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Abstract

In the present paper, the general conformable fractional derivative (GCFD) is consid-
ered and a corresponding Laplace transform is defined. Gronwall inequality is proved
to show the exponential boundedness of a solution and using the Laplace transform
the solution is found for certain classes of delay differential equations with GCFD.
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1 Introduction

The recently introduced conformable fractional derivative (CFD) [6] is defined as

f+et'™)— f(0)

&

Do f(1) = lim

for @ € (0,1] and # > 0. One can see that unlike the usual fractional derivatives such as
Riemann-Liouville or Caputo derivative (see e.g. [12]), that are defined using an integral,
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Delay differential equations with GCFD 15

CFD has a local nature. It was shown in [6] and later in [1] that it has many properties
analogous to those of classic integer-order derivative. For instance, D, (fg) = gDo f + fDeg.

Also in [1], the Laplace transform was defined and Gronwall inequality was proved
to provide a tool for studying stability and find solutions of equations involving CFD. In
[17], the authors defined so-called general conformable fractional derivative (GCFD) as a
Gateaux derivative in the direction of a fractional conformable function. They also gave
physical and geometrical interpretation of GCFD. In this paper, we find explicit formulas
for solutions of certain classes of delay differential equations with GCFD. To reach our aim
we need to define a general conformable Laplace transform and prove some of its properties.
A Gronwall-type inequality is proved to show that the Laplace transform can be applied.
In the delayed equations we suppose the commutativity of the matrix coefficients. Similar
problems were studied for differential [8, 9] as well as for difference equations [7, 10], or
with variable delays [13].

The present paper is organized as follows. In Section 2, we recall basic definitions of
general conformable fractional calculus and define the general conformable Laplace trans-
form. Properties of this Laplace transform are proved in Section 3. Here we also present
important examples. Section 4 is devoted to Gronwall inequality and its corollary. In final
section, we consider certain classes of Cauchy problems for delay differential equations
with GCFD, multiple delays and linear parts given by pairwise permutable matrices, and
we derive the closed-form formulas for solutions.

Throughout the paper, we denote N the set of all positive integers, and Ny = N U {0}.

2 Preliminary results

First we recall the definition of general conformable fractional derivative using the notion
of fractional conformable function as it was established in [17].

Definition 2.1. Let #p € R. Continuous real function : [ty,00) X (0,1] — R satisfying
Y(-,1)=1 and

Y(-,p) # Y(,q) whenever p,q € (0,1], p # g,
and the constant function (-,-) = 1 are called fractional conformable functions.

Definition 2.2. Let ¢ be a fractional conformable function and p € (0,1]. The general
conformable fractional derivative (GCFD) is defined as

Ju+ep(u, p)) - f(u) '

€

Di fu) := ll_r%
If f is differentiable at u > 0 and p € (0,1], then
Dy f(u) = fuw(u, p). 2.1

Next we define the corresponding integral operator (see [17]).

Definition 2.3. Let u > a > 1y, f: (a,u] — R be a given function and ¢ be a fractional
conformable function. The p-fractional integral of f is defined as

0] dt

1 fw = f JO%Gat= ) am
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if the right-hand side exists.

Definition 2.4. Let f: (#9,00] — R be a given function and ¢ be a fractional conformable
function positive on [fy,0) X (0, 1] and satisfying

f dyyt=00, Vpe(0,1]. (2.2)
To
The general conformable Laplace transform of f is defined as

L0 f(DNs) 1= f e f(1)dpyt

for such s € R that the right-hand side exists, where

t
n([)::fdp,l//f'
1o

Sometimes we will shortly denote F' ;f l//(s) = L;” w{ F(O}(s).

Remark 2.5. Since n is increasing on [#y, 00), denoting w: [0, c0) — [fy, 00) the inverse func-
tion to 1, we get

L9,1£@)s) = LU @))(s)

where there is the usual Laplace transform [15] on the right-hand side. Note that it is
defined if f o w is exponentially bounded, i.e., there exist positive constants c1, ¢; such that
|f(w(1)| < ¢ e’ for all £ > 0, or in other words

If(0)] < c1e2TD . Vi > 1. (2.3)

Clearly, then L;?’ xp{ f(1)} is defined on (¢, 00). This can be also seen from

L;?w{f(t)}(s)‘SQ f e ™y () dt = ¢y f e df. (2.4)
’ 1o 0

Remark 2.6. In the paper, we often work with the general conformable Laplace transform
of a vector or matrix function of the form f(f)w or f(#)B, where f is a scalar function,
w = (w;); 1s a constant vector with coordinates w; (i.e., the outer index i means that the i-th
coordinate of the left-hand side is inside the bracket) and B = (B;;);; is a constant matrix
with elements B;;. These are understood in the following sense:

