (2.2)

where φ ∈ PC0 and φ0(s) = φ(s), s ∈ [−r,0].
Note for φ ∈ PC0 with E0 = [−r,0] if the condition (H4) is satisfied then ρ(t,φ0)− t =

ρ(t,φ(s)) − t ∈ [−r,0] for any t ≥ 0 and s ∈ [−r,0]. Therefore, the function φρ(t,φ0)−t =

φ(ρ(t,φ(s))− t) is well defined.
For φ ∈ PC0 with E0 = (−∞,0] if the condition (H5) is satisfied then ρ(t,φ0) − t =

ρ(t,φ(s))− t ∈ E0 for any t≥ 0 and s ∈ [−r,0]. Therefore, the function φρ(t,φ0)−t = φ(ρ(t,φ(s))−
t) is well defined.



Practical Stability of Differential Equations with State Dependent Delay 5

3 Main Results

We give a definition for various types of practical stability of the zero solution of NIDDE
(2.1). In the definition below, we denote by x(t; t0,φ) ∈ NPC1([t0,∞),Rn) any solution
of the IVP for NIDDE (2.1). Note the practical stability for non-instantaneous impulsive
differential equation is defined and studied following the classical concept of the idea of
practical stability ([11]).

Definition 3.1. Let positive constants λ,A : λ < A be given. The zero solution of the system
of NIDDE (2.1) is said to be

(S1) practically stable w.r.t. (λ,A), if there exists t0 ∈ [0, s0)
⋃
∪∞k=1[tk, sk) such that for

any φ ∈ PC0 inequality ||φ||0 < λ implies ||x(t; t0,φ)|| < A for t ≥ t0;
(S2) uniformly practically stable w.r.t. (λ,A), if (S1) holds for all initial points t0 ∈

[0, s0)
⋃
∪∞k=1[tk, sk);

(S3) practically quasi stable w.r.t. (λ,B,T), if there exists t0 ∈ [0, s0)
⋃
∪∞k=1[tk, sk) such

that for any φ ∈ PC0 inequality ||φ||0 < λ implies ||x(t; t0,φ)|| < B for t ≥ t0 +T , where the
positive constant T is given;

(S4) uniformly practically quasi stable w.r.t. (λ,B,T), if (S3) holds for all initial points
t0 ∈ [0, s0)

⋃
∪∞k=1[tk, sk).

(S5) strongly practically stable w.r.t. (λ,A,B,T ), if it is practically stable with respect
to (λ,A) and practically quasi stable with respect to (λ,B,T ), i.e., there exists an initial
time t0 ∈ [0, s0)

⋃
∪∞k=1[tk, sk) such that for any φ ∈ PC0 the inequality ||φ||0 < λ implies

||x(t; t0,φ)|| < A for t ≥ t0 and ||x(t; t0,φ)|| < B for t ≥ t0 + T , where the positive constants
B,T : B < λ are given;

(S6) uniformly strongly practically stable w.r.t. (λ,A,B,T ), if (S5) holds for all t0 ∈
[0, s0)

⋃
∪∞k=1[tk, sk);

(S7) eventually practically stable w.r.t. (λ,A), if there exists τ = τ(λ,A) > 0 such that
for any t0 ∈ [τ,∞)

⋂(
[0, s0)

⋃
∪∞k=1[tk, sk)

)
and any φ ∈ PC0 inequality ||φ||0 < λ implies

||x(t; t0,φ)|| < A for t ≥ t0.

We study the practical stability using the following scalar comparison differential equa-
tion with non-instantaneous impulses(NIDE):

u
′

= g(t,u) for t ∈ ∪∞k=0(tk, sk+1],

u(t) = Ψk(t,u(sk −0)) for t ∈ (sk, tk],k = 1,2, . . . ,

u(t0) = u0,

(3.1)

where u ∈ R,g : [0, s1]
⋃
∪∞k=1[tk, sk+1]×R→ R+,Ψk : [sk, tk]×R→ R+ (k = 1,2,3, . . .).

We introduce the following conditions.

(H6) The function g ∈C([0, s1]
⋃
∪∞k=1[tk, sk+1]×R,R+), g(t,0) = 0.

(H7) For all natural numbers k, the functionsΨk ∈C([sk, tk]×R,R+) are such thatΨk(t,0)=
0 and Ψk(t,u) ≤ Ψk(t,v) for u ≤ v, t ∈ [sk, tk].

(H8) There exists a number K > 0 such that for any k = 1,2, . . . the inequality Ψk(sk,u) < K
holds for |u| < K.
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We will assume in the paper that the functions g and Ψk are such that for any initial data
(t0,u0) ∈ R+ ×R the IVP for scalar NIDE (3.1) with u(t0) = u0 has a solution u(t; t0,u0) ∈
NPC1([t0,∞),R). Also, if the conditions (H6) and (H7) are satisfied then u(t; t0,u0) ≥ 0 for
a positive initial value u0.

