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Abstract

We obtain a uniform ergodic theorem for the sequence 1
s(n)

∑n
k=0(∆s)(n−k)T k, where ∆

is the inverse of the endomorphism on the vector space of scalar sequences which maps
each sequence into the sequence of its partial sums, T is a bounded linear operator on
a Banach space and s is a divergent nondecreasing sequence of strictly positive real
numbers, such that limn→+∞ s(n+1)/s(n) = 1 and ∆qs ∈ `1 for some positive integer q.
Indeed, we prove that if T n/s(n) converges to zero in the uniform operator topology,
then the sequence of averages above converges in the same topology if and only if 1 is
either in the resolvent set of T , or a simple pole of the resolvent function of T .
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1 Introduction

Throughout this paper, we will write N and Z+ for the sets of nonnegative integers and of
strictly positive integers, respectively. Also, for each ν ∈ N, we will write Nν for the set of
all nonnegative integers n satisfying n ≥ ν.
K will stand for either R or C, and we will denote by KN the vector space (over K) of

all sequences in K. For each vector space V over K, let 0V and IV denote respectively the
zero element of V and the identity operator on V . If V and W are vector spaces over K and
Λ : V −→ W is a linear map, let N(Λ) and R(Λ) stand respectively for the kernel and the
range of Λ.

For each normed space X, we will write ‖ ‖X for the norm of X, and L(X) for the normed
algebra of all bounded linear operators on X. Henceforth, by convergence in L(X) of a
sequence of bounded linear operators on X, we will mean convergence with respect to the
topology induced by ‖ ‖L(X), that is, the uniform operator topology.

∗E-mail address: burlando@dima.unige.it



2 L. Burlando

If X is a complex nonzero Banach space, then L(X) is a complex Banach algebra—with
identity IX .
For each T ∈ L(X), let r(T ) and σ(T ) stand respectively for the spectral radius and for the
spectrum of T . Also, let ρ(T ) and RT stand respectively for the resolvent set and for the
resolvent function of T . Namely, ρ(T ) = C\σ(T ) and RT : ρ(T ) 3 λ 7−→ (λIX −T )−1 ∈ L(X).
It is well known that RT is analytic on the open set ρ(T ).

In [3], N. Dunford obtained several results about convergence of the sequence fn(T ) in
different topologies (where T ∈ L(X) for a complex Banach space X, and, for each n ∈ N,
fn is a complex-valued function, holomorphic in some open neighborhood of σ(T )). The
uniform ergodic theorem, establishing equivalence between convergence of the sequence
1
n

n−1∑
k=0

T k in L(X) and 1 being either in ρ(T ) or a simple pole of RT , under the hypothesis

lim
n→+∞

1
n‖T

n‖L(X) = 0, is a special case of one of these results (see [3], 3.16; see also [4],

comments following Theorem 8). Notice that if the sequence 1
n

n−1∑
k=0

T k converges in L(X),

then 1
n‖T

n‖L(X) necessarily converges to zero, as 1
n T n = n+1

n

(
1

n+1

n∑
k=0

T k
)
− 1

n

n−1∑
k=0

T k for each

n ∈ Z+.
More general means of the sequence of the iterates of the bounded linear operator T

than the arithmetical ones involved in the uniform ergodic theorem, that is, the (C,α) means
1

Aα(n)

n∑
k=0

Aα−1(n− k)T k, n ∈ N (where α ∈ (0,+∞), and Aα and Aα−1 denote respectively the

sequences of Cesàro numbers—whose definition is recalled here in Section 2—of order α

and α−1; notice that for α = 1 we have 1
Aα(n)

n∑
k=0

Aα−1(n−k)T k = 1
n+1

n∑
k=0

T k for each n ∈N),

were considered by E. Hille in [8]. Indeed, in [8], Theorem 6 he proved that if the sequence
1

Aα(n)

n∑
k=0

Aα−1(n− k)T k converges to some E ∈ L(X) in L(X), then ‖T n‖L(X)
nα −→ 0 as n→ +∞

and lim
λ→1+
‖(λ−1)RT (λ)−E‖L(X) = 0. Notice that the former of these two conditions yields

r(T ) ≤ 1, and then the latter is equivalent to 1 being either in ρ(T ), or a simple pole of RT ,
and moreover E being the residue of RT at 1 (see the result recorded here as Theorem 2.4).
Theorem 6 of [8] also provides a partial converse of this, establishing that if T is power-

bounded and lim
λ→1+
‖(λ−1)RT (λ)−E‖L(X) = 0, then lim

n→+∞

∥∥∥∥∥ 1
Aα(n)

n∑
k=0

Aα−1(n− k)T k −E
∥∥∥∥∥

L(X)
=

0 for each α ∈ (0,+∞).
More recently, an improvement of [8], Theorem 6 was obtained by T. Yoshimoto,

who in [12], Theorem 1 replaced power-boundedness of T by lim
n→+∞

‖T n‖L(X)
nω = 0 (where

ω = min{1,α}). Finally, in [5], E. Ed-dari was able to complete the (C,α) uniform ergodic

theorem, by proving that the sequence 1
Aα(n)

n∑
k=0

Aα−1(n−k)T k converges to E in L(X) if and

only if ‖T
n‖L(X)
nα −→ 0 as n→ +∞ and lim

λ→1+
‖(λ−1)RT (λ)−E‖L(X) = 0. E. Ed-dari’s result is

recorded here as Theorem 2.6.
We are interested here in obtaining a uniform ergodic theorem for the Nörlund means

of the sequence T n, that is, for the means 1
s(n)

n∑
k=0

(∆s)(n−k)T k, n ∈N, where s is a divergent
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nondecreasing sequence of strictly positive real numbers (and ∆ : KN → KN is as in the
abstract; see Definition 4.1 here). Notice that for s = Aα, α ∈ (0,+∞), one obtains the (C,α)
means.

In Section 2 we collect some preliminaries, in order to make this paper as self-contained
as possible.

In Sections 3, 4 and 5 we derive some properties of real sequences, that we use in the final
section dealing with bounded linear operators.

In Section 3 we are concerned with the least concave majorant of a real sequence.

In particular, in Theorem 3.9 we prove that if b is a real sequence such that the sequence(b(n)
n

)
n∈Z+

is bounded from above and b is not, then the least concave majorant of b, be-
sides being strictly increasing and divergent, has a subsequence that is asymptotic to the
corresponding subsequence of b.

In Section 4 we mainly deal with the real sequences s for which ∆ps is concave for
some p ∈ N.

The main result of this section is Theorem 4.7, in which we derive several properties of
a sequence s of nonnegative real numbers such that ∆ps is concave and unbounded from
above for some p ∈ N. In particular, we prove that s is strictly increasing and divergent,
lim

n→+∞
s(n+1)

s(n) = 1, and ∆p+2s ∈ `1. Also, in Example 4.9 we show that if α ∈ (0,+∞) the
sequence Aα satisfies the hypotheses of Theorem 4.7 (for p = [α] if α < Z+; for p = α−1 if
α ∈ Z+).

In Section 5 we introduce an index H(b) (∈ N∪{+∞}) for a real sequence b, such that
H(b) < +∞ if and only if the sequence

(b(n)
nm

)
n∈Z+

is bounded from above for some m ∈ N,
in which caseH(b) is the minimum of such nonnegative integers m.

In Theorem 5.3 we use Theorem 3.9 to prove that if b is unbounded from above and such that
H(b) < +∞, then b has a majorant s which satisfies the hypotheses of Theorem 4.7 for p =
H(b)− 1, and moreover is such that limsup

n→+∞

b(n)
s(n) ∈

[ 1
H(b) ,1

]
. We also prove (in Proposition

5.4) that if a is a real sequence such that ∆qa ∈ `1 for some q ∈ Z+, thenH(a) ≤ q−1.

Section 6 contains our main result, that is Theorem 6.7: we prove that if T is a bounded
linear operator on a complex Banach space, and b is a divergent sequence of strictly positive
real numbers, such that H(b) < +∞ and lim

n→+∞

‖T n‖L(X)
b(n) = 0 (which gives r(T ) ≤ 1), then,

for each divergent nondecreasing sequence s of strictly positive real numbers, such that
lim

n→+∞
s(n+1)

s(n) = 1, ∆qs ∈ `1 for some q ∈ N2, and the sequence
(b(n)

s(n)
)
n∈N

is bounded (which

gives lim
n→+∞

‖T n‖L(X)
s(n) = 0), the sequence 1

s(n)

n∑
k=0

(∆s)(n− k)T k converges in L(X) if and only if

1 is either in ρ(T ), or a simple pole of RT . The sequence s can be chosen so that it is not
infinite of higher order than b, and ∆ps is concave and unbounded from above for some
p ∈ N.

We conclude this section—and the paper—with an example (Example 6.10), showing that,
contrary to the case of the sequence Aα considered in Theorem 6 of [8], convergence in L(X)

of the sequence 1
s(n)

n∑
k=0

(∆s)(n− k)T k does not imply lim
n→+∞

‖T n‖L(X)
s(n) = 0, even if s satisfies the

hypotheses of Theorem 4.7.
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2 Preliminaries

If X is a Banach space, and Y , Z are closed subspaces of X, satisfying X = Y ⊕Z, by the
projection of X onto Y along Z we mean the bounded linear map P : X −→ X such that
Px ∈ Y and x−Px ∈ Z for every x ∈ X. Notice that IX −P is the projection of X onto Z along
Y , and that P2 = P. On the other hand, if E ∈ L(X) satisfies E2 = E, it is easily seen that
R(E) is closed in X, X = R(E)⊕N(E), and E is the projection of X onto R(E) along N(E).

We begin by recalling a classical characterization of simple poles of RT , that will be
useful to us in this paper.

Theorem 2.1 (see [11], V, 10.1, 10.2, 6.2, 6.3 and 6.4, and IV, 5.10)). Let X be a complex
nonzero Banach space, T ∈ L(X) and λ0 ∈ C. If λ0 is a simple pole of RT , then λ0 is an
eigenvalue of T ,N

(
(λ0IX −T )n) =N(λ0IX −T ) and R

(
(λ0IX −T )n) = R(λ0IX −T ) for every

n ∈ Z+, R(λ0IX −T ) is closed in X, X =N(λ0IX −T )⊕R(λ0IX −T ), and the projection of X
onto N(λ0IX −T ) along R(λ0IX −T ) coincides with the residue of RT at λ0. Conversely, if
X =N(λ0IX −T )⊕R(λ0IX −T ), then λ0 is either in ρ(T ), or else a simple pole of RT .

If X is a complex nonzero Banach space and T ∈ L(X), following [11], Definition on
page 310, we denote by A(T ) the set of all complex-valued holomorphic functions f whose
domain Dom( f ) is an open neighbourhood of σ(T ). For each f ∈ A(T ), the operator f (T ) ∈
L(X) is defined as follows:

f (T ) =
1

2πi

∫
+∂D

f (λ)RT (λ)dλ,

where +∂D denotes the positively oriented boundary of D, and D is any open bounded
subset of C, such that D ⊇ σ(T ), D ⊆ Dom( f ), D has a finite number of components, with
pairwise disjoint closures, and ∂D consists of a finite number of simple closed rectifiable
curves, no two of which intersect; the integral above does not depend on the particular
choice of D (see [11], comment 2 on pages 310–311; see also [3], 2.2, 2.3 and 2.6). We

recall that for each polynomial p : C 3 λ 7−→
n∑

k=0
akλ

k ∈ C (where n ∈ N, and a0, . . . ,an ∈ C),

we have p(T ) =
n∑

k=0
akT k (see [11], V, 8.1).