L0 FOwh(s) = Lo AFOw)s) = (Lo, LFOwiNs)).
= (L0, O wi). = L3, LFON) v = (L, AFD)s))w
and

L0 fOBYs) = L {FDOBiif)s) = (L0 A fDBijHs))
= (L8 1 FO)s)By))

ij

= Ly f0)s)(Byj),, = Ly, LFONs)B.

ij
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3 Properties of the general conformable Laplace transform

In this section, we collect and prove some properties of the general conformable Laplace
transform. One can compare them to the ones of the conformable Laplace transform proved
in [11] (see also [1]) or of the classic Laplace transform [15].

Lemma 3.1. If L;‘;’ w{ fi(®)} and L;” w{ fo(t)} exist on (s1,00) and (s3,00), respectively, then
forany ay,ap €R,

-EZJ’,p{a,lfl (t) + G—'ZfZ(t)} = al‘EZJ’,p{fl (t)} + aZ-E;(;Jp{fZ(t)}
on (max{sy, s2},00).
Proof. The statement follows from the linearity of the Riemann integral. o

Lemma 3.2. Let f: [ty,0) — R fulfill (2.3) for some c1,co > 0 and Lg’w{f(t)} exist. Then
the following holds true:

(i) function F ;2 " is analytic on (cp,0);
(i) Ly, fONs) = =§Fp,(5) for all s>
(iii) if f is differentiable, then .E;?’ W{Di f(@®)} exists on (cy,00) and it holds

L;?’w{sz(t)}(s) = sF;f#/(s) -f@5), s>c
where f(t]) = lim,_,,a f@);
(iv) limse Fy ,(5) = 0;

(v) fors>c+cy,

L1 f(D))(s) = Fly, (s =0);

(vi) if limt_)tg % exists, then

w | SQ@) N ™
Lp’w{%}(s)—fs Fp’w(u)du

Proof. One can prove statements (ii) and (v) directly from the definition of the general
conformable Laplace transform.

Statement (i) follows by Remark 2.5 from the analyticity of the classic Laplace trans-
form [15, Theorem 3.1].

Statement (iii) follows from Definition 2.4, equation (2.1) and integration per partes.

From estimation (2.4) we have

forall s > cy;

C1

L8, < ——= >0

§—C)
as s — oo, and statement (iv) follows.

To prove statement (vi), it is enough to use Remark 2.5 and an analogous result for the
classic Laplace transform [15, Theorem 1.37]. O
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Lemma 3.3. Leta >0, f: [0,00) = R satisfy | f(¢)| < c1 € for some c1,c; >0 and all t > 0,
and L;?M{ f(an(?))} exist. Then

28, Fano)(s) = + £, ) (2)

forall s > cra.

Proof. The result follows by taking substitution an(t) = n(u). O
Next, we calculate the general conformable Laplace transform of certain functions.

Example 3.4. Suppose that i is a positive fractional conformable function satisfying (2.2).

(i) £2,{1}(s) = L{1)(s) = L for any s > 0.

(ii) L;;),w{t}(s) = L{w(t)}(s) for any s > ¢, for some ¢, > 0 such that there exists ¢; > 0
such that t < ¢; e for all ¢ > tp. In particular, if ¥(t,p) = (¢ — 10)'? (known as
conformable derivative [1, 6]), then

1
» 1
1 tn prI(1+-
L9 (1)) = L{to+(pyr bs) = 2+ M
v s sl+%
for all s > 0, since now n(t) = (t—;o)P . For any ¢ > 0 and any fixed p € (0,1], the
condition
¢ (t=19)?
t S Cl € ? P B Vt 2 tO
(t=19)?

holds with ¢; = max, te 7
(iii) L?’w{ec”(’)}(s) = Lg’,w{l}(s -c)= ﬁ for any s > c.
@iv) L;‘)” {sin(cn(1))}(s) = L{sin(ct)}(s) = ﬁ for any s > 0.

The next lemma is a generalization of a result from [4, Theorem 3] on the conformable
Laplace transform of a convolution.