We will consider some scalar differential equations with non-instantaneous impulses
which could be used as comparison equations.

Example 1. Let t0 ≥ 0 be an arbitrary point and without loss of generality we can
assume 0 ≤ t0 < s0. Consider the following IVP for the scalar differential equation with
non-instantaneous impulses

u′ = 0 for t ∈
∞⋃

k=0

(tk, sk+1],

u(t) =Cku(sk −0) for t ∈ (sk, tk], k = 1,2, . . . ,

u(t0) = u0,

(3.2)

here Ck > 0 are constants. The solution of (3.2) is

u(t; t0,u0) =
{

u0 for t ∈ (t0, s1],
u0
∏k

i=1 Ci for t ∈ (sk, sk+1], k = 1,2, . . . .
(3.3)

If limk→∞
∏k

i=1 Ci =∞ then any solution of (3.2) is unbounded.
If for any natural n there exists cn > 0 such that Cn+1 = cnCn then Cn+1 = C1

∏n
i=1 ci.

If, for example, cn = 0.5 then
∏n

i=1 ci = 2.−0.5n(1+n) ≤ 0.5 and the zero solution of (3.2) is
uniformly practically stable w.r.t. (λ,max{λ,0.5C1}) where λ > 0.

If Cn ≤ 1, n= 1,2, . . . , then the zero solution of (3.2) is uniformly practically stable w.r.t.
(λ,λ) where λ > 0.

In our further investigations we will use the following result:

Lemma 3.2. ([8]) If the scalar function m ∈ NPC1([t0− r,∞),R) satisfies the inequalities

m′(t) ≤ g(t, |mt|0) f or t ∈
∞⋃

k=0

(tk, sk+1],

m(t) ≤ Ψk(t,m(sk −0)) f or t ∈ (sk, tk], k = 1,2, . . . ,

(3.4)

where g ∈C(
⋃∞

k=0(tk, sk+1]×R+,R+), Ψk ∈C([sk, tk]×R+,R+) and u(t; t0,u0) is a solution of
(3.1) with u0 ≥ |mt0 |0 = sups∈[−r,0] |m(t0+ s)|.

Then m(t) ≤ u(t; t0,u0) for t ≥ t0.

In the partial case ρ(t, x) ≡ x, x ∈ R, i.e. xρ(t, xt) = x(ρ(t, x(t+ s))) = xt, we obtain the
following result for practical stability:

Theorem 3.3. Assume the following conditions are satisfied:

1. The conditions (H1) - (H3), (H6) are satisfied with n = 1 and ρ(t, x) ≡ x, x ∈ R.

2. The functions Ψk ∈C([sk, tk]×R,R+) and Ψk(t,0) ≡ 0 for t ∈ [sk, tk],k = 1,2 . . . .



Practical Stability of Differential Equations with State Dependent Delay 7

3. For any point t ∈ [0, s1]
⋃
∪∞k=1[tk, sk+1] and any function ψ ∈ PC0 with E0 = [−r,0]

the inequality
| f (t,ψ0)| ≤ g(t, |ψ|0)

holds with ψ0(s) = ψ(s) for s ∈ [−r,0].

4. For any k = 1,2, . . . and any point x ∈ R, the inequality

|Φk(t, x)| ≤ Ψk(t, |x|), t ∈ [sk, tk]

holds.

Then any practical stability property of the zero solution of (3.1) w.r.t. (λ,A) imply the
same practical stability property of the zero solution of NIDDE (2.1) w.r.t. (λ,A).

Proof. Let the zero solution of (3.1) be practically stable w.r.t. (λ,A). Then there exists
t0 ∈ [0, s1]

⋃
∪∞k=1[tk, sk+1) such that for any u0 ∈ R : |u0| < λ the inequality

|u(t; t0,u0)| < A for t ≥ t0 (3.5)

holds, where u(t; t0,u0) is a solution of (3.1). Without loss of generality we can assume
t0 ∈ [0, s1].

Let the initial function φ ∈ PC0 with E0 = [−r,0] be such that |φ|0 ≤ λ. Consider the
solution x(t) = x(t; t0,φ) ∈ NPC1([t0,∞),R) of (2.1) with E0 = [−r,0]. Then xt ∈ PC0 for
any t ∈ ∪∞k=0(tk, sk+1]. Let u∗0 = |φ|0. From the choice of the initial function φ we get u∗0 ≤ λ.
Therefore, the function u∗(t) satisfies (3.5) for t≥ t0 with u0 = u∗0, where u∗(t)= u(t; t0,u∗0)≥ 0
is a solution of (3.1).