We will use the following convergence result for the elements of A(T ), due to N. Dunford,
a special case of which is the classical uniform ergodic theorem.

Theorem 2.2 (see [3], 3.16). Let X be a complex nonzero Banach space, T ∈ L(X), and
( fn)n∈N be a sequence in A(T ), satisfying 1 ∈Dom( fn) for each n ∈N, such that lim

n→+∞
fn(1)=

1 and (IX −T ) fn(T ) −→ 0L(X) in L(X) as n→ +∞. Then the following three conditions are
equivalent:

(2.2.1) there exists E ∈ L(X) such that E2 = E, R(E) =N(IX −T ), and fn(T ) −→ E in L(X)
as n→ +∞;

(2.2.2) 1 is either in ρ(T ), or a simple pole of RT ;

(2.2.3) R(IX −T ) is closed and X =N(IX −T )⊕R(IX −T ).
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Remark 2.3. We remark that, under the hypotheses of Theorem 2.2, each of conditions
(2.2.1)–(2.2.3) is actually equivalent to each of the following two conditions (which at first
glance might respectively appear to be weaker and stronger than them):

(2.3.1) the sequence
(
fn(T )

)
n∈N converges in L(X);

(2.3.2) R(IX−T ) is closed, X =N(IX−T )⊕R(IX−T ), and the sequence
(
fn(T )

)
n∈N converges

in L(X) to the projection of X onto N(IX −T ) along R(IX −T ).

Equivalence between (2.2.1) and (2.3.1) is observed in [4], comments following Theorem
8. For the convenience of the reader, we give here a proof of equivalence of these five
conditions. Indeed, it suffices to prove that (2.3.1) implies (2.3.2). Suppose that (2.3.1) is
satisfied, and let E ∈ L(X) be such that fn(T ) −→ E in L(X) as n→ +∞. We prove that then
E2 = E and R(E) =N(IX −T ).
We begin by proving that for each x ∈N(IX−T ) we have Ex= x. This is clear ifN(IX−T )=
{0X}. If instead N(IX −T ) , {0X}, then 1 ∈ σ(T ), and RT (λ)x = 1

λ−1 x for every λ ∈ ρ(T ).
Hence (see [11], V, 1.3) fn(T )x = fn(1)x for every n ∈N. Since lim

n→+∞
fn(1) = 1, we conclude

that Ex = x. This gives the desired result, which in turn yields N(IX −T ) ⊆ R(E). On the
other hand, since (IX−T )E = lim

n→+∞
(IX−T ) fn(T ) = 0L(X), we have R(E) ⊆N(IX−T ). Hence

R(E) =N(IX −T ), and E2 = E.
We have thus proved that the equivalent conditions (2.2.1)–(2.2.3) are satisfied. Now we
observe that, since fn(T ) commutes with IX −T for each n ∈ N by [11], V, 8.1, and conse-
quently E also does, we have E(IX −T ) = 0L(X). Hence R(IX −T ) ⊆ N(E). Since E2 = E
and R(E) = N(IX − T ) give X = N(IX − T ) ⊕N(E), and condition (2.2.3) in turn gives
X = N(IX − T )⊕R(IX − T ), we conclude that N(E) = R(IX − T ). Then condition (2.3.2)
is satisfied.

We also recall the following consequence of [3], 3.16.

Theorem 2.4 ([5], 1.3; [9], 18.8.1). Let X be a complex nonzero Banach space and T , E ∈
L(X). If there exists a sequence (λn)n∈N in ρ(T ) such that lim

n→+∞
λn = 1 and (λn−1)RT (λn)−→

E in L(X) as n → +∞, then 1 is either in ρ(T ), or a simple pole of RT . Furthermore,
R(IX − T ) is closed in X, X = N(IX − T )⊕R(IX − T ) and E is the projection of X onto
N(IX −T ) along R(IX −T ).

For each α ∈ R, let Aα : N→ R denote the sequence of the Cesàro numbers of order α.
That is,

Aα(n) =
(
n+α

n

)
=


1 if n = 0

n∏
j=1

(α+ j)

n! if n ∈ Z+.

Hence Aα(n) > 0 for each n ∈N if α > −1. Notice also that A0(n) = 1 for all n ∈N. We recall
that

(2.1)
n∑

k=0
Aα(k) = Aα+1(n) for each n ∈ N and each α ∈ R

and
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(2.2) lim
n→+∞

Aα(n)
nα =

1
Γ(α+1) for each α ∈ R \ {−k : k ∈ Z+},

where Γ denotes Euler’s gamma function (see for instance [13], III, (1-11) and (1-15)).
The following well known identity—which we will need in the sequel—can be obtained
from (2.1) as a straightforward consequence, or else is not difficult to check directly, by
induction on n.

(2.3)
n∑

k= j

(
k
j

)
=

(
n+1
j+1

)
for every j ∈ N and every n ∈ N j.

Remark 2.5. Let X be a complex nonzero Banach space, and let T ∈ L(X). We recall that
if the sequence

(
‖T n‖L(X)

nα
)
n∈Z+

is bounded for some α ∈ (0,+∞), then r(T ) ≤ 1. Indeed, if

M ∈ (0,+∞) is such that ‖T
n‖L(X)
nα ≤ M for each n ∈ Z+, then

r(T ) = lim
n→+∞

‖T n‖
1
n
L(X) = lim

n→+∞

(
‖T n‖L(X)

nα

)1
n

≤ lim
n→+∞

M
1
n = 1.

Finally, by also taking Theorem 2.4 into account, the improvement of E. Hille’s (C,α)
ergodic theorem obtained by E. Ed-dari can be formulated as follows.

Theorem 2.6 (see [5], Theorem 1). Let X be a complex nonzero Banach space, T ∈ L(X),
and α ∈ (0,+∞). Then, given any E ∈ L(X), we have

lim
n→+∞

∥∥∥∥∥∥∥∥∥∥∥
n∑

k=0
Aα−1(n− k)T k

Aα(n)
−E

∥∥∥∥∥∥∥∥∥∥∥
L(X)

= 0

if and only if

lim
n→+∞

‖T n‖L(X)

nα
= 0 and lim

λ→1+
‖(λ−1)RT (λ)−E‖L(X) = 0.1

Hence the following two conditions are equivalent:

(2.6.1) the sequence


n∑

k=0
Aα−1(n−k)T k

Aα(n)


n∈N

converges in L(X);

(2.6.2) lim
n→+∞

‖T n‖L(X)
nα = 0 and 1 is either in ρ(T ), or a simple pole of RT .

3 The least concave majorant of a real sequence

We begin with some results concerning the least concave majorant of a real sequence.
We recall that a real sequence a :N→ R is called concave (convex) if the real sequence(

a(n+1)−a(n)
)
n∈N is nonincreasing (nondecreasing). Notice that a is concave (convex) if

and only if a(n+1) ≥ a(n)+a(n+2)
2 (a(n+1) ≤ a(n)+a(n+2)

2 ) for every n ∈ N.

1We point out that, by virtue of Remark 2.5, lim
n→+∞

‖T n‖L(X)
nα = 0 gives r(T ) ≤ 1. Then ρ(T ) contains all real

numbers λ satisfying λ > 1, which allows the limit lim
λ→1+

‖(λ−1)RT (λ)−E‖L(X) to be considered.
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Definition 3.1. For each real sequence a : N→ R, let φa : [0,+∞)→ R be the function
defined by

φa(x) = a(n)+ (x−n)
(
a(n+1)−a(n)

)
for every x ∈ [n,n+1] and every n ∈ N.

Notice that φa(x) = a(n)(n+ 1− x)+ a(n+ 1)(x− n) for every x ∈ [n,n+ 1] and every
n ∈ N. Hence φa(n) = a(n) for every n ∈ N.

Proposition 3.2. Let a : N→ R be a real sequence. Then a is concave if and only if the
function φa is concave.

Proof. It is easily seen that a is concave if φa is. Conversely, suppose a to be concave.
Notice that φa is continuous. Also, the right derivative (φa)′+ of φa exists at every point of
[0,+∞), and (φa)′+(x) = a(n+ 1)− a(n) for every x ∈ [n,n+ 1) and every n ∈ N. Since a is
concave, it follows that (φa)′+ is nonincreasing, and consequently (see [10], 5, Proposition
18) φa is concave. �

We recall that a majorant of a real sequence b : N→ R is a real sequence c : N→ R
satisfying c(n) ≥ b(n) for every n ∈ N.
The following result is probably known. Indeed, for instance, the authors of [1] seem to be
aware of it when (in the proof of Proposition 2.1) they derive that the sequence (ρn)n∈N has
a least concave majorant from being lim

n→+∞

ρn
n = 0. Anyway, we give a (short) proof here, for

the convenience of the reader.

Proposition 3.3. A real sequence b : N → R has a concave majorant if and only if the
sequence

(b(n)
n

)
n∈Z+

is bounded from above.

Proof. By virtue of Proposition 3.2, it is easily seen that b has a concave majorant if and
only if there exists a concave function f : [0,+∞)→ R such that f (x) ≥ φb(x) for every
x ∈ [0,+∞). The latter condition is satisfied if and only if there exist α, β ∈ R such that
φb(x) ≤ α+ βx for every x ∈ [0,+∞) (see [6], Theorem 1.2) or, equivalently, b(n) ≤ α+ βn
for every n ∈N. Now it is straightforward to observe that such α and β exist if and only if the
sequence

( b(n)
n

)
n∈Z+

is bounded from above. We have thus obtained the desired result. �

Remark 3.4. If a : N→ R is a concave sequence, then the sequence
( a(n)

n
)
n∈Z+

is bounded
from above.

Remark 3.5. If a real sequence b :N→R has a concave majorant, then b has a least concave
majorant c. Furthermore, we have

c(n) = inf{a(n) : a ∈ RN, a concave majorant of b} for every n ∈ N.

Indeed, once one observes that the real sequence c defined as above is concave and is a
majorant of b, from the definition of c it follows that each concave majorant of b is also a
majorant of c, that is, c is the least concave majorant of b.

Theorem 3.6. Let b :N→R be a real sequence such that the sequence
(b(n)

n
)
n∈Z+

is bounded
from above, and let c : N→ R be the least concave majorant of b. Then c satisfies the
following properties.
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(3.6.1) c(0) = b(0).

(3.6.2) c(n+1) = c(n)+ sup
{

b(k)−c(n)
k−n : k ∈ Nn+1

}
for every2 n ∈ N.

(3.6.3) For each n ∈ N and each k ∈ Nn+2, we have
b(k)− c(n+1)

k−n−1
≤

b(k)− c(n)
k−n

.