Lemma 3.5. Let f,g: [0,00) — R satisfy (2.3) with some c{,cg > 0 and cf,cg > 0, respec-
tively. Suppose that L;f,w{ f(n(1)} and L;‘;’ l//{g(n(t))} exist. Then

£9,1(f % aON(s) = L0 FO))s) L2, 8me))s)
forall s> max{cg,cg}.

Proof. Using Remark 2.5 and the convolution theorem for classic Laplace transform [15,
Theorem 2.39] we get

Ly A fanis) Ly, (gmeN)(s) = LIF@D)(s) LIgD(s)
= LIf*)(s) = Ly A(f * ) m))(s). O
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Note that to get the statement as in [4, Theorem 3], one needs to denote

(f *py 81 = f f(0) =n(@)gm@)) dp yt
for ¢ > 9. Then one obtains

Ly A #py D) = L) A(f *2)m))(s),

since
(1)

(f *&)m(®) = ; fn()—Dg(H)di = f J@(@®) =n@®)g(®) dpyt

for t > 1.
Immediately, we obtain a simple generalization:

Corollary 3.6. Let 2 <n €N, f;: [0,00) - R satisfy (2.3) with some ¢},cy >0 fori=1,....n
If L;?,w{fi(n(t))} exists for eachi=1,...,n, then

L0 {Fisx f)NNs) = [ | L0, fitenies)
i=1

for all s > max;= _, C.

Proof. The proof is done by a mathematical induction with respect to n. The case n = 2
follows by Lemma 3.5. If the statement holds for n = k, then by the same lemma,

L ACfix 5 feDOON) = L%+ i) * Fie)O(D)NS)
k+1

= L0 A5 NS LY A e (roNhs) = [ [ L2, 1 fiaonis)

i=1
what was to be proved. O

We proceed with analogues to the initial-value theorem [15, Theorem 2.34] and the
final-value theorem [15, Theorem 2.36].

Lemma 3.7. Let a differentiable function f: [ty,00) — R and its derivative f’ fulfill (2.3)
for some cy,c2 >0, ¢,c} >0, respectively, and L?’ w{ f(®)} exist. Then

+ _ . _ . tO
fty) = tlggf(t) = lim sF ), (s).

Proof. Combining Lemma 3.2.iii with Lemma 3.2.iv for Lj;{ (D} f(1)} instead of F;g g We
get

SF;?M(S) - ftp) = L;),w{Dif(t)}(S) -0

as s — oo. Hence the statement follows. m]
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Lemma 3.8. Let a differentiable function f: [ty,o0) — R fulfill (2.3) for some c1,cy > 0 and
L;f,w{f (1)} exist. If lim;_ f(?) exists, then

. _ . [0
}Lngof(t) = Sli)r(r)l+ SFp,w(S)'

Proof. First note that f is bounded, due to the existence of the limit. So, it fulfills (2.3) with
¢y = 0. Consequently, L;”w{ f(®)} exists on (0,00). Similarly to the proof of Lemma 3.7, we
get

: to Crret — 1 to D _ 1 ~ —sn(t) ¢!
Tim sF, ()= f(65) = lim L0, (D} f(0}(s) = lim f e /(1) dr
where the last identity follows from (2.1). Now since 7 is increasing, the integral on the
right-hand side is uniformly convergent on [0,c) for some ¢ > 0 due to the well-known

Abel’s criterion [5, Problem 1.5.36]. Consequently, the order of the limit and the integral
can be changed to obtain

s—0*

lim f B e £ (1) dr = f B f(Hde = lim f(r) - f@).

That completes the proof. O

Now we investigate the general conformable Laplace transform of a function with a
retarded argument. This will be useful in Section 5.

Lemma 3.9. Let > 0, f: [—T,00) = R satisfy | f ()| < c1 2" for some cy,cy > 0 and all
t2 -7, and L} ,{f(n(1))} exist. Then

0

Ly f@n=0))(s) =e" (f e f(nde+ L;?,w{f(n(t))}(S))

forall s> c».

Proof. By Remark 2.5 we obtain

0

Ly A fa@0=0)s) = LIFE-1))(s) =™ ( f e f(Odr+ L{f (t)}(s))

and the proof is finished by the same remark. O

From now on, we shall denote o-: R — R the Heaviside step function defined as

o 0, t<0,
g =
1, t>0.