Define the function m(t) = |x(t; t0,φ)| for t ≥ t0− r. Then,

- for t ∈ ∪∞k=0(tk, sk+1] applying the inequalities 2ab ≤ a2+b2, d
dt |x(t)| ≤ | f (t, xt)|, |mt|0 =

sups∈[−r,0] |xt(s)| = |xt|0 and the condition 3 we get

m′(t) ≤ | f (t, xt)| ≤ g(t, |xt|0) = g(t, |mt|0).

- for t ∈ (sk, tk], k = 1,2, . . . from the condition 4 we have

m(t) = |Φk(t, x(sk −0))| ≤ Ψk(t, |x(sk −0)|) = Ψk(t,m(sk −0)),

- for t ∈ [t0− r, t0] we get

|mt0 |0 = sups∈[−r,0]|x(t0+ s; t0,φ)| = sups∈[−r,0]|φ(t0+ s)| = |φ|0 = u0.

Therefore, the conditions of Lemma 3.2 are satisfied and from (3.5) we obtain m(t) =
|x(t; t0,φ)| ≤ u∗(t) < A for t ≥ t0.

In the case the zero solution of (3.1) is uniformly practically stable/ practically quasi
stable/uniformly practically quasi stable/ strongly practically stable/ eventually practically
stable, the proofs is similar and we omit them.

�
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We will use an extension of Razumikhin method to prove practical stability properties
of the nonlinear system of non-instantaneous impulsive delay differential equations with
state dependent delay (2.1). For this purpose we need the following comparison result for
non-instantaneous impulsive delay differential equations:

Lemma 3.4. (Lemma 2 [1]) Suppose:

1. The function x(t) = x(t; t0,φ) ∈ NPC1([t0,Θ],∆) is a solution of the NIDDE (2.1) with
E0 = [−r,0], where ∆ ⊂ Rn, Θ ∈ (tp, sp+1] is a given number, p is a natural number.

2. The condition (H4) is satisfied.

3. For all k = 1, ..., p−1 the condition (H7) is satisfied.

4. The the condition (H6) is satisfied on the interval [tp,Θ]
⋃
∪

p−1
k=0 [tk, sk+1].

5. The function V ∈ Λ([t0− r,Θ],∆) and

(i) for any t ∈ (tp,Θ]
⋃
∪

p−1
k=0 (tk, sk+1] such that V(t, x(t)) ≥ sups∈E0

V(t+ s, x(t+ s))
the inequality

D+V(t, x(t)) ≤ g(t,V(t, x(t)))

holds, where

D+V(t, x(t)) = lim
h→0+

sup
1
h
{V(t, x(t)))−V(t−h, x(t)−h f (t, xρ(t,xt)))}; (3.6)

(ii) for any number k = 1,2, ..., p−1 the inequality

V(t,Φk(t, x(sk −0))) ≤ Ψk(t,V(sk −0, x(sk −0))) for t ∈ (sk, tk]

holds.

If sups∈[t0−r,t0] V(s,φ(s− t0)) ≤ u0, then the inequality V(t, x(t)) ≤ r(t) for t ∈ [t0,Θ] holds,
where r(t) = r(t; t0,u0) is the maximal solution of (3.1) with u0.

Remark 3.5. The result of Lemma 3.4 is also true on the half line, i.e. Θ =∞.

Remark 3.6. The conditions 4(i) and 4(ii) of Lemma 3.4 are satisfied only for the particular
given solution x∗(t) and the condition 4(i) is satisfied only at some particular points t from
the studied interval.

In the case the state dependent delay satisfies the less restrictive condition (H5) we
obtain the result

Lemma 3.7. Suppose:

1. The conditions 1,3,4,5 of Lemma 3.4 are satisfied with E0 = (−∞,0].

If sups∈(−∞,0] V(t0+ s,φ(s)) ≤ u0, then the inequality V(t, x(t)) ≤ r(t) for t ∈ [t0,Θ] holds,
where r(t) = r(t; t0,u0) is the maximal solution of (3.1) with u0.

In this paper we will study the connection between the practical stability properties of
the system NIDDE (2.1) and the practical stability properties of the scalar NIDE (3.1) .
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Theorem 3.8. Let the following conditions be satisfied:

1. The conditions (H1) - (H4), (H6)-(H8) are fulfilled with E0 = [−r,0].

2. There exists a function V(t, x) ∈ Λ([−r,∞),Rn) and

(i) the inequalities

a(||x||) ≤ V(t, x) ≤ b(||x||), x ∈ S A, t ∈ [−r,∞)

hold, where a,b ∈K , A= a−1(K), K is the number defined in the condition (H8);

(ii) for any function ψ ∈ PC0 : ||ψ||0 ∈ S A with E0 = [−r,0] and any point t ∈
[0, s1]

⋃
∪∞k=1(tk, sk+1) such that V(t+τ,ψ(τ)) ≤ V(t,ψ(0)) for τ ∈ E0 the inequal-

ity
D+V(t,ψ(0),ψ) ≤ g(t,V(t,ψ(0)))

holds, where D+V(t,ψ(0),ψ) is defined by (2.2);

(iii) for any k = 1,2, . . . the inequality

V(t,Φk(t,y)) ≤ Ψk(t,V(sk −0,y)), t ∈ (sk, tk+1], y ∈ S A

holds.