If in addition
b(k)− c(n)

k−n
=max

{
b( j)− c(n)

j−n
: j ∈ Nn+1

}
,

then
b(k)− c(h)

k−h
= max

{
b( j)− c(h)

j−h
: j ∈ Nh+1

}
=

b(k)− c(n)
k−n

for all h = n, . . . ,k−1,

and consequently c(h+1)− c(h) = c(n+1)− c(n) for all h = n, . . . ,k−1.

Proof. Let a : N→ R be defined by

a(0) = b(0),

a(n+1) = a(n)+ sup
{

b(k)−a(n)
k−n

: k ∈ Nn+1

}
for every n ∈ N.

We prove that a = c. First of all, we prove that a(n) ≥ b(n) for every n ∈ N.
We proceed by induction. The desired result clearly holds for n = 0. Besides, if for some
n ∈ N we have a(n) ≥ b(n), then

a(n+1) = a(n)+ sup
{

b(k)−a(n)
k−n

: k ∈ Nn+1

}
≥ a(n)+b(n+1)−a(n) = b(n+1).

We have thus proved that a is a majorant of b. Now we prove that a is concave.
For each n ∈ N, we have

a(n+1)−a(n) = sup
{

b(k)−a(n)
k−n

: k ∈ Nn+1

}
(3.1)

and

a(n+2)−a(n+1) = sup
{

b(k)−a(n+1)
k−n−1

: k ∈ Nn+2

}
. (3.2)

Now, for each k ∈ Nn+2, (3.1) yields
b(k)−a(n+1)

k−n−1
=

b(k)−a(n)
k−n−1

−
a(n+1)−a(n)

k−n−1

=

(
k−n

k−n−1

)(
b(k)−a(n)

k−n

)
−

(
1

k−n−1

)
sup

{
b( j)−a(n)

j−n
: j ∈ Nn+1

}
(3.3)

≤

(
k−n

k−n−1

)(
b(k)−a(n)

k−n

)
−

1
k−n−1

(
b(k)−a(n)

k−n

)
=

(
b(k)−a(n)

k−n

)(
k−n

k−n−1
−

1
k−n−1

)
=

b(k)−a(n)
k−n

.

2Notice that, since the sequence
( b(n)

n
)
n∈Z+

is bounded from above, this supremum is finite for every n ∈ N.
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Now from (3.3), together with (3.1) and (3.2), we derive that a is concave. Hence a is a
concave majorant of b. In order to conclude that a = c, it suffices to prove that c(n) ≥ a(n)
for every n ∈ N. We proceed by induction.
Since c(0) ≥ b(0) = a(0), the desired inequality holds for n = 0. Now let n ∈ N be such that
c(n) ≥ a(n). Since c is concave and is a majorant of b, from Proposition 3.2 and from the
three chord lemma we conclude that for each k ∈ Nn+1 we have

c(n+1)− c(n) ≥
c(k)− c(n)

k−n
≥

b(k)− c(n)
k−n

and consequently, since c(n) ≥ a(n),

c(n+1) ≥ c(n)+
b(k)− c(n)

k−n
= c(n)+

b(k)−a(n)
k−n

+
a(n)− c(n)

k−n

=
(k−n−1)

k−n
c(n)+

1
k−n

a(n)+
b(k)−a(n)

k−n

≥

(
k−n−1

k−n
+

1
k−n

)
a(n)+

b(k)−a(n)
k−n

= a(n)+
b(k)−a(n)

k−n
.

Then

c(n+1) ≥ a(n)+ sup
{

b(k)−a(n)
k−n

: k ∈ Nn+1

}
= a(n+1).

We have thus proved that c(n) ≥ a(n) for every n ∈ N. Then a = c, from which we obtain
(3.6.1) and (3.6.2). Also, the inequality in (3.6.3) now follows from (3.3).
In order to complete the proof, it remains to prove that if n ∈ N and k ∈ Nn+2 satisfy
b(k)−c(n)

k−n = max
{

b( j)−c(n)
j−n : j ∈ Nn+1

}
, then b(k)−c(h)

k−h = max
{

b( j)−c(h)
j−h : j ∈ Nh+1

}
=

b(k)−c(n)
k−n for

all h = n, . . . ,k−1.
Let n ∈ N, k ∈ Nn+2 be as above. As a straightforward consequence of (3.3), we obtain

b(k)− c(n+1)
k−n−1

=
b(k)− c(n)

k−n

and consequently

c(n+2)− c(n+1) = sup
{

b( j)− c(n+1)
j−n−1

: j ∈ Nn+2

}
≥

b(k)− c(n)
k−n

= c(n+1)− c(n).

Since c is concave, the opposite inequality also holds. Hence

b(k)− c(n+1)
k−n−1

=max
{

b( j)− c(n+1)
j−n−1

: j ∈ Nn+2

}
=

b(k)− c(n)
k−n

.

If k = n+ 2, the proof is complete. Otherwise, we finish the proof by applying the same
argument again k−n−2 times, with b(k)−c(n)

k−n replaced by b(k)−c(h)
k−h , h = n+1, . . . ,k−2. �

Lemma 3.7. Let a : N → R be a real sequence. If there exists ν ∈ N such that a(ν) ≥
limsup
n→+∞

a(n), then the set {a(n) : n ∈ N} has a maximum.
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Proof. We set ` = limsup
n→+∞

a(n) and observe that ` ∈ [−∞,+∞). Since assuming a(n) ≤ ` for

every n ∈ N yields ` ∈ R and a(ν) = ` ≥ a(n) for every n ∈ N—which means that a(ν) is the
maximum of {a(n) : n ∈N}, we may assume that a(ν) > `. Then there exists n0 ∈N such that
a(n)< a(ν) for every n ∈Nn0 , from which we conclude that ν < n0. Now let n1 ∈ {0, . . . ,n0−1}
be such that a(n1) ≥ a(k) for all k = 0, . . . ,n0 −1. It suffices to remark that for each n ∈ Nn0

we have a(n) < a(ν) ≤ a(n1). Hence a(n1) ≥ a(n) for every n ∈ N. �

Theorem 3.8. Let b :N→R be a real sequence such that the sequence
(b(n)

n
)
n∈Z+

is bounded
from above, and let c : N→ R be the least concave majorant of b.

(3.8.1) If we set ` = limsup
n→+∞

b(n)
n , we have ` ∈ [−∞,+∞), c(n+1)− c(n) ≥ ` for every n ∈ N

and limsup
k→+∞

(
b(k)−c(n)

k−n

)
= ` for every n ∈ N.

(3.8.2) If we set

N = {0} ∪
{

n ∈ Z+ : c(n)− c(n−1) =max
{

b(k)− c(n−1)
k−n+1

: k ∈ Nn

}}
,

it follows that n ∈ N =⇒ {0, . . . ,n} ⊆ N.

(3.8.3) If we set N = sup(N) and (νk)k∈N is the nondecreasing sequence of nonnegative inte-
gers defined by ν0 = 0,

νk+1 =

min
{
n ∈ Nνk+1 : b(n)−c(νk)

n−νk
= c(νk +1)− c(νk)

}
if 3 νk < N

νk if νk ≥ N
for every k ∈N, it follows that νk ∈N for every k ∈N and {νk : k ∈N} = {n ∈N : c(n) =
b(n)}.

(3.8.4) If N is finite (that is, N ∈ N, N = max(N)), then the sequence (νk)k∈N is eventually
constant (and consequently νk ≥ N for sufficiently large n). Furthermore, if we set
k0 = min{k ∈ N : νk ≥ N} we have: νk = N for every k ∈ Nk0 , νk < νk+1 for each k ∈ N
satisfying k < k0, ` ∈ R, and, for each n ∈ N,

c(n) =


b(νk)+

(
n−νk
νk+1−νk

) (
b(νk+1)−b(νk)

)
if νk ≤ n ≤ νk+1 for some k ∈ N

satisfying k < k0

b(N)+ `(n−N) if n ≥ N

=


(
νk+1−n
νk+1−νk

)
b(νk)+

(
n−νk
νk+1−νk

)
b(νk+1) if νk ≤ n ≤ νk+1 for some k ∈ N

satisfying k < k0

b(N)+ `(n−N) if n ≥ N.

Finally, c(n) > b(n) for every n ∈ NN+1.

3Notice that if νk < N, from (3.8.2) it follows that νk +1 ∈ N and consequently c(νk +1)− c(νk) = b(n)−c(νk)
n−νk

for some n ∈ Nνk+1.
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(3.8.5) If N is infinite (that is, N = N), then the sequence (νk)k∈N is strictly increasing. Fur-
thermore, for each k ∈ N we have

c(n) = b(νk)+
(

n− νk
νk+1− νk

) (
b(νk+1)−b(νk)

)
=

(
νk+1−n
νk+1− νk

)
b(νk)+

(
n− νk
νk+1− νk

)
b(νk+1)

for every n ∈ N satisfying νk ≤ n ≤ νk+1.

Proof. We begin by proving (3.8.1). As a straightforward consequence of
(

b(n)
n

)
n∈Z+

being
bounded from above, we have ` ∈ [−∞,+∞).
Now let (k j) j∈N be a strictly increasing sequence of strictly positive integers such that

lim
j→+∞

b(k j)
k j
= `. Then for each n ∈ N we have

lim
j→+∞

(
b(k j)− c(n)

k j−n

)
= lim

j→+∞

(
k j

k j−n

)(
b(k j)

k j
−

c(n)
k j

)
= `. (3.4)

Hence, by virtue of (3.6.2),

c(n+1)− c(n) = sup
{

b(k)− c(n)
k−n

: k ∈ Nn+1

}
≥ `.

Now if we set s = limsup
k→+∞

(
b(k)−c(n)

k−n

)
, from (3.4) we also derive that s ≥ `. On the other hand,

if (m j) j∈N is a strictly increasing sequence of nonnegative integers such that lim
j→+∞

(
b(m j)−c(n)

m j−n

)
= s, we obtain

b(m j)
m j

=

(
b(m j)− c(n)

m j−n

)(
m j−n

m j

)
+

c(n)
m j
−−−−−−→

j→+∞
s,

which gives s ≤ `. Hence s = `.
(3.8.1) is thus proved. Now we prove (3.8.2).
Fix n ∈ N and let k ∈ {0, . . . ,n}. We prove that k ∈ N. This is clearly true if k = 0. If k ∈ Z+,
then n ∈ Z+ and c(n)−c(n−1)= b(pn)−c(n−1)

pn−n+1 for some pn ∈Nn. It is not restrictive to assume
k ≤ n−1 (which gives n− k ∈ Z+, n ∈ N2, k−1 ≤ n−2). Since for each j ∈ {k−1, . . . ,n−2}
we have j+ 2 ≤ pn, and consequently b(pn)−c( j+1)

pn− j−1 ≤
b(pn)−c( j)

pn− j by (3.6.3), by taking (3.8.1)
into account we obtain

b(pn)− c(k−1)
pn− k+1

≥
b(pn)− c(n−1)

pn−n+1
= c(n)− c(n−1) ≥ ` = limsup

m→+∞

(
b(m)− c(k−1)

m− k+1

)
.