We apply the latter lemma in the following examples.
Example 3.10. Suppose that ¢ is a positive fractional conformable function satisfying (2.2).

i) 1:;;’, AT =0)(s) = ¢~ forany s >0and 7 >0, since 1:;;{ Ao@®))(s) = 1:;;{ AL(s) =
% by Example 3.4.i.
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(i) For any n e N, 7 > 0, it holds

_ n—1 —sT\
Lg{w{% (1) —nr)}(s) = (e - )

for any s > 0. This can be proved directly using Lemma 3.9 with nt instead of 7, and

L0 { (n(n)"”!

n—1 1
o T a(n(r»}m = L{t—}(@ S

(n—1)! s’
(iii) ForanyneN, 1q,...,7, >0, ky,...,k, € Ny such that k; +--- +k, > 0 it holds

(-2, kam)Z,”,,:1 Jon—1

o §" n — 5T \ km
: — e °'m
" ( 2:1 Ko 1)‘ (n(t) ) m=1 kam] (5)= 1—[ ( N )

m=1

for any s > 0. Indeed, it can be shown as in the preceding example. Nevertheless,
since

GO n
L, ( 2:11 ko — 1 )! a[n(t) - le kmfm) (s)

(f = Zm=1 kam)Z:’n:l o1

=L a'(t— Z km‘rm] (s)
m=1

(2 hom—1))!

by Remark 2.5, the statement follows also from [14, Lemma 2.3].

(iv) ForanyneN, 1q,...,1, >0, ky,...,k, € Ng such that k; +--- +k, > 0 it holds

(U(f)—z,r;l: kam)Z’:n:]km n 1 & — 5Ty \ Km
e ( i;llkm)! U(U(I)_Zk””’“] (S)ZEH(C 5 )

m=1 m=1

for any s > 0. Indeed, from the right-hand side using Examples 3.10.i, 3.10.iii and
Lemma 3.5, we have

Ly (e
( ) =L, lom))}(s)

N N

m=1
(U(f) - eriz:l kT

)Zﬁ,=1 k1 .,
XL;;)JP ( nm:1 K, — 1)! O—(n(t)_n;kam) (S)

Zn=1km_1
('_ 21:1 kam) "

(2 k= 1)1

_ rh
- Lp’w

a(- - Zl kmrm] * «rJ (D) { (5)
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for any s > 0. Then the statement follows from

" m_]
00 (16 = Sy KT = q) L
f . o |n() - Z kinTm —q | o(q)dq
0 (2o hom—1))! —
" m_1
Tl(t)—Z:’,,=l kmTm (]’](t) — Zﬂm:] kam _ q)Z/nzl k n
= f " qu‘ n(t) — Z kT
0 (2o hom—1))! “

(1) = 52 ) n
= ( "k ), a[n(t)—;kmrm]_

m=1"m)-

Another kind of a delay is considered in the following statement.

Lemma 3.11. Let 7 > 0, f: [tog—T,00) — R satisfy (2.3) for some cy,co >0 and all t > to,
and L;f,w{ f(t)} exist. Let us assume that

t+
$UAD) _ sy, Vi 1o 3.1)
8(®)
where g(t) = (Y(t, p) eSMN=1 i e, assume that the ratio 8D 4o independent of t. Then

8@

10 e—sn(t+‘r) f(t)

L, M fe=1)s) = o G

dr+ C(s,T)F;f’l/,(s)

forall s> c».

Proof. First notice that denoting ¢; = max{cy, maXef;,—r.1 | f(#)|} and using the fact that 7 is
increasing we have

¢ < & e, t€ [ty to+7),
lft-DI < A o
c1 €20 < & e21D -t € [ty +T,00).
So L;?,w{f (t—1)} exists on (cz,00). Then we compute
t0  A—sn(t+T) ¢ 0o L —sn(t) f
Ltow{f(t_.r)}(s) - e—f() e—f()C(S,T)dl‘
P h—71 '70(t+7’p) to W(tap)

10 A—sn(t+T)
-7 IO sy Fn J(5)
0—T l//(t + T, p) p:

for all s > c5. O
Example 3.12. Here we verify condition (3.1) for several types of ¢:

(i) if Y(¢, p) = 1 (GCFD coincides with the classic derivative), then n(f) =t —ty, g(¢) =
e=5(=1) and
gt+7)

g()

e " =C(s,7);
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(ii) if Yt p) = p, then (1) = 5, g(t) = 1.7 and

g(;;;) —e 7 = Cs.7);

(iii) if y(t, p) = (t—19)' P (conformable derivative), then n(f) = @ () =(t—19)P! ey
and

’