3. The zero solution of (3.1) is practically stable (uniformly practically stable) w.r.t.
(b(λ),K) where the constant λ is given such that 0 < λ < A, b(λ) < K.

Then the zero solution of (2.1) with E0 = [−r,0] is practically stable (uniformly practi-
cally stable) w.r.t. (λ,A).

Proof. Let the zero solution of (3.1) be practically stable w.r.t. (b(λ),K = a(A)). Therefore,
there exists a point t0 ∈ [0, s1)

⋃
∪∞k=1[tk, sk+1) such that the inequality |u0| < b(λ) implies the

inequality
|u(t; t0,u0)| < a(A) for t ≥ t0 (3.7)

holds, where u(t; t0,u0) is a solution of (3.1) .
Choose the initial function φ ∈ PC0 : ||φ||0 <λwith E0 = [−r,0] and consider the solution

x(t) = x(t; t0,φ) of system (2.1) with E0 = [−r,0] for the initial time t0 defined above. Let
u∗0 = supt∈[t0−r,t0] V(t,φ(t− t0))> 0. From the choice of the initial function φ and the properties
of the function b(u) applying the condition 2(i), we get u∗0 = supt∈[t0−r,t0] V(t,φ(t − t0)) ≤
b(||φ||0) < b(λ). Therefore, the function u∗(t) satisfies (3.7) for t ≥ t0 with u0 = u∗0, where
u∗(t) = u(t; t0,u∗0) ≥ 0 is a solution of (3.1).

We will prove
V(t, x(t)) < a(A), t ≥ t0. (3.8)

For t = t0 we get V(t0, x(t0)) ≤ supt∈[t0−r,t0]V(t,φ(t− t0)) ≤ b(λ) < a(A).
Assume (3.8) is not true and let t∗ = inf{t > t0 : V(t, x(t)) ≥ a(A)}.

Case 1. Let there exist a non-negative integer p such that t∗ ∈ (tp, sp+1). Then the function
x(t) is continuous at t∗ and V(t, x(t)) < a(A) for t ∈ [t0, t∗) and V(t∗, x(t∗)) = a(A).
Therefore, V(t∗, x(t∗)) > V(t, x(t)) for t ∈ [t0, t∗).
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Case 1.1. Let p= 0. From the condition 2(i) and the choice of the initial function it follows
a(||x(t)||) ≤ V(t, x(t) ≤ a(A), i.e. x(t) ∈ S A for t ∈ [t0− r, t∗].
For any fixed number t ∈ [t0, t∗] we consider the function ψ(s) = x(t + s), t ∈
[t0, t∗]. Then ψρ(t,ψ0)−t = ψ(ρ(t,ψ(s))− t) = ψ(ρ(t, x(t+ s))− t) = ψ(ξ) = x(t+ ξ) =
x(ρ(t, xt)) = xρ(t,xt) where ξ = ρ(t, x(t+ s))− t ∈ [−r,0]. Therefore, the equality
(2.2) is reduced to (3.6). From the condition 2(ii) of Theorem 3.8 it follows that
the condition 4(i) of Lemma 3.4 is fulfilled for ∆ = S A and Θ = t∗. Therefore
V(t, x(t) ≤ u∗(t) on [t0, t∗]. Thus we get a(A) = V(t∗, x(t∗)) ≤ u∗(t∗) < a(A). The
obtained contradiction proves this case is impossible.

Case 1.2 Let p ≥ 1. From the condition 2(i) it follows a(||x(t)||) ≤ V(t, x(t) ≤ a(A), i.e.
x(t) ∈ S A for t ∈ [t0, t∗]. Then similar to Case 1.1. all conditions of Lemma 3.4
are satisfied for ∆ = S A and Θ = t∗ and we obtain a cntradiction.

Case 2. Let there exist a natural number p such that t∗ ∈ (sp, tp). From the condition 2(i) it
follows a(||x(t∗)||) ≤ V(t∗, x(t∗)) = a(A), i.e. x(t∗) ∈ S A. Then from the condition 2(iii)
we get V(t∗, x(t∗)) = V(t∗,Φp(t∗, x(sp − 0))) ≤ Ψp(t∗,V(sp − 0, x(sp − 0))). From the
condition (H8) using the inequality V(sp − 0, x(sp − 0)) < a(A) = K, we get the con-
tradiction a(A) ≤ Ψp(t∗,V(sp − 0, x(sp − 0))) < K = a(A). The obtained contradiction
proves this case is impossible.