Now from Lemma 3.7 we conclude that the set
{

b(m)−c(k−1)
m−k+1 : m ∈ Nk

}
has a maximum. This,

together with (3.6.2), yields k ∈ N.
We prove (3.8.3).
We begin by proving that for each k ∈ N we have νk ∈ N and

{
n ∈ {0, . . . νk} : c(n) = b(n)

}
=

{ν j : j = 0, . . . ,k}. We proceed by induction. We set

S =
{
k ∈ N : νk ∈ N and

{
n ∈ {0, . . . , νk} : c(n) = b(n)

}
= {ν j : j = 0, . . . ,k}

}
.

Since ν0 = 0, by the definition of N and by (3.6.1) we have 0 ∈ S. Now suppose k ∈ S.
Then νk ∈ N and

{
n ∈ {0, . . . νk} : c(n) = b(n)

}
= {ν j : j = 0, . . . ,k}. If νk ≥ N, we have νk+1 =
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νk ∈ N and
{
n ∈ {0, . . . , νk+1} : c(n) = b(n)

}
=

{
n ∈ {0, . . . νk} : c(n) = b(n)

}
= {ν j : j = 0, . . . ,k} =

{ν j : j = 0, . . . ,k+1}, which gives k+1 ∈ S. Thus, let us assume νk < N. Then νk+1 ≥ νk +1
and

νk+1 =min
{

n ∈ Nνk+1 :
b(n)− c(νk)

n− νk
= c(νk +1)− c(νk)

}
. (3.5)

From (3.6.3) we derive that for each j ∈ N satisfying νk ≤ j ≤ νk+1−1 we have

b(νk+1)− c( j)
νk+1− j

=max
{

b(m)− c( j)
m− j

: m ∈ N j+1

}
=

b(νk+1)− c(νk)
νk+1− νk

. (3.6)

By letting j = νk+1 − 1, from (3.6)—together with (3.6.2)—we conclude that νk+1 ∈ N and
besides

b(νk+1)− c(νk+1−1) =max
{

b(m)− c(νk+1−1)
m− νk+1+1

: m ∈ Nνk+1

}
= c(νk+1)− c(νk+1−1),

which gives c(νk+1)= b(νk+1). Finally, for each n ∈Nνk+1 satisfying n< νk+1, (3.6.2), (3.6.3),
(3.5) and (3.6) give

c(n)− c(n−1) =max
{

b(m)− c(n−1)
m−n+1

: m ∈ Nn

}
=

b(νk+1)− c(νk)
νk+1− νk

>
b(n)− c(νk)

n− νk
≥ b(n)− c(n−1),

the latter inequality being trivially an equality if n = νk + 1, and being a consequence of
(3.6.3) if n ≥ νk + 2 (as b(n)−c( j)

n− j ≥
b(n)−c( j+1)

n− j−1 for all j = νk, . . . ,n− 2). Consequently, c(n) >
b(n). Hence {

n ∈ {0, . . . , νk+1} : c(n) = b(n)
}

=
{
n ∈ {0, . . . νk} : c(n) = b(n)

}
∪

{
n ∈ {νk +1, . . . , νk+1} : c(n) = b(n)

}
= {ν j : j = 0, . . . ,k}∪ {νk+1} = {ν j : j = 0, . . . ,k+1},

which gives k+1 ∈ S.
We have thus proved that νk ∈ N for every k ∈ N. Also,{

n ∈ {0, . . . , νk} : c(n) = b(n)
}
= {ν j : j = 0, . . . ,k} for every k ∈ N. (3.7)

Now we prove that {n ∈ N : c(n) = b(n)} = {νk : k ∈ N}.
If N = +∞, then νk+1 ≥ νk+1 for every k ∈N, which gives lim

k→+∞
νk = +∞, and consequently⋃

k∈N
{0, . . . , νk} = N. Hence

{n ∈ N : c(n) = b(n)} =
⋃
k∈N

{
n ∈ {0, . . . , νk} : c(n) = b(n)

}
=

⋃
k∈N

{ν j : j = 0, . . . ,k} = {νk : k ∈ N},

which is the desired result.
If N < +∞, then there exists k ∈ N such that νk ≥ N: otherwise, if νk < N for all k ∈ N,
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the sequence (νk)k∈N would be strictly increasing and consequently we would have +∞ =
lim

k→+∞
νk ≤ N, a contradiction. Hence νk = νk for every k ∈ Nk. Furthermore, for each n ∈

Nνk+1, we have n > N and consequently n < N. Then n ∈ Z+ and, by virtue of (3.6.2),
c(n)− c(n−1) > b(n)− c(n−1), which gives c(n) > b(n). From this, together with (3.7), we
obtain

{n ∈ N : c(n) = b(n)} =
{
n ∈ {0, . . . , νk} : c(n) = b(n)

}
= {ν j : j = 0, . . . ,k } = {νk : k ∈ N}.

We have thus finished the proof of (3.8.3).
We prove (3.8.4). Suppose N to be finite. Then N ∈ N and N = max(N). Also, we have
already observed—in the proof of (3.8.3)—that the sequence (νk)k∈N is eventually constant
and not less than N. We set k0 = min{k ∈ N : νk ≥ N}. Then νk0 ≥ N. On the other hand,
since νk0 ∈ N by (3.8.3), we have νk0 ≤ N. Then νk0 = N, and consequently νk = N for each
k ∈ Nk0 . Furthermore, for each k ∈ N satisfying k < k0 we have νk < N, and consequently
νk < νk+1. From (3.6) and (3.6.2) we conclude that for each n ∈N satisfying νk+1≤ n≤ νk+1
we have

c( j)− c( j−1) =
b(νk+1)− c(νk)
νk+1− νk

for all j = νk +1, . . . ,n

and consequently

c(n)− c(νk) =
n∑

j=νk+1

(
c( j)− c( j−1)

)
= (n− νk)

(
b(νk+1)− c(νk)
νk+1− νk

)
.

Hence

c(n)− c(νk) = (n− νk)
(
b(νk+1)− c(νk)
νk+1− νk

)
for all n = νk, . . . , νk+1. (3.8)

Since c(νk) = b(νk) by (3.8.3), from (3.8) we derive that for each n ∈ {νk, . . . , νk+1} we have

c(n) = c(νk)+ (n− νk)
(
b(νk+1)− c(νk)
νk+1− νk

)
= b(νk)+

(
n− νk
νk+1− νk

) (
b(νk+1)−b(νk)

)
.

Now we prove that ` ∈ R and c(n) = b(N)+ `(n−N) for every n ∈ NN .
For each n ∈ NN , we have n+1 > N and consequently n+1 < N. From (3.6.2) we conclude
that the set

{
b(k)−c(n)

k−n : k ∈ Nn+1
}

has no maximum. From Lemma 3.7 and from (3.8.1) we

derive that b(k)−c(n)
k−n < ` for every k ∈ Nn+1, and consequently ` ∈ R. Besides, from (3.6.2)

we obtain

c(n+1)− c(n) = sup
{

b(k)− c(n)
k−n

: k ∈ Nn+1

}
≤ `,

which, together with (3.8.1), gives c(n+1)− c(n) = `. Notice also that by virtue of (3.8.3),
νk0 = N yields c(N) = c(νk0) = b(νk0) = b(N). Now, proceeding by induction, we conclude
that c(n) = b(N)+`(n−N) for every n ∈NN . Finally, from (3.8.3) we derive that c(n) > b(n)
for every n ∈ NN+1 and the proof of (3.8.4) is complete.
We prove (3.8.5). If we assumeN to be infinite (or equivalently, by virtue of (3.8.2), N=N),
then N = +∞ and consequently the sequence (νk)k∈N is strictly increasing. The remaining
assertion can be derived from (3.6), (3.6.2) and (3.8.3), proceeding as in the proof of (3.8.4).
The proof is now finished. �
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Theorem 3.9. Let b :N→R be a real sequence such that the sequence
(

b(n)
n

)
n∈Z+

is bounded
from above and b is not, and let c be the least concave majorant of b. Then c is strictly
increasing, lim

n→+∞
c(n) = +∞ and limsup

n→+∞

b(n)
c(n) = 1.

Proof. We set ` = limsup
n→+∞

b(n)
n . We observe that limsup

n→+∞
b(n) = +∞, and consequently ` ∈

[0,+∞). From (3.8.1) it follows that c is nondecreasing, and consequently there exists
lim

n→+∞
c(n). Since c(n) ≥ b(n) for every n ∈ N, we conclude that

lim
n→+∞

c(n) ≥ limsup
n→+∞

b(n) = +∞.

Hence c(n) −→ +∞ as n→ +∞. Now we prove that c is strictly increasing.
If c were not strictly increasing, then—being c nondecreasing—there would be n0 ∈N such
that c(n0 +1)− c(n0) = 0. Since c is concave as well as nondecreasing, we would conclude
that c is eventually constant, in contradiction with lim

n→+∞
c(n) = +∞.

Finally, we prove that limsup
n→+∞

b(n)
c(n) = 1. By virtue of Theorem 3.8, one of the following two

conditions is satisfied:

(3.9.1) there exists a strictly increasing sequence (νk)k∈N of nonnegative integers such that
c(νk) = b(νk) for every k ∈ N;

(3.9.2) there exists N ∈N such that c(n) > b(n) for every n ∈NN+1 and c(n) = b(N)+ `(n−N)
for every n ∈ NN .

If (3.9.1) holds, it suffices to observe that limsup
n→+∞

b(n)
c(n) ≥ lim

k→+∞

b(νk)
c(νk) = 1. The opposite in-

equality follows from c being a majorant of b.
If (3.9.2) holds, then lim

n→+∞

(
b(N)+ `(n−N)

)
= lim

n→+∞
c(n) = +∞ gives ` ∈ (0,+∞). Hence

limsup
n→+∞

(
b(n)
c(n)

)
= limsup

n→+∞

(
b(n)

n

)
·

1

`+
(

b(N)−`N
n

) = 1.

The desired result is thus proved. �

The following is a consequence of Remark 3.4 and Theorem 3.9. Alternatively, it can
be derived from Proposition 3.2 and the properties of concave functions.

Corollary 3.10. If a concave sequence a : N→ R is not bounded from above, then a is
strictly increasing and lim

n→+∞
a(n) = +∞.

4 Real sequences with concave pth-difference

Definition 4.1. Let Σ,∆ : KN→ KN be the linear operators defined by

(Σa)(n) =
n∑

k=0

a(k) and (∆a)(n) =

a(0) if n = 0
a(n)−a(n−1) if n ∈ Z+

for every n ∈ N and every a ∈ KN.
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Notice that both linear operators Σ and ∆ are bijective. Besides, ∆ = Σ−1 (or, equiva-
lently, Σ = ∆−1). We also remark that ∆(`1) ⊆ `1. Finally, we observe that the operator Σ
preserves inequalities: indeed, if a, b ∈RN satisfy a(n) ≤ b(n) for each n ∈N, then (Σa)(n) ≤
(Σb)(n) for each n ∈ N.

The following is a consequence of Proposition 3.2 and of the the three chord lemma.

Lemma 4.2. Let a : N→ R be a concave sequence. Then

n
(
a(k)−a(0)

)
≥ k

(
a(n)−a(0)

)
for every n ∈ N and every k = 0, . . . ,n.