1_
g(t+71) _[_ =t P o3 ((=10) =(t+7=10)")
g t+1—1y

i.e., condition (3.1) is not satisfied in the case of the conformable derivative as the
left-hand side varies with ¢;

(v) if Y(t+1,p) =yY(t,p) for all t > 1y, p € (0,1] (i is 7—periodic in ¢), then

1+7 t0+nT 1+T
nt+71)—n) = f dpyt = f dpyt+ f dpyt
t t tfo+nt

fo+(n+1)7 14T fo+(n+1)7 10+T
:f dp,wt+f dp,wt:f dp,wt:f dpyf=n(to+7), 1210
+7 to+nt lo+nt Io

for some n € N such that 7 < 7o+ nt < t + 7. Therefore,

8 (J;)T) _ emSIDI0) gm0t Z 5.7y Ve > g,
8

4 General conformable fractional Gronwall inequality

Here we state and prove Gronwall inequality for general conformable fractional calculus
and its corollary.

Lemma 4.1. Let x,a,8 € C([tg,),R), B(¢) > 0 for all t € [ty,0), and  be a positive frac-
tional conformable function. If

x(H) < a(t)y+ f B)x(s)dpys, Vi1, 4.1)
fo
then )
x(t) < a(t) + f a(5)B(5) ek BDIrua dpys, Vt>t. (4.2)

Proof. Using the classic Gronwall inequality [3, Lemma 1.6] we get

(1) < a(f) + fto a(s)w'[(’)is;) el it g, s,

which is (4.2). O

Clearly, Lemma 4.1 remains valid if one takes [#y, b] for some b > ¢y instead of [z, c0).
Immediately, we obtain the following corollary for particular functions «, 8.
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Corollary 4.2. Under the assumptions of Lemma 4.1, if « is nondecreasing and 3 is con-
stant, then inequality (4.1) implies

x(0) < a1, Vi > 1.
In particular, if a is constant, then
x() <P Vi >p.

Proof. From (4.2) we have

! t
x(r)ga(z)(1+ﬁ ft eﬂm(ﬁ—"(”)d,,M):a(r)(1+/3e5'7<’> f e—ﬁﬂ“)d,,,ws)

0)
= a(7) (1 + Bl f ! e s ds) = a(r) P
0

for all # > ¢. O

S Application to delay equations

In this section, we consider Cauchy problems for linear delay differential equations with
general conformable fractional derivative, multiple delays and linear parts given by pairwise
permutable matrices. We always consider n € N constant delays 0 < 7y,...,7,, and denote
7 := max{ry,...,7,}. Next, we denote || the norm of a vector without any respect to its
dimension, and || - || the corresponding induced matrix norm.

First we consider the initial-function problem

D’;x(n(t)) =Ax(n(®)) + Bix(m(t) —t1) + -+ + B, x(n(t) —7,) + f((1)), t>19 3.1
x(®) = (1), te€[-7,0] (5.2)

for a given function ¢ € C([-7,0],RY). For brevity we set Cy 1= maxe—0) le(?)|. We shall
look for a differentiable function x: [-7,00) — RV satisfying the above problem assum-
ing that A, By, ..., B, are pairwise permutable N X N matrices. First we show that x is
exponentially bounded.

Lemma 5.1. If f: [0,00) — RN is such that Lf ()] < c1 € for some c1,c; >0 and all t >0,
then the solution x of (5.1), (5.2) satisfies |x(¢)| < d; e‘b’for some di,dy >0 and all t > 0.

Proof. Applying the operator Iﬁ;’w to equation (5.1) and using the identity (see [17, Theorem
11D

15D f(u) = f(u) - f(a)
for any u > a > ty, we get

t

x(n(1)) = x(n(to)) + A f x(() dp gt

to

n ! ¢
+ZB,‘f x(n(f)—Ti)dp,¢f+ff(n(f})dp,lpf, t> 1,
i=1 fo 1
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or equivalently
t n t !
x(1) = ¢(0) +Af x(f)df+ ZB,-f x(f—r,-)dt~+f fHdi, t>0.
0 Py 0 0
For the norm we have
t _ n r _ ¢
Ix()] < Cyp + IIAllf Ix(P)di + Z ||Bi”f (@ - 7)|di+ —e?' =: 2(r), 1>0.
0 Py 0 c2
Note that z is increasing. One can see that for 0 <7< ¢,
Ix(f—1)| < max |[x({—71)|+ max |x({—1;)| < Cy+2(7) < 22(7)
£€[0,7] Je[Tit+T1;
foreachi=1,...,n. Hence
c S !
() <Cy+ Leory IA]l + 22 ||B;l] f z(Hdi, t>0.
€2 i=1 0
Consequently, by the Gronwall lemma,
()] < z(1) < (Cw +4 eCZ’) eMIF2EL BN - 7 > (5.3)
2
and the statement is obvious. O

Clearly, if |x(¢)| < ¢; e for some ¢y,¢; >0 and all 7 > 0, then

()] < G <&e2) e [-14,0),
x - A, ~
c1e? <¢1e, te[0,00)

where ¢; = max{ci,C,}. Thus the general conformable Laplace transform can be applied to

(5.1) to obtain the following result.