Case 3. Let there exist a natural number p such that t∗ = sp. Then the following two cases are
possible.

Case 3.1. Let V(t, x(t)) < a(A) for t ∈ [t0, sp), V(s+ p−0, x(sp−0)) = a(A).
Thus, the inclusion x(t) ∈ S A for t ∈ [t0, sp] is valid and as in the case 1 for
∆ = S A and Θ = sp, we get a contradiction.

Case 3.2. Let V(t, x(t)) < a(A) for t ∈ [t0, sp] and V(sp+0, x(sp+0)) ≥ a(A).
Thus, from the condition 2(i) we get V(sp − 0, x(sp − 0)) < a(A) = K. From
the condition (H8) we have Ψp(sp + 0,V(sp − 0, x(sp − 0))) < K which leads to
the contradiction a(A) ≤ V(sp +0, x(sp +0)) = V(sp +0,Φp(sp +0, x(sp −0))) ≤
Ψp(sp+0,V(sp−0, x(sp−0))) < K = a(A).

The proof of uniformly practical stability is analogous and we omit it.
�

By Theorem 3.8 and Example 1 we obtain the following direct sufficient conditions for
uniform practical stability:

Corollary 3.9. Let the following conditions be satisfied:

1. The conditions (H1)-(H4) are fulfilled.

2. There exist a function V(t, x) ∈ Λ([−r,∞),Rn) and

(i) the inequalities

a(||x||) ≤ V(t, x) ≤ b(||x||), x ∈ S λ, t ∈ [−r,∞)

hold, where a,b ∈ K , λ > 0 is a given number;
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(ii) for any function ψ ∈ PC0 : ||ψ||0 ∈ S λ with E0 = [−r,0] and any point t ∈
[0, s1]

⋃∞
k=1(tk, sk+1) such that V(t + τ,ψ(τ)) ≤ V(t,ψ(0)) for τ ∈ [−r,0] the in-

equality D+V(t,ψ(0),ψ) ≤ 0 holds;

(iii) for any k = 1,2, . . . the inequality

V(t,Φk(t,y)) ≤CkV(sk −0,y), t ∈ (sk, tk+1], y ∈ S λ

holds with Ck < 1.

Then the zero solution of (2.1) with E0 = [−r,0] is uniformly practically stable w.r.t.
(λ,λ).

In the case when the state dependent delay satisfies less restrictive condition (H4) we
obtain the following sufficient condition with more restriction condition about the Lyapunov
function:

Theorem 3.10. Let the conditions (H1) - (H3), (H5)-(H8) be fulfilled with E0 = (−∞,0],
there exists a function V(t, x) ∈ Λ(R,Rn) and the conditions 2(i), 2(ii), 3 of Theorem 3.8 be
satisfied.

Then the zero solution of (2.1) with E0 = (−∞,0] is practically stable (uniformly prac-
tically stable) w.r.t. (λ,A).

In the case when the condition 2 for the Lyapunov function V(t, x) is satisfied globally,
we obtain the following sufficient conditions:

Theorem 3.11. Let the following conditions be satisfied:

1. The condition (H1)- (H4), (H6)-(H8) are fulfilled with E0 = [−r,0].

2. There exists a function V(t, x) ∈ Λ([−r,∞),Rn) such that

(i) the inequalities

a(||x||) ≤ V(t, x) ≤ b(||x||), x ∈ Rn, t ∈ [−r,∞)

hold, where a,b ∈ K;

(ii) for any function ψ ∈ PC0with E0 = [−r,0] and any point t ∈ [0, s1]
⋃∞

k=1(tk, sk+1)
such that V(t+τ,ψ(τ)) ≤ V(t,ψ(0)) for τ ∈ E0 the inequality

D+V(t,ψ(0),ψ) ≤ g(t,V(t,ψ(0)))

holds;

(iii) for any k = 1,2, . . . the inequality

V(t,Φk(t,y)) ≤ Ψk(t,V(sk −0,y)), t ∈ (sk, tk+1], y ∈ Rn

holds.
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3. The zero solution of (3.1) is strongly practically quasi stable (uniformly strongly prac-
tically quasi stable) w.r.t. (b(λ),K,a(B),T ), where the positive constants λ,T : 0 <
λ < A, b(λ) ≤ K are given and the constant K is defined in the condition (H8).

Then the zero solution of (2.1) with E0 = [−r,0] is strongly practically quasi stable
(uniformly strongly practically quasi stable) w.r.t. (λ,A,B,T ).