Theorem 4.3. Let a : N→ R be a nondecreasing concave sequence. Then for each p ∈ N
we have

1
p+1

(
n+ p

p

)
a(n)+

p
p+1

(
n+ p

p

)
a(0) ≤ (Σ pa)(n) ≤

(
n+ p

p

)
a(n) for every n ∈ N.

Proof. We begin by proving that (Σ pa)(n) ≤
(
n+p

p

)
a(n) for all n, p ∈ N. We proceed by

induction on p.
For p = 0, the desired inequality trivially holds for every n ∈ N. Now let p ∈ N be such that
(Σ pa)(n)≤

(
n+p

p

)
a(n) for every n ∈N. Then for each n ∈N, since a is nondecreasing we have

(Σ p+1a)(n) =
n∑

k=0

(Σ pa)(k) ≤
n∑

k=0

(
k+p

p

)
a(k) ≤ a(n)

n∑
k=0

(
k+p

p

)
=

(
n+p+1

p+1

)
a(n)

by (2.3).
We have thus proved the desired inequality. Now, proceeding again by induction on p, we
prove that (Σ pa)(n) ≥ 1

p+1

(
n+p

p

)
a(n)+ p

p+1

(
n+p

p

)
a(0) for all n, p ∈ N.

For p = 0, the desired inequality is trivially satisfied for every n ∈N. Now let p ∈N be such
that (Σ pa)(n) ≥ 1

p+1

(
n+p

p

)
a(n)+ p

p+1

(
n+p

p

)
a(0) for every n ∈ N. We prove that (Σ p+1a)(n) ≥

1
p+2

(
n+p+1

p+1

)
a(n)+ p+1

p+2

(
n+p+1

p+1

)
a(0) for every n ∈ N.

For n = 0, since (Σ p+1a)(0) = a(0) the desired inequality is straightforward. Now fix n ∈ Z+.
Then from Lemma 4.2 and (2.3) we obtain

(Σ p+1a)(n) =
n∑

k=0

(Σ pa)(k) ≥
1

p+1

n∑
k=0

(
k+ p

p

)
a(k)+

p
p+1

a(0)
n∑

k=0

(
k+ p

p

)

≥
1

n(p+1)

n∑
k=0

(
k+ p

p

) (
ka(n)+ (n− k)a(0)

)
+

p
p+1

a(0)
(
n+ p+1

p+1

)

=

(
a(n)−a(0)

)
n

n∑
k=1

k
p+1

(
k+ p

p

)
+

a(0)
p+1

n∑
k=0

(
k+ p

p

)
+

p
p+1

a(0)
(
n+ p+1

p+1

)

=

(
a(n)−a(0)

)
n

n∑
k=1

(
k+ p
p+1

)
+a(0)

(
n+ p+1

p+1

)

=

(
a(n)−a(0)

)
n

n−1∑
k=0

(
k+ p+1

p+1

)
+a(0)

(
n+ p+1

p+1

)
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=

(
a(n)−a(0)

)
n

(
n+ p+1

p+2

)
+a(0)

(
n+ p+1

p+1

)
=

(
a(n)−a(0)

)
p+2

·
(n+ p+1)!

n (p+1)! (n−1)!
+a(0)

(
n+ p+1

p+1

)
=

(
a(n)−a(0)

)
p+2

(
n+ p+1

p+1

)
+a(0)

(
n+ p+1

p+1

)
=

1
p+2

(
n+ p+1

p+1

)
a(n)+

p+1
p+2

(
n+ p+1

p+1

)
a(0),

which is the desired result. The proof is now complete. �

Lemma 4.4. Let b : N→ R be a nondecreasing sequence, satisfying b(0) ≥ 0 and b(1) > 0.
Then for each k ∈ Z+ the sequence Σkb is convex and strictly increasing.

Proof. It suffices to prove that Σb is convex and strictly increasing. Indeed, once this is
proved, the desired result follows by induction on k (as (Σkb)(0) = b(0) ≥ 0 for every k ∈ Z+,
and then Σkb strictly increasing gives (Σkb)(1) > 0).
Sice b is nondecreasing, b(1) > 0 yields b(n) > 0 for every n ∈ Z+, and consequently
(Σb)(n+1) = (Σb)(n)+b(n+1) > (Σb)(n) for every n ∈ N. Hence Σb is strictly increasing.
Furthermore, being the sequence

(
(Σb)(n+1)− (Σb)(n)

)
n∈N =

(
b(n+1)

)
n∈N nondecreasing,

Σb is convex. We have thus obtained the desired result. �

Lemma 4.5. Let c : N→ R be a concave nondecreasing sequence. Then ∆c is convergent,
and ∆2c ∈ `1.

Proof. Since c is concave and nondecreasing, it follows that the sequence
(
(∆c)(n+1)

)
n∈N is

nonincreasing and (∆c)(n) ≥ 0 for each n ∈ Z+. Then lim
n→+∞

(∆c)(n) = λ for some λ ∈ [0,+∞)

(and so ∆c converges). Besides, (∆2c)(n) ≤ 0 for each n ∈ N2. Since

n∑
k=0

(∆2c)(n) = (Σ∆2c)(n) = (∆c)(n) −−−−−−→
n→+∞

λ

(that is, the series
+∞∑
n=0

(∆2c)(n) converges), being ∆2c eventually nonpositive it follows that

the series
+∞∑
n=0
|(∆2c)(n)| also converges. Hence ∆2c ∈ `1. �

Remark 4.6. Let s ∈ KN be an eventually nonzero sequence. If we fix ν ∈ Z+ such that
s(n) , 0 for all n ∈ Nν, then for each n ∈ Nν we have (∆s)(n)

s(n) = 1− s(n−1)
s(n) . Hence

lim
n→+∞

s(n+1)
s(n)

= 1 ⇐⇒ lim
n→+∞

(∆s)(n)
s(n)

= 0.

Theorem 4.7. Let s : N→ R be a real sequence satisfying s(0) ≥ 0, and let p ∈ N be such
that the sequence ∆ps is concave and is not bounded from above. Then:

(4.7.1) s(n) > 0 for every n ∈ Z+;
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(4.7.2) s is strictly increasing;

(4.7.3) lim
n→+∞

s(n)
np = +∞ (and consequently lim

n→+∞
s(n) = +∞);

(4.7.4) the sequence
(

s(n)
np+1

)
n∈Z+

is bounded;

(4.7.5) lim
n→+∞

s(n+1)
s(n) = 1;

(4.7.6) ∆p+2s ∈ `1.

If in addition p ∈ Z+, then the sequence s is also convex.

Proof. From Corollary 3.10 it follows that ∆ps is strictly increasing and lim
n→+∞

(∆ps)(n) =
+∞. Also, (∆ps)(0) = s(0) ≥ 0, and consequently (∆ps)(n) > 0 for every n ∈ Z+. By applying
Lemma 4.4 in case p ∈Z+, since s=Σ p(∆ps) we conclude that s is strictly increasing. Hence
s(n) > 0 for every n ∈ Z+. From Lemma 4.4 we also derive that if p ∈ Z+, then s is convex.
We have thus proved (4.7.1) and (4.7.2), plus the final assertion.
Now we prove (4.7.3). If p= 0, the desired result holds as +∞= lim

n→+∞
(∆0s)(n)= lim

n→+∞
s(n).

Thus, let us assume p ∈ Z+. Since ∆ps is nondecreasing, from Theorem 4.3 it follows that,
for each n ∈ Z+, we have

s(n) =
(
Σ p(∆ps)

)
(n) ≥

1
p+1

(
n+ p

p

)
(∆ps)(n)+

p
p+1

(
n+ p

p

)
s(0)

≥
1

p+1

(
n+ p

p

)
(∆ps)(n)

and consequently

s(n)
np ≥

p∏
k=1

(n+ k)

(p+1)!np · (∆
ps)(n) ≥

(∆ps)(n)
(p+1)!

.

Since lim
n→+∞

(∆ps)(n) = +∞, we obtain the desired result.
We prove (4.7.4). Since s(n) ≥ 0 for every n ∈ N, it suffices to prove that the sequence(

s(n)
np+1

)
n∈Z+

is bounded from above. By Remark 3.4, the sequence
(

(∆p s)(n)
n

)
n∈Z+

is bounded
from above, which is the desired result if p = 0. Now suppose p ∈ Z+. From Theorem 4.3 it
follows that

s(n)
np+1 =

(
Σ p(∆ps)

)
(n)

np+1 ≤
1
p!


p∏

k=1
(n+ k)

np

( (∆ps)(n)
n

)
for every n ∈ Z+.

Since lim
n→+∞

( p∏
k=1

(n+k)

np

)
= 1 and

(
(∆p s)(n)

n

)
n∈Z+

is bounded from above, we obtain the desired
result.
Now we prove (4.7.5). We prove that lim

n→+∞
(∆s)(n)

s(n) = 0, which is equivalent to proving that

lim
n→+∞

s(n+1)
s(n) = 1 by Remark 4.6. If p = 0, then s is concave by hypothesis. Furthermore, s is
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strictly increasing and lim
n→+∞

s(n) = +∞. Since ∆s converges by Lemma 4.5, it follows that

lim
n→+∞

(∆s)(n)
s(n) = 0. Now assume p ∈ Z+ (and consequently p−1 ∈ N). From Theorem 4.3 we

derive that, for each n ∈ N, we have

s(n) =
(
Σ p(∆ps)

)
(n) ≥

1
p+1

(
n+ p

p

)
(∆ps)(n) (as (∆ps)(0) = s(0) ≥ 0)

and

(∆s)(n) =
(
Σ p−1(∆ps)

)
(n) ≤

(
n+ p−1

p−1

)
(∆ps)(n).

Since both s(n) and (∆s)(n) are strictly positive for every n ∈ Z+ (see (4.7.1) and (4.7.2)),
from the two inequalities above we conclude that

0 <
(∆s)(n)

s(n)
≤

(
n+p−1

p−1

)
(∆ps)(n)

1
p+1

(
n+p

p

)
(∆ps)(n)

=

(n+p−1)!
(p−1)!n!

1
p+1 ·

(n+p)!
p!n!

=
(p+1)! (n+ p−1)!

(p−1)! (n+ p)!
=

p(p+1)
n+ p

for every n ∈ Z+. Now lim
n→+∞

p(p+1)
n+p = 0 yields lim

n→+∞
(∆s)(n)

s(n) = 0, which is the desired result.
Finally, (4.7.6) is a consequence of Corollary 3.10 and Lemma 4.5. The proof is now
complete. �

Remark 4.8. Under the hypotheses of Theorem 4.7, for each j = 0, . . . , p we have
∆p− j(∆ js) = ∆ps. Since (∆ js)(0) = s(0) ≥ 0, we are enabled to apply Theorem 4.7 to the
sequence ∆ js. Hence:

(4.8.1) (∆ js)(n) > 0 for every n ∈ Z+;

(4.8.2) ∆ js is strictly increasing;

(4.8.3) lim
n→+∞

(∆ j s)(n)
np− j = +∞ (and consequently lim

n→+∞
(∆ js)(n) = +∞);

(4.8.4) the sequence
(

(∆ j s)(n)
np+1− j

)
n∈Z+

is bounded;

(4.8.5) lim
n→+∞

(∆ j s)(n+1)
(∆ j s)(n) = 1 (or, equivalently, lim

n→+∞
(∆ j+1 s)(n)
(∆ j s)(n) = 0).