Theorem 5.2. LetneN, 0<1y,..., 7, €R, A, By, ..., B, be pairwise permutable N X N
matrices, i.e., AB; = B;A and B;B; = B;B; for each i,j€{1,...,n}, p € C([-7,0],RN), and
f:10,00) = RN be a given function such that | f(t)| < ¢ €' for some cy,c; > 0and all t > 0.
If p € (0,1] and ¥ is a positive fractional conformable function satisfying (2.2), then the

solution of the Cauchy problem (5.1), (5.2) has the form

@), —-T1<1t<0,
-
)= 1 BO$O0)+ T B [ Bl 9pls =) ds
+ [y Bt = 9)f(s)ds, 0<t
where o
(=" kT Zmet K
B(r) = e Z ( erllc—l‘ , ’) EZ;T
D=t kT <t e Bt m=1
ki,....k, >0

foranyteR, and By = By e =A™ foreachm=1,...,n.

5.4
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Proof. By Lemma 5.1 and the preceding discussion, the assumptions of Lemma 3.2.iii and
Lemma 3.9 are satisfied, and after applying the general conformable Laplace transform to
equation (5.1), we get

Ly 1xm))(s) = x((t)) = ALy {x(m(1))(s)

n 0
+Y BT ( f e“"’X(t)dHLZ’M{X(n(t))}(S))+£§§i¢{f(n(t))}(s)

i=1 Ti
for s > do = ||Al|+2 X7, 1Bl + c2 (see (5.3)) or, using the classic Laplace transform,

sL{x(®)}(s) = ¢(0) = AL{x(1)}(s)
+ Z B; (f i e p(t—T1)dr+e" L{x(f)}(s)) + L{f(D}().
i=1 0

This is precisely the Laplace transform of the equation
X'(f) = Ax(t)+ Bix(t—71) + -+ Byx(t —1,) + f(£), t>0 (5.5
along with (5.2), which is known (cf. [14, Theorem 3.3]) to have the solution (5.4). O

Remark 5.3. Equation (5.1) can be directly converted to (5.5). Indeed, since x is differen-
tiable, from (2.1) we have

d
P _ a _
Dy, x(n(0) = y(t, p) 3 tX(n(t)) x'(n(2)).
Therefore, from (5.1),
X' (@) = Ax((®)) + Bix((t) = 1) + - - + Bux(n(t) = 1) + f(n(1)), 1>t

which is precisely (5.5). However, the proof of Theorem 5.2 uses the properties of the
newly defined general conformable Laplace transform.

Now consider the problem

Dix(t) =Bix(t—71)+--+Bx(t—1,)+ f(1), t=1 5.6)
x(H) =), telty—T1to]. (5.7

First we have to show that the Laplace transform can be applied.

Lemma 5.4. If f: [ty,00) — RY fulfills (2.3) with c1,c2 > 0, then there are dy,d> > 0 such
that the solution x of (5.6), (5.7) satisfies

Ix(0)| < dy €20 V> .

Proof. Applying the operator Iﬁ)’w to equation (5.6), we get

n ! !
x(t) = plto) + ) By f X(T 1)y i+ f @D dpyf, 1210,
i=1 to o
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Hence, for the norm we have

n t t
(01 < et + Y B [ = roldpfeer [ e0d,7
i=1 o fo

n t
~ ~ C
<Cy+ E ||Bi||f Ix(t—Tl-)ldp,wHéecw(t)::z(t), t > fo,
i=1 fo

t nw et _q
f e"Dd, ,f= f e di= —.
1 0 (&)

As in the proof of Lemma 5.1, function z is increasing and

since

|x(F=1)| < 2z(F), Vielt,t]

foreachi=1,...,n. Therefore,
c & !
2(t) < Cy + _leczfl(l) +ZZ ||B,||f [0 dp’,pf, 1> 1.
2 i=1 fo
Applying Corollary 4.2 we obtain

x(1)] < 2() < (cy, +2 ecm(ﬁ)eZZ?n 1BIO ¢ > g,
2

So, the statement holds with d; = C, + E—; anddr =2 +2 3" | |IBill. O

Now we know that the general conformable Laplace transform of x(¢) and Dix(t) exists
if f fulfills (2.3). In the next result, we assume the empty sum property, i.e., D,;cp2(i) =0
for any function z.