Proof. From the condition 3 the zero solution of (3.1) is practically stable w.r.t. (b(λ),K =
a(A)) and there exist a point t0 ∈ [0, s1]∪∞k=1 [tk, sk+1) such that the inequality |u0| < a(λ)
implies the inequality

|u(t; t0,u0)| < a(A) for t ≥ t0 (3.9)

holds, where u(t; t0,u0) is a solution of (3.1).
Also,

|u(t; t0,u0)| < a(B) for t ≥ t0+T (3.10)

Note that without loss of generality, we could assume t0+T , sk, k = 1,2, . . . .
By Theorem 3.8 the zero solution of (2.1) is practically stable w.r.t. (λ,A). So, we need

to prove the practical quasi stability of the zero solution of NIDDE (2.1).
Choose the initial function φ ∈ PC0 : ||φ||0 <λwith E0 = [−r,0] and consider the solution

x(t) = x(t; t0,φ) of system (2.1) with E0 = [−r,0] for the initial time t0 defined above. Let
u∗0 = supt∈[t0−r,t0] V(t,φ(t− t0)). From the choice of the initial function φ and the properties
of the function a(u) applying the condition 2(i), we get u∗0 = supt∈[t0−r,t0] V(t,φ(t − t0)) ≤
a(||φ||0) < a(λ). Therefore, the function u∗(t) satisfies (3.10) for t ≥ t0 + T with u0 = u∗0,
where u∗(t) = u(t; t0,u∗0) is a solution of (3.1).

According to the condition 2(ii), the condition 4(i) of Lemma 3.4 is satisfied for the
solution x(t), Θ = ∞. From Lemma 3.4 and Remark 3.5 it follows that the inequality
V(t, x(t)) ≤ u∗(t) for t ≥ t0 holds. From the condition 2(i) and inequality (3.10 ), we get
a(||x(t)||) ≤ V(t, x(t)) ≤ u∗(t) < a(B) for t ≥ t0+T , i.e. ||x(t)|| < B for t ≥ t0+T .

The proof of uniform strong practical stability is similar and we omit it.
�

Theorem 3.12. Let the following conditions be satisfied:

1. The conditions (H1) - (H4), (H6)-(H8) are fulfilled.

2. The condition 2 of Theorem 3.11 is fulfilled.

3. The zero solution of (3.1) is eventually practically stable with respect to (b(λ),K)
where the positive constant λ is given such that 0 < λ < a−1(K), b(λ) ≤ K.

Then the zero solution of (2.1) with E0 = [−r,0] is eventually practically stable w.r.t.
(λ,A).

The proof is similar to the one of Theorem 3.11 and we omit it.
In the case when the state dependent delay satisfies less restrictive condition (H4) we

obtain the following sufficient condition with more restriction condition about the Lyapunov
function:



Practical Stability of Differential Equations with State Dependent Delay 13

Theorem 3.13. Let the conditions (H1)- (H3), (H5)-(H8) be satisfied with E0 = (−∞,0] and
there exist a function V(t, x) ∈Λ(R,Rn) such that the conditions 2(i), 2(ii) and 3 of Theorem
3.11 be fulfilled.

Then the zero solution of (2.1) with E0 = (−∞,0] is strongly practically quasi stable
(uniformly strongly practically quasi stable) w.r.t. (λ,A,B,T ).

Theorem 3.14. Let the conditions (H1) - (H3), (H5)-(H8) are fulfilled with E0 = (−∞,0]
and there exist a function V(t, x) ∈ Λ(R,Rn) such that the conditions 2(i), 2(ii) of Theorem
3.11 and condition 3 of Theorem 3.12 be fulfilled. Then the zero solution of (2.1) with
E0 = (−∞,0] is eventually practically stable w.r.t. (λ,A).

4 Applications

We will consider several partial cases of the studied type of delay and we will apply some
of the obtained results to illustrate the practical stability properties.

EXAMPLE 2 (constant delay). Consider the IVP for NIDDE:

x′(t) = y(t)
t

1+ t

(
x(t)+ y2(t)

)
+ e−ty(t−1),

y′(t) = −0.5x(t)
t

1+ t

(
x2(t)+ y2(t)

)
+ e−t x(t−1) for t ∈ (0,∞)∩∪∞k=0(2k,2k+1],

x(t) = asin(t)x(2k+1−0),

y(t) = bsin(t)y(2k+1−0) for t ∈ (2k+1,2k+2],k = 0,1,2, . . . ,

x(s) = φ1(s), y(s) = φ2(s) s ∈ [−1,0],

(4.1)

where x,y ∈ R, a,b ∈ (−1,1) are given constants.
In this case sk = 2k+1, tk = 2k for k = 0,1,2, . . . , r = 1 and ρ(t, x,y) ≡ t−1 for all x,y ∈R,

i.e., the delay is equal to 1.
Let V(t, x,y) = 1.5(x2+2y2). Then a(s) = s2, b(s) = 2s2.
Let t ∈ ∪∞k=0(2k,2k+ 1] and ψ = (ψ1,ψ2) ∈ PC0 be such that V(t,ψ1(0),ψ2(0)) > V(t+

s,ψ1(s),ψ2(s)) for s ∈ [−1,0), i.e.,

ψ2
1(0)+2ψ2

2(0) > ψ2
1(s)+2ψ2

2(s), s ∈ [−1,0).