If in addition j < p, then the sequence ∆ js is also convex.

We conclude this section with an example of an important sequence satisfying the hy-
potheses of Theorem 4.7, that is, the sequence of the Cesàro numbers of order α for α > 0.

Example 4.9. Fix α ∈ (0,+∞), and consider the sequence Aα :N→R of the Cesàro numbers
of order α. Then Aα(0) = 1 > 0. Also, from (2.1) it follows that Aα = ΣAα−1, or equivalently
∆Aα = Aα−1. Hence ∆kAα = Aα−k for each k ∈ N. Now we set

p =max{k ∈ N : k < α}. (4.1)

Then

p =

[α] if α < Z+
α−1 if α ∈ Z+

and 0 < α− p ≤ 1.
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Since α− p > 0, from (2.2) we derive that the sequence ∆pAα = Aα−p is unbounded from
above. Besides, since −1 < α− p−1 ≤ 0, it follows that the sequence ∆(∆pAα) = Aα−p−1 is
nonincreasing (see [13], III, (1-17)), and consequently ∆pAα is concave. Hence Aα satisfies
the hypotheses of Theorem 4.7 if p is as in (4.1).

Notice that a real sequence need not be infinite of order α for some α ∈ (0,+∞) in or-
der to satisfy the hypotheses of Theorem 4.7: for instance, the sequence

(
log(n+1)

)
n∈N

of nonnegative real numbers, being concave and unbounded from above, satisfies the hy-
potheses of Theorem 4.7 for p = 0. Nevertheless, it is infinite of order less than α for each
α ∈ (0,+∞).

5 An index of unboundedness from above for a real sequence

Definition 5.1. For each real sequence a : N→ R, we set

H(a) = inf
{
m ∈ N : the sequence

(
a(n)
nm

)
n∈Z+

is bounded from above
}
.

Remark 5.2. Let a : N→ R be a real sequence. We observe that H(a) ∈ N∪ {+∞} and the
infimum above is attained if and only if H(a) < +∞. Also, H(a) < +∞ if and only if the
sequence

(a(n)
nα

)
n∈Z+

is bounded from above for some α ∈ [0,+∞), in which caseH(a) is the

minimum nonnegative integer m for which the sequence
( a(n)

nm

)
n∈Z+

is bounded from above.

Moreover, ifH(a) < +∞, then clearly
(a(n)

nm

)
n∈Z+

is bounded from above for every m ∈NH(a)
(indeed, for every m ∈ [H(a),+∞)). Notice also that a is bounded from above if and only if
H(a) = 0.
Finally, we remark that if s :N→R is a real sequence satisfying the hypotheses of Theorem
4.7, thenH(s) = p+1. Thus, if s : N→ R is a real sequence such that s(0) ≥ 0, there exists
at most one p ∈ N for which the hypotheses of Theorem 4.7 are satisfied.

Theorem 5.3. Let b : N→ R be a real sequence, which is not bounded from above and
satisfiesH(b) < +∞. ThenH(b) ∈ Z+. Besides, if we set p =H(b)−1, then p ∈N and b has
a majorant s :N→ R such that s(0) ≥ 0 and ∆ps is concave and is not bounded from above
(which implies that s satisfies (4.7.1)–(4.7.6), besides being convex if p ∈ Z+—equivalently,
ifH(b) ∈ N2), and moreover limsup

n→+∞

b(n)
s(n) ∈

[ 1
p+1 ,1

]
=

[ 1
H(b) ,1

]
.

Proof. Let us first notice thatH(b) ∈ Z+—and consequently p ∈ N—by Remark 5.2, being
b unbounded from above. By going to the sequence

b̃ : N 3 n 7−→

b(n) if n ∈ Z+
0 if n = 0

∈ R

if b(0) < 0, it is not restrictive to assume that b(0) ≥ 0. Now let a : N→ R be the sequence
defined by

a(n) =
(p+1)b(n)(

n+p
p

) − pb(0) for every n ∈ N.
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Then a(0) = b(0). Furthermore, since lim
n→+∞

(n+p
p )

np = lim
n→+∞

( p∏
k=1

(n+k)

p!np

)
= 1

p! , and the sequence( b(n)
np+1

)
n∈Z+

is bounded from above, whereas
( b(n)

np

)
n∈Z+

is not (asH(b) = p+1), it follows that

the sequence
(a(n)

n
)
n∈Z+

is bounded from above, and a is not. Hence a has a concave majorant
by Proposition 3.3, and consequently (see Remark 3.5) has a least concave majorant. Let
c :N→R denote the least concave majorant of a. Then from (3.6.1) we obtain c(0) = a(0) =
b(0). Moreover, from Theorem 3.9 we conclude that c is strictly increasing, lim

n→+∞
c(n) =

+∞, and limsup
n→+∞

a(n)
c(n) = 1. Hence lim

n→+∞

pb(0)
c(n) = 0, and consequently

limsup
n→+∞

b(n)
1

p+1

(
n+p

p

)
c(n)
= 1. (5.1)

Now let s ∈RN be defined by s = Σ pc. We prove that s is a majorant of b. Since c is concave
and nondecreasing, from Theorem 4.3 we derive that, for each n ∈ N, we have

s(n) = (Σ pc)(n) ≥
1

p+1

(
n+ p

p

)
c(n)+

p
p+1

(
n+ p

p

)
c(0)

=
1

p+1

(
n+ p

p

)
c(n)+

p
p+1

(
n+ p

p

)
b(0)

≥
1

p+1

(
n+ p

p

)
a(n)+

p
p+1

(
n+ p

p

)
b(0)

=
1

p+1

(
n+ p

p

)  (p+1)b(n)(
n+p

p

) − pb(0)

+ p
p+1

(
n+ p

p

)
b(0)

= b(n)−
p

p+1

(
n+ p

p

)
b(0)+

p
p+1

(
n+ p

p

)
b(0) = b(n),

which is the desired result. We also remark that s(0) = c(0) = b(0) ≥ 0, and ∆ps = c is con-
cave and is not bounded from above.
Now it remains to prove that limsup

n→+∞

b(n)
s(n) ∈

[ 1
p+1 ,1

]
. From Theorem 4.7 it follows that

(Σ pc)(n) = s(n) > 0 for every n ∈ Z+. Then, since s is a majorant of b, we clearly have
limsup
n→+∞

b(n)
s(n) ≤ 1. Finally, we prove that limsup

n→+∞

b(n)
s(n) ≥

1
p+1 . Since c is strictly increasing,

c(0) ≥ 0 yields c(n) > 0 for every n ∈ Z+. Then

b(n)
s(n)
=

 b(n)
1

p+1

(
n+p

p

)
c(n)


 1

p+1

(
n+p

p

)
c(n)

(Σ pc)(n)

 for every n ∈ Z+. (5.2)

Since c is concave and nondecreasing, from Theorem 4.3 we conclude that

1
p+1

≤

1
p+1

(
n+p

p

)
c(n)

(Σ pc)(n)
for every n ∈ Z+. (5.3)

Now the desired result is a consequence of (5.1), (5.2) and (5.3). The proof is thus complete.
�
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We remark that, by virtue of Theorem 5.3, any real sequence b which is unbounded
from above and such that H(b) < +∞, has a majorant s which enjoys the good properties
of Theorem 4.7 for p =H(b)−1, satisfiesH(s) = p+1 =H(b) (see Remark 5.2) and is not
infinite of higher order than b (equivalently, has a subsequence which is infinite of the same
order as the corresponding subsequence of b). Thus, in some sense, s is not ”too far” from
b.

Proposition 5.4. Let a : N→ R be a real sequence, and q ∈ Z+ be such that ∆qa ∈ `1. Then
H(a) ≤ q−1.

Proof. If we set M = ‖∆qa‖`1 , for each n ∈ N we have

(∆q−1a)(n) ≤ |(∆q−1a)(n)| = |(Σ∆qa)(n)| =

∣∣∣∣∣∣∣
n∑

k=0

(∆qa)(k)

∣∣∣∣∣∣∣
≤

n∑
k=0

|(∆qa)(k)| ≤ M = MA0(n).

Since the linear operator Σ preserves inequalities, and consequently Σq−1 also does, from
(2.1) we conclude that

a(n) = (Σq−1∆q−1a)(n) ≤ M(Σq−1A0)(n) = MAq−1(n) = M
(
n+q−1

n

)
for each n ∈ N.
Since lim

n→+∞
1

nq−1

(
n+q−1

n

)
= 1

(q−1)! , and consequently the sequence
(

1
nq−1

(
n+q−1

n

))
n∈Z+

is bound-

ed, it follows that the sequence
(

a(n)
nq−1

)
n∈Z+

is bounded from above. HenceH(a) ≤ q−1. �

Remark 5.5. Let a : N→ R be a real sequence. If ∆qa ∈ `1 for some q ∈ N, since ∆(`1) ⊆ `1
it follows that ∆ka ∈ `1 for each k ∈ Nq.

Remark 5.6. If a real sequence a is unbounded from above, and q ∈ Z+ is such that ∆qa ∈ `1,
then from Proposition 5.4 it follows that q ≥ 2 (asH(a) ≥ 1).

6 A uniform ergodic theorem for Nörlund means

We begin with a result relating several properties of the sequence of the norms of the iterates
of a bounded linear operator.

Theorem 6.1. Let X be a complex nonzero Banach space, and T ∈ L(X). Then the following
conditions are equivalent:

(6.1.1) H
(
(‖T n‖L(X))n∈N

)
< +∞;

(6.1.2) there exists a sequence b of strictly positive real numbers such that H(b) < +∞,
lim

n→+∞
b(n) = +∞, and lim

n→+∞

‖T n‖L(X)
b(n) = 0;
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(6.1.3) there exists a sequence s of strictly positive real numbers such that ∆ps is concave and
unbounded from above for some p ∈ N (which implies that s satisfies (4.7.2)–(4.7.6),
besides being convex if p ∈ Z+), and lim

n→+∞

‖T n‖L(X)
s(n) = 0;

(6.1.4) there exists a nondecreasing sequence s of strictly positive real numbers such that
lim

n→+∞
s(n) = +∞, lim

n→+∞
s(n+1)

s(n) = 1, ∆qs ∈ `1 for some q ∈ N2, and lim
n→+∞

‖T n‖L(X)
s(n) = 0.

Furthermore, if b : N→ R is a sequence of strictly positive real numbers satisfying (6.1.2),
then H(b) ∈ Z+, and a sequence s : N→ R of strictly positive real numbers can be cho-
sen so that (6.1.3) is satisfied for p =H(b)− 1, s(n) ≥ b(n) for each n ∈ N, and moreover
limsup
n→+∞

b(n)
s(n) ∈

[ 1
H(b) ,1

]
.

Finally, the equivalent conditions (6.1.1)–(6.1.4) imply the following:

(6.1.5) r(T ) ≤ 1.