Theorem 5.5. LetneN,0<TeR, 0<1y,...,7, €R, 7, = AT for some 4; eN, i=1,...,n,
By, ..., B, be pairwise permutable N X N matrices, ¢ € C([ty—T, 1], RY), and f: [tg,00) —
RN be a given function satisfying (2.3) for some c1,c2 > 0. If p € (0,1] and ¥ is a positive
fractional conformable function T—periodic in t, then the solution of the Cauchy problem

(5.6), (5.7) has the form

@(1), fo—T<t<ty,
x(1) = { AGONp(to) + X1, By [ At = n(s)p(s = 7)) dpys
+ o AG® = () f(5)dpys, o<t

where

)1_ km
(1= 20y kmAmin(to + 7))~ ﬁBkm
kil k! L5

At =

Zz«;] km/lmn(tO"'T)S[
ki,.eekn 20

foranyteR.
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Proof. Let us consider the T-periodic extension of ¥(-, p) on R and denote it again by .
Then the function 7 is defined on the whole of R. As in Example 3.12.iv, it holds

n(t+71) =) = nto +7:)

to+T t0+2T t0+Ti
= d,ut+ f dpyt+-+ f d, t
124 124 12
«fto to+T to+(4;—DT (58)
to+T t0+T to+T
:f dp,wt+f d”"”Herf dpyt =Ain(to+T)
Io Ip Iy

foreachi=1,...,n and any 7 € R. In particular,
n(®) —n(t—1;) = Am(to + T).
Consequently,
x(1—71;) = x(w(n(t — 17))) = x(w(n(t) — in(to + T))) (5.9)
foreachi=1,...,n and any ¢ € [fy,0). Note that foreachi=1,...,n,

0 to o= s(Amto+T)+n(1))
=S Am(+T) f e x(w(t)) i = fo e 0 x(1) dr
~Am(tg+T) fo—T; Y(t+71i,p)
0] e—sn(t+1'1) x(t) ~

10+T; o
= —dt—f e M p(t—1;)dy yt
\ft;)—Ti Qb(H‘Ti’ p) o l Y

where the first identity follows from (5.8). By Lemma 5.4, the general conformable Laplace
transform can be applied to equation (5.6). Then by Lemma 3.2.iii, Lemma 3.9 (with f =
xow and T = A;n(to+T), see (5.9)) and Example 3.12.iv, we get

sxgi 4 (8) = x(10)

4 10+Ti o=51(0) p(f— -
= ZBI (f Lﬂ) dt+e—5/1i77(f0+T) Xto(//(s)) + FIOW(S)
i=1 fo Y(t,p) Py P

n
= > Bi( LY D= T)(s) + e 0D X0 () + FO (s)
i=1
for s > co+23", lIBjll (cf. Lemma 5.4 and its proof), where

d)(t) — {QO(I), te [t() -7, tO]a
0, t € (tg, ).

Consequently,
n n
sI- > B; e—“f"“(’*”]x;;{w(s) = @(t0)+ ) | BiLY {0 =T)}(s)+ FL,(5)
i=1 i=1
with I being the N X N identity matrix. It is known (see e.g. [16, Proposition 7.5]) that if s

is such that
n
Z Bi e—s/lm(l‘o+T)

i=1

<s,
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. e—s/ll-rj(to +7T)

then the matrix I- Y7 | 2 is invertible and it holds

N

n 0 -1 o (n , k
B e~ sAin(to+T) B e~sAin(to+T)
e R e}
K )

i=1 k=0 \i=1

So for s sufficiently large, we can write

n
X0,(5)=Ao+ Y Aj+A;

J=1
where
k
1 o n Bi e—S/lm(t()+T)
Ag=-— _ 1),
0= ; (; P @(to)
k
1 (<& B: e sAinto+T) )
k=0 \i=1
k
1 s n Bi e—S/l,'r](to+T) o
Ap=- ; (Zl | Fu
= =
By Example 3.4.i,
k
1 & (I B e—simtio+T)
Ag=L0 {1 fo) + — ——— | (o).
0= L3, 1)(s)elto) + - ;(Z} - (1)