In this case ψ1ρ(t,(ψ1)0 ,(ψ2)0)−t (s) = ψ1(−1) and ψ2ρ(t,(ψ1)0 ,(ψ2)0)−t (s) = ψ2(−1) for s ∈ [−1,0].
Then

D+V(t,ψ1(0),ψ2(0),ψ1,ψ2)

= 3e−t
(
ψ1(0)(ψ1)ρ(t,(ψ1)0,(ψ2)0)−t(s)+2ψ2(0)(ψ2)ρ(t,(ψ1)0,(ψ2)0)−t(s)

)
≤ 1.5e−t

(
ψ2

1(0)+ (ψ1(−1))2+2ψ2
2(0)+2(ψ2(−1))2

)
≤ 3e−t

(
ψ2

1(0)+2ψ2
2(0)
)
= 2e−tV(t,ψ1(0),ψ2(0)).

(4.2)

For any t ∈ (2k+1,2k+2], k = 0,1,2, . . . , x,y ∈ R, we have

V(t,asin(t)x,bsin(t)y) ≤ 1.5sin2(t)
(
a2x2+2b2y2

)
≤ sin2(t)V(2k+1−0, x,y)

= Ψk(t,V(2k+1−0, x,y))
(4.3)
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Figure 1. Graphs of the solutions of (4.4) for
t0 = 0 and different initial values.
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Figure 2. Graphs of the solutions of (4.4) for
t0 = 10 and different initial values.
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Figure 3. Graphs of the solutions of (4.1)
with initial values

φ1(s) = φ2(s) = 1, s ∈ [−1,0].
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Figure 4. Graphs of the solutions of (4.1)
with initial values

φ1(s) = sin(s),φ2(s) = cos(s), s ∈ [−1,0].

with Ψk(t,u) = sin2(t)u. Consider the IVP for the scalar differential equation with non-
instantaneous impulses

u′ = 2e−tu f or t ∈ (t0,∞)∩∪∞k=0(4k,4k+3],

u(t) = sin2(t)u(4k+3−0) f or t ∈ (4k+3,4k+4+2],k = 0,1,2, . . . ,

u(t0) = u0,

(4.4)

Let there exist a nonnegative integer p : t0 ∈ (4p,4p+3]. It has a solution

x(t) =


u0e2e−t0−2e−t

if t ∈ (t0,4p+3],
sin(t)u(4k+3−0) if t ∈ (4k+3,4k+4], k = p, p+1, . . . ,
sin(4k+4)u(4k+3−0)e2e−4k+4−2e−t

if t ∈ (4k+4,4k+7], k = p, p+1, . . . .

The solution of the scalar non-instantaneous equation (4.4) is practically stable (see the
graphs on Figure 1 and Figure 2). According to Theorem 3.8, the solution of the system
(4.1) is also practically stable see the graphs on Figure 3 and Figure 4).

EXAMPLE 3 (time variable delay). Consider the initial value problem (IVP) for a
nonlinear system of non-instantaneous impulsive differential equations with state dependent
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delay (NIDDE)

x′(t) = y(t)
t

1+ t

(
x(t)+ y2(t)

)
+ e−ty(

t2

t+1
),

y′(t) = −0.5x(t)
t

1+ t

(
x2(t)+ y2(t)

)
+ e−t x(

t2

t+1
) for t ∈ (t0,∞)∩∪∞k=0(2k,2k+1],

x(t) = asin(t)x(2k+1−0),

y(t) = bsin(t)y(2k+1−0) for t ∈ (2k+1,2k+2],k = 0,1,2, . . . ,

x(s) = φ1(s), y(s) = φ2(s) s ∈ [−1,0],

(4.5)

where x,y ∈ R, a,b ∈ (−1,1) are given constants.
In this case sk = 2k+1, tk = 2k for k = 0,1,2, . . . , r = 1 and ρ(t, x,y) ≡ t2

t+1 for any t ≥ 0.
The condition (H4) is satisfied since t−1 ≤ t2

t+1 ≤ t for all t ≥ 0. Also, t2
t+1 = t− t

t+1 , i.e., the
delay of the argument is given by t

t+1 which is variable in time.
Let V(t, x,y) = 1.5(x2+2y2).
Let t ∈ ∪∞k=0(2k,2k+ 1] and ψ = (ψ1,ψ2) ∈ PC0 be such that V(t,ψ1(0),ψ2(0)) > V(t+

s,ψ1(s),ψ2(s)) for s ∈ [−1,0), i.e.