Proof. We begin by proving that (6.1.1) implies (6.1.2). If H
(
(‖T n‖L(X))n∈N

)
< +∞, it

suffices to define b : N → R as follows: b(n) = (n+1)H((‖T k‖L(X))k∈N )+1 for every n ∈ N.

Indeed, b(n) > 0 for every n ∈ N, lim
n→+∞

‖T n‖L(X)
b(n) = lim

n→+∞

(
‖T n‖L(X)

(n+1)H((‖Tk‖L(X))k∈N )

) ( 1
n+1

)
= 0, and

H(b) =H
(
(‖T n‖L(X))n∈N

)
+1 < +∞.

Now let us assume that condition (6.1.2) is satisfied by a sequence b of strictly positive
real numbers. Since H(b) < +∞ and b is unbounded from above, from Theorem 5.3 it
follows that H(b) ∈ Z+. Furthermore, if we set p =H(b)− 1 (which gives p ∈ N), then b
has a majorant s such that ∆ps is concave and is not bounded from above, and besides
limsup
n→+∞

b(n)
s(n) ∈

[ 1
H(b) ,1

]
. Notice also that s(n) ≥ b(n) > 0 for each n ∈ N. Finally, since

‖T n‖L(X)
s(n) ≤

‖T n‖L(X)
b(n) for each n ∈ N, we derive that lim

n→+∞

‖T n‖L(X)
s(n) = 0. Hence condition (6.1.3)

is satisfied by s for p =H(b)−1.
From Theorem 4.7 it follows that (6.1.3) implies (6.1.4). Now we prove that (6.1.4) implies
(6.1.1). Let s : N→ R be a nondecreasing sequence of strictly positive real numbers which

satisfies (6.1.4). Then H(s) ≤ q− 1 by Proposition 5.4. Also, the sequence
(
‖T n‖L(X)

s(n)

)
n∈N

is

bounded, and consequentlyH
(
(‖T n‖L(X))n∈N

)
≤H(s) < +∞.

We have thus proved equivalence of conditions (6.1.1)–(6.1.4), as well as the subsequent
claim. It remains to prove that if the equivalent conditions (6.1.1)–(6.1.4) are satisfied, then
r(T ) ≤ 1, which follows from Remark 2.5. �

Remark 6.2. If T is a bounded linear operator on a complex nonzero Banach space X, such
that r(T )< 1, then lim

n→+∞
‖T n‖L(X) = 0. Consequently, the sequence (‖T n‖L(X))n∈N is bounded,

which givesH
(
(‖T n‖L(X))n∈N

)
= 0.

However, condition (6.1.5) is not equivalent to (6.1.1)–(6.1.4). Indeed, the following ex-
ample shows that a bounded linear operator T on a complex nonzero Banach space X, such
that r(T ) = 1, need not satisfyH

(
(‖T n‖L(X))n∈N

)
< +∞.

Example 6.3. Let us consider the complex Hilbert space `2 and the unilateral weighted
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shift operator T : `2→ `2 defined by

T x =
+∞∑
n=0

e
1√

(n+1) x(n)en+1 for every x ∈ `2,

where {en : n ∈ N} denotes the canonical orthonormal basis of `2. Then T ∈ L(`2). Besides
(see [7], Solution 77), for each k ∈ Z+ we have

‖T k‖L(`2) = sup
{ k∏

j=1

e
1√
n+ j : n ∈ N

}
= sup

{
e

k∑
j=1

1√
n+ j : n ∈ N

}
= e

k∑
j=1

1√
j
.

Since 1√
j
→ 0 as j→ +∞, from the classical Cesàro means theorem we conclude that

k
√
‖T k‖L(`2) = e

1
k

k∑
j=1

1√
j
−−−−−−→

k→+∞
e0 = 1,

and consequently r(T ) = 1.
Now fix α ∈ (0,+∞). Since for each j ∈ Z+ we have 1√

j
≥ 1√

x
for every x ∈ [ j, j+ 1], and

consequently 1√
j
≥

∫ j+1
j

1√
x

dx, it follows that

k∑
j=1

1
√

j
≥

k∑
j=1

∫ j+1

j

1
√

x
dx =

∫ k+1

1

1
√

x
dx = 2

√
k+1−2 for every k ∈ Z+.

Then
‖T k‖L(`2)

kα
= e

k∑
j=1

1√
j
−α logk

≥ e2
√

k+1−α logk−2 −−−−−−→
k→+∞

+∞.

Hence the sequence
(
‖T n‖L(X)

nα
)
n∈Z+

is bounded from above for no α ∈ (0,+∞), that is,

H
(
(‖T n‖L(X))n∈N

)
= +∞.

Lemma 6.4. Let A be an algebra with identity 1A over K, τ ∈ A, a ∈ KN. Then for each
m ∈ Z+ and each n ∈ N we have  n∑

k=0

a(n− k)τk
 (1A−τ)m

= (−1)m
n+m∑
k=0

(∆ma)(n+m− k)τk +
m−1∑
j=0

(−1) j (∆ ja)(n+ j+1)(1A−τ)m−1− j.

Proof. We proceed by induction on m. We set

S =
{
m ∈ Z+ :

( n∑
k=0

a(n− k)τk
)
(1A−τ)m = (−1)m

n+m∑
k=0

(∆ma)(n+m− k)τk

+

m−1∑
j=0

(−1) j (∆ ja)(n+ j+1)(1A−τ)m−1− j for every n ∈ N
}
.
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Since for each n ∈ N we have n∑
k=0

a(n− k)τk
 (1A−τ) =

n∑
k=0

a(n− k)τk −
n∑

k=0

a(n− k)τk+1

=

n∑
k=0

a(n− k)τk −
n+1∑
k=1

a(n+1− k)τk

= −

n∑
k=0

a(n+1− k)τk +
n∑

k=0

a(n− k)τk −a(0)τn+1+a(n+1)1A

= −

 n∑
k=0

(∆a)(n+1− k)τk + (∆a)(0)τn+1

+ (∆0a)(n+1)1A

= −

 n+1∑
k=0

(∆a)(n+1− k)τk
+ (∆0a)(n+1)(1A−τ)0,

it follows that 1 ∈ S .
Now let m ∈ S . Then, since (∆ma)(0) = a(0) = (∆m+1a)(0), for each n ∈ N we have n∑

k=0

a(n− k)τk
 (1A−τ)m+1 =

( n∑
k=0

a(n− k)τk
)
(1A−τ)m

 (1A−τ)

=

(
(−1)m

n+m∑
k=0

(∆ma)(n+m− k)τk +
m−1∑
j=0

(−1) j(∆ ja)(n+ j+1)(1A−τ)m−1− j
)
(1A−τ)

= (−1)m
n+m∑
k=0

(∆ma)(n+m− k)τk + (−1)m+1
n+m∑
k=0

(∆ma)(n+m− k)τk+1

+

m−1∑
j=0

(−1) j(∆ ja)(n+ j+1)(1A−τ)m− j

= (−1)m+1

 n+m+1∑
k=1

(∆ma)(n+m+1− k)τk −
n+m∑
k=0

(∆ma)(n+m− k)τk


+

m−1∑
j=0

(−1) j(∆ ja)(n+ j+1)(1A−τ)m− j

= (−1)m+1
( n+m∑

k=0

(∆m+1a)(n+m+1− k)τk + (∆ma)(0)τn+m+1− (∆ma)(n+m+1)1A
)

+

m−1∑
j=0

(−1) j(∆ ja)(n+ j+1)(1A−τ)m− j

= (−1)m+1
( n+m∑

k=0

(∆m+1a)(n+m+1− k)τk + (∆m+1a)(0)τn+m+1
)

+(−1)m(∆ma)(n+m+1)1A+
m−1∑
j=0

(−1) j(∆ ja)(n+ j+1)(1A−τ)m− j
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= (−1)m+1
( n+m+1∑

k=0

(∆m+1a)(n+m+1− k)τk
)
+

m∑
j=0

(−1) j(∆ ja)(n+ j+1)(1A−τ)m− j,

from which we conclude that m+1 ∈ S . The proof is now complete. �

Lemma 6.5. Let s ∈KN be an eventually nonzero sequence, such that lim
n→+∞

s(n+1)
s(n) = 1. Then

for each k ∈ Z+ we have lim
n→+∞

(∆k s)(n)
s(n) = 0 and lim

n→+∞
s(n+k)

s(n) = 1.

Proof. We begin by proving that lim
n→+∞

(∆k s)(n)
s(n) = 0 for each k ∈ Z+, proceeding by induction.

From Remark 4.6 it follows that lim
n→+∞

(∆s)(n)
s(n) = 0. Now let k ∈ Z+ be such that lim

n→+∞
(∆k s)(n)

s(n) =

0. Since for each n ∈ N such that s(n) , 0—and therefore for sufficiently large n—we have

(∆k+1s)(n)
s(n)

=
(∆ks)(n)

s(n)
−

(∆ks)(n−1)
s(n−1)

·
s(n−1)

s(n)
,

we conclude that lim
n→+∞

(∆k+1 s)(n)
s(n) = 0, which gives the desired result.

Now, in order to finish the proof of the lemma, it suffices to observe that for each k ∈ Z+ we
have

s(n+ k)
s(n)

=

k−1∏
j=0

s(n+ j+1)
s(n+ j)

−−−−−−→
n→+∞

1.

�

Definition 6.6. If X is a normed space and T ∈ L(X), letMT : N→ R be the real sequence
defined by

MT (n) =max
{
‖T k‖L(X) : k = 0, . . . ,n

}
for every n ∈ N.

Theorem 6.7. Let X be a complex nonzero Banach space, T ∈ L(X), and b : N→ R be
a sequence of strictly positive real numbers, such that H(b) < +∞, lim

n→+∞
b(n) = +∞ and

lim
n→+∞

‖T n‖L(X)
b(n) = 0. Then r(T ) ≤ 1. Furthermore, if s : N→ R is any nondecreasing sequence

of strictly positive real numbers, such that lim
n→+∞

s(n) = +∞, lim
n→+∞

s(n+1)
s(n) = 1, ∆qs ∈ `1 for

some q ∈N2, and the sequence
(

b(n)
s(n)

)
n∈N

is bounded4, then lim
n→+∞

‖T n‖L(X)
s(n) = 0, and the follow-

ing conditions are equivalent:

(6.7.1) the sequence
( n∑

k=0
(∆s)(n−k)T k

s(n)

)
n∈N

converges in L(X);

(6.7.2) 1 is either in ρ(T ), or a simple pole of RT ;

(6.7.3) X =N(IX −T )⊕R(IX −T );

(6.7.4) R(IX −T ) is closed in X and X =N(IX −T )⊕R(IX −T ).

4Notice that, by virtue of Theorem 6.1, such a sequence s exists, and can be chosen so that it is not infinite
of higher order than b.
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Finally, if the equivalent conditions (6.7.1)–(6.7.4) are satisfied and P ∈ L(X) is such that
n∑

k=0
(∆s)(n−k)T k

s(n) −→ P in L(X) as n→ +∞, then P is the projection of X onto N(IX −T ) along
R(IX −T ).