Next, by multinomial theorem [2],

" (B, e SAmto+T) Kin
Ag=L 1}(S)¢(l0)+z > (kl )ﬂ(%) )

k1+ +kn=k m=1
Kok 20
1 (e smnto+T) \ k) (-1 .
= L0, (S)<P(to)+z D (k )[— (— [ [ Bireto
1 ket oo Kn s 0 S m=1
K ek 20

where

k k!
ki,....ky k1 .ok

is the multinomial coefficient. Using Example 3.10.iv and the linearity of the general con-
formable Laplace transform, we get

Ag=L {(S)¢(to)+z Z (kl,.{(.,kn)

k=1 ki+--+k,=k
ki,eskn >0

fo (U(I)_Z 1k /lmn([0+T)) "k
X-Epvd’ ( . km)‘

U(n(t) = > kAt + T)) (s)
m=1

m=1
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x[ | Bl etto) = £8 AA@ER(t0))s).
m=1

Next, using the same arguments we obtain
Aj=BiLY AAGO)() LY DT ))K(s)
for each j=1,...,n. Then by Lemma 3.5,
Aj=BiL) (A D) =T ))n())(s)
o 7(t)
B Bij ’w{ 0

=Bj£§§’,w{ f ﬂ(n(t)—n(u))q>(u—rj)d,,,¢u}(s).

A — ) P(w(g) 7)) dq} (s)

Analogously,
Ag= L1 (ALY, LFD)s) = L0, { f A = () f (1) dp,wu} (5).
fo
Summarizing,
n t
X3,(5)=Lpy {ﬂ(n(t))so(to) + > B; f Am@) = )P —7;)dp yu
j=t i

3
+ f ﬂ(n(r)—n(u))f(u)dp,wu}u)
fo

for all s sufficiently large. Moreover, note that A(#) = 0 whenever ¢ < 0 due to the empty
sum property. Therefore

f An®) =)@ —7;)dpyu

min{t,f+7 ;}
f AW — 1) — 1)),y

= ' An() —n)e(u—17;)dpyu,

fo

and the statement is proved. O

Next, we present a result on the solution of initial-function problem consisting of the
equation (5.6) with a linear nondelayed term, i.e.,

DD x(t) = Ax(1) + Bix(t = 71) + -+ Byx(t—1,) + (1), 1210, (5.10)

and initial condition (5.7).
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Corollary 5.6. Let neN, 0<T eR, 0<1y,...,7, €R, 7; = ;T for some A; €N, i =
1,...,n, A, By, ..., B, be pairwise permutable N X N matrices, ¢ € C([ty) —T, %], RN), and
£ [to,0) = RN be a given function satisfying (2.3) for some c1,c2 > 0. If p € (0,1] and  is
a positive fractional conformable function T—periodic in t, then the solution of the Cauchy
problem (5.10), (5.7) has the form

@(1), fo—T<t<ty,
x(1) = { AGONp(to) + X1, By [ A(t) = (s)p(s = 7)) dpys
+ o An® =n(s)(5)dpys, o<t

with |
A A (t = Y=t km A (2o + T)) me=tkm _

Al =e Z T l_[Bm
m=

Zzﬁl km/lmn(t()"'T)St
kl ----- anO

for any t € R, where B,, = e Aot By =1 . p.

Proof. As in the proof of Theorem 5.5, we have identity (5.8). Let us denote y(f) =
e~ x(£). Then by CFD of a product [17, Theorem 5] and (2.1), y satisfies

Dy(t) = D) (7470) x(t) + e 10 D) x(r) = ~Ae™0 x(t) + 4"V DY x(1)
n
= —Ay(t) +e | Ax(r) + Z B; e y(t— 1) + (1)
i=1
n
— Z B; e~ AO-nt=1:)) (it —17)+ e~AN® £
i=1
for any ¢ > f9. So, we get the initial-function problem for y:
Diy(6) = Biy(t=11) +---+ Byt =)+ f(0), =1
@) =¢(0), telto—T1,10]

where f(r) = e £(r) and @(¢) = e 471D (t); which is of the form (5.6), (5.7). Note that
@lto) = ¢(to) and

Big(s — i) = Bie Mo Tt o (g —3) = B M) (s — 1)

for each i = 1,...,n. Application of Theorem 5.5 and returning back to x proves the state-
ment. =
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