ψ2
1(0)+2ψ2

2(0) > ψ2
1(s)+2ψ2

2(s), s ∈ [−1,0).

In this case ψ1ρ(t,(ψ1)0 ,(ψ2)0)−t (s) = ψ1( −t
t+1 ) and ψ2ρ(t,(ψ1)0 ,(ψ2)0)(s) = ψ2( −t

t+1 ). Note for all t ≥ 0
the inequalities −1 ≤ −t

t+1 ≤ 0 hold, i.e., function ψ is well defined and ψ2
1(0)+ 2ψ2

2(0) >
2(ψ1ρ(t,(ψ1)0 ,(ψ2)0)−t (s))2+2(ψ2ρ(t,(ψ1)0 ,(ψ2)0)−t (s))2.

Then similar to Example 2 and Eq. (4.2) and (4.3) we prove the validity of the condi-
tions 2(ii) and 2(iii) of Theorem 3.8.

Applying the practical stability of the scalar comparison NIDDE (4.4) and to Theorem
3.8, we prove the practical stability of the solution of the system (4.5).

EXAMPLE 4 (state dependent delay). Consider the initial value problem (IVP) for a
nonlinear system of non-instantaneous impulsive differential equations with state dependent
delay (NIDDE)

x′(t) = y(t)
t

1+ t

(
x(t)+ y2(t)

)
+ e−tyρ(t,x(t),y(t),

y′(t) = −0.5x(t)
t

1+ t

(
x2(t)+ y2(t)

)
+ e−t xρ(t,x(t),y(t) for t ∈ (t0,∞)∩∪∞k=0(2k,2k+1],

x(t) = asin(t)x(2k+1−0), y(t) = bsin(t)

y(2k+1−0) for t ∈ (2k+1,2k+2],k = 0,1,2, . . . ,

x(s) = φ1(s), y(s) = φ2(s) t ∈ [−r,0],

(4.6)

where x,y ∈ R, r > 0 is a small constant, a,b ∈ (−1,1) are given constants, and ρ(t, x,y) =
t− 0.5(sin2(x)+ cos2(y)). In this case the delay of the argument is given by 0.5(sin2(xt)+
cos2(yt)) and it depends on the state. Then, xρ(t,xt ,yt)(s) = x(t−0.5(sin2(x(t+ s))+ cos2(y(t+
s)))) and yρ(t,xt ,yt)(s) = y(t−0.5(sin2(x(t+ s))+ cos2(y(t+ s)))) for s ∈ [−1,0].

Let V(t, x,y) = 1.5(x2+2y2).
Let t ∈ ∪∞k=0(2k,2k+ 1] and ψ = (ψ1,ψ2) ∈ PC0 be such that V(t,ψ1(0),ψ2(0)) > V(t+

s,ψ1(s),ψ2(s)) for s ∈ [−r,0) or

ψ2
1(0)+2ψ2

2(0) > ψ2
1(s)+2ψ2

2(s), s ∈ [−r,0).
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In this case

ψ1ρ(t,(ψ1)0 ,(ψ2)0)−t (s) = ψ1(−0.5(sin2(ψ1(s))+ cos2(ψ2(s))), s ∈ [−1,0],

and
ψ2ρ(t,(ψ1)0 ,(ψ2)0)−t (s) = ψ2(−0.5(sin2(ψ1(s))+ cos2(ψ2(s))), s ∈ [−1,0],

The argument −0.5(sin2(ψ1(s))+ cos2(ψ2(s)) ∈ [−1,0] and therefore,

(ψ1(−0.5(sin2(ψ1(s))+ cos2(ψ2(s))))2+2(ψ2(−0.5(sin2(ψ1(s))+ cos2(ψ2(s))))2

≤ ψ2
1(0)+2ψ2

2(0), s ∈ [−1,0].
(4.7)

Then similarly to Example 2 by inequality (4.7) we get D+V(t,ψ1(0),ψ2(0),ψ1,ψ2) ≤
2e−tV(t,ψ1(0),ψ2(0)) for any t ∈ (2k,2k+ 1] and V(t,asin(t)x,bsin(t)y) ≤ Ψk(t,V(2k+ 1−
0, x,y)) for any t ∈ (2k+1,2k+2] with Ψk(t,u) = sin2(t)u.

The zero solution of the comparison scalar NIDE (4.4) is practically stable (see the
graphs on Figure 1 and Figure 2). According to Theorem 3.8 the solution of the system
(4.6) is also practically stable.
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