Proof. We begin by remarking that r(T ) ≤ 1 by Theorem 6.1. Now let s : N → R be
a nondecreasing sequence of strictly positive real numbers, such that lim

n→+∞
s(n) = +∞,

lim
n→+∞

s(n+1)
s(n) = 1, ∆qs ∈ `1 for some q ∈ N2, and the sequence

(
b(n)
s(n)

)
n∈N

is bounded. Clearly,

lim
n→+∞

‖T n‖L(X)
b(n) = 0 yields lim

n→+∞

‖T n‖L(X)
s(n) = 0. We prove that conditions (6.7.1)–(6.7.4) are equiv-

alent.
We first observe that conditions (6.7.2)–(6.7.4) are equivalent by Theorem 2.1. Now sup-
pose that the equivalent conditions (6.7.2)–(6.7.4) are satisfied, and let P denote the projec-

tion of X ontoN(IX−T ) along R(IX−T ). Then P ∈ L(X). We prove that

n∑
k=0

(∆s)(n−k)T k

s(n) −→ P
in L(X) as n→ +∞.
Since T x = x for every x ∈ N(IX −T ), it follows that T P = P, and consequently T kP = P for
every k ∈ N. Then for each n ∈ N we have

n∑
k=0

(∆s)(n− k)T k

s(n)

 P =

n∑
k=0

(∆s)(n− k) P

s(n)
=


n∑

k=0
(∆s)(n− k)

s(n)

 P

=


n∑

j=0
(∆s)( j)

s(n)

P =
( (Σ∆s)(n)

s(n)

)
P =

( s(n)
s(n)

)
P = P. (6.1)

Now we prove that
( n∑

k=0
(∆s)(n−k)T k

s(n)

)
(IX −P) −→ 0L(X) in L(X) as n→ +∞. Since T satisfies

the equivalent conditions (6.7.2)–(6.7.4), from Theorem 2.1 it follows that N
(
(IX −T )n) =

N(IX −T ) and R
(
(IX −T )n) = R(IX −T ) for every n ∈ Z+. Then the bounded linear operator

A : R(IX −T ) 3 x 7−→ (IX −T )q−1x ∈ R(IX −T )

is bijective: indeed, since q ∈ N2 (and so q−1 ∈ Z+), we have

N(A) =N
(
(IX −T )q−1)∩R(IX −T ) =N(IX −T )∩R(IX −T ) = {0X},

and
R(A) = R

(
(IX −T )q) = R(IX −T ).

Since R(IX −T ) is a closed subspace of X, and consequently a Banach space, it follows that
the linear map A−1 : R(IX −T ) −→R(IX −T ) is bounded. Since IX −P is the projection of X
onto R(IX −T ) alongN(IX −T ), and consequently R(IX −P) =R(IX −T ), that is the domain
of A−1, we can define the linear operator

B : X 3 x 7−→ A−1(IX −P)x ∈ X.
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We remark that B ∈ L(X) and
(IX −T )q−1B = IX −P. (6.2)

By virtue of Lemma 6.4, for each n ∈ N we have
n∑

k=0
(∆s)(n− k)T k

s(n)

 (IX −T )q−1 =

(−1)q−1
n+q−1∑

k=0
(∆qs)(n+q−1− k)T k +

q−2∑
j=0

(−1) j (∆ j+1s)(n+ j+1)(IX −T )q−2− j

s(n)
,

from which we conclude that, for each n ∈ N, ∥∥∥∥∥∥∥∥∥∥∥


n∑
k=0

(∆s)(n− k)T k

s(n)

 (IX −T )q−1

∥∥∥∥∥∥∥∥∥∥∥
≤

q−2∑
j=0

|(∆ j+1s)(n+ j+1)|
s(n)

‖IX −T‖q−2− j
L(X) +

n+q−1∑
k=0
|(∆qs)(n+q−1− k)|‖T k‖L(X)

s(n)

≤

q−2∑
j=0

|(∆ j+1s)(n+ j+1)|
s(n)

‖IX −T‖q−2− j
L(X) +

MT (n+q−1)
s(n)

n+q−1∑
k=0

|(∆qs)(n+q−1− k)| (6.3)

=

q−2∑
j=0

|(∆ j+1s)(n+ j+1)|
s(n)

‖IX −T‖q−2− j
L(X) +

MT (n+q−1)
s(n)

n+q−1∑
h=0

|(∆qs)(h)|

≤

q−2∑
j=0

|(∆ j+1s)(n+ j+1)|
s(n)

‖IX −T‖q−2− j
L(X) +

MT (n+q−1)
s(n)

‖∆qs‖`1 .

For each j ∈ {0, . . . ,q−2}, we have

(∆ j+1s)(n+ j+1)
s(n)

=
(∆ j+1s)(n+ j+1)

s(n+ j+1)
·

s(n+ j+1)
s(n)

for each n ∈ N. (6.4)

From Lemma 6.5 it follows that

(∆ j+1s)(n+ j+1)
s(n+ j+1)

−−−−−−→
n→+∞

0 and
s(n+ j+1)

s(n)
−−−−−−→

n→+∞
1. (6.5)

Now from (6.4) and (6.5) we obtain

lim
n→+∞

(∆ j+1s)(n+ j+1)
s(n)

= 0 for all j = 0, . . . ,q−2,

from which we derive that
q−2∑
j=0

|(∆ j+1s)(n+ j+1)|
s(n)

‖IX −T‖q−2− j
L(X) −−−−−−→n→+∞

0. (6.6)
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By hypothesis, s is nondecreasing and s(n) > 0 for each n ∈ N. Then the sequence
(

1
s(n)

)
n∈N

is nonincreasing. Since lim
n→+∞

‖T n‖L(X)
s(n) = 0 = lim

n→+∞
1

s(n) (as lim
n→+∞

s(n) = +∞), from [2], 2.3 we

conclude that lim
n→+∞

MT (n)
s(n) = 0. Since lim

n→+∞

s(n+q−1)
s(n) = 1 by Lemma 6.5, we derive that

MT (n+q−1)
s(n)

=
MT (n+q−1)

s(n+q−1)
·

s(n+q−1)
s(n)

−−−−−−→
n→+∞

0.

This, together with (6.6) and (6.3), gives
n∑

k=0
(∆s)(n− k)T k

s(n)

 (IX −T )q−1 −−−−−−→
n→+∞

0L(X) in L(X).

Consequently, by (6.2),
n∑

k=0
(∆s)(n− k)T k

s(n)

 (IX −P)

=


n∑

k=0
(∆s)(n− k)T k

s(n)

 (IX −T )q−1B −−−−−−→
n→+∞

0L(X) in L(X). (6.7)

Now from (6.1) and (6.7) we conclude that
n∑

k=0
(∆s)(n− k)T k

s(n)
=


n∑

k=0
(∆s)(n− k)T k

s(n)

 P+


n∑

k=0
(∆s)(n− k)T k

s(n)

 (IX −P)

= P+


n∑

k=0
(∆s)(n− k)T k

s(n)

 (IX −P) −−−−−−→
n→+∞

P in L(X).

We have thus proved that if the equivalent conditions (6.7.2)–(6.7.4) are satisfied, then the

sequence
( n∑

k=0
(∆s)(n−k)T k

s(n)

)
n∈N

converges in L(X) to the projection of X onto N(IX −T ) along

R(IX −T ). It remains to prove that if the sequence
( n∑

k=0
(∆s)(n−k)T k

s(n)

)
n∈N

converges in L(X),

then the equivalent conditions (6.7.2)–(6.7.4) hold.

Let P ∈ L(X) be such that

n∑
k=0

(∆s)(n−k)T k

s(n) −→ P in L(X) as n→ +∞. Since

n+1∑
k=0

(∆s)(n+1− k)T k

s(n+1)
−−−−−−→

n→+∞
P in L(X) and

s(n+1)
s(n)

−−−−−−→
n→+∞

1,
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it follows that
n+1∑
k=0

(∆s)(n+1− k)T k

s(n)
−−−−−−→

n→+∞
P in L(X),

which in turn yields the following limit in L(X).

0L(X) = lim
n→+∞


n∑

k=0
(∆s)(n− k)T k

s(n)
−

n+1∑
k=0

(∆s)(n+1− k)T k

s(n)


= lim

n→+∞


n∑

k=0
(∆s)(n− k)T k

s(n)
−

(∆s)(n+1) IX +
n+1∑
k=1

(∆s)(n+1− k)T k

s(n)


= lim

n→+∞


n∑

k=0
(∆s)(n− k)T k

s(n)
−

(∆s)(n+1) IX +
n∑

k=0
(∆s)(n− k)T k+1

s(n)

 (6.8)

= lim
n→+∞


(IX −T )

n∑
k=0

(∆s)(n− k)T k

s(n)
−

(∆s)(n+1)
s(n)

IX


= lim

n→+∞
(IX −T )


n∑

k=0
(∆s)(n− k)T k

s(n)


(as lim

n→+∞
(∆s)(n+1)

s(n+1) = 0 by Remark 4.6, being lim
n→+∞

s(n+1)
s(n) = 1, and consequently (∆s)(n+1)

s(n) =

(∆s)(n+1)
s(n+1) ·

s(n+1)
s(n) −→ 0 as n→ +∞).

Now, for each n ∈ N, let fn : C −→ C be the polynomial defined by

fn(z) =

n∑
k=0

(∆s)(n− k)zk

s(n)
for each z ∈ C.

Since fn(1) = (Σ∆s)(n)
s(n) =

s(n)
s(n) = 1 and fn(T ) =

n∑
k=0

(∆s)(n−k)T k

s(n) for every n ∈ N, (6.8) enables us
to apply Theorem 2.2 (together with Remark 2.3) to the sequence ( fn)n∈N, and to conclude
that the equivalent conditions (6.7.2)–(6.7.4) are satisfied. This finishes the proof. �

Remark 6.8. Let X be a complex nonzero Banach space, T ∈ L(X), and s : N → R be
a nondecreasing sequence of strictly positive real numbers, such that lim

n→+∞
s(n) = +∞,

lim
n→+∞

s(n+1)
s(n) = 1, ∆qs ∈ `1 for some q ∈ N2 (which implies H(s) ≤ q − 1 by Proposition

5.4), and lim
n→+∞

‖T n‖L(X)
s(n) = 0. Then r(T ) ≤ 1 by Theorem 6.1. Furthermore, from Theorem
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6.7 and Theorem 2.4 we derive that, given any E ∈ L(X), the following two conditions are
equivalent:

(6.8.1) lim
n→+∞

∥∥∥∥∥∥∥∥
n∑

k=0
(∆s)(n−k)T k

s(n) −E

∥∥∥∥∥∥∥∥
L(X)

= 0;

(6.8.2) lim
λ→1+
‖ (λ−1)RT (λ)−E ‖L(X) = 0.

Also, if the equivalent conditions (6.8.1) and (6.8.2) are satisfied, then 1 is either in ρ(T ),
or a simple pole of RT (so that R(IX −T ) is closed in X and X =N(IX −T )⊕R(IX −T )), and
E is the projection of X onto N(IX −T ) along R(IX −T ).

The following is a consequence of Theorem 6.7 and Theorem 4.7.

Corollary 6.9. Let X be a complex nonzero Banach space, T ∈ L(X), and b : N→ R be
a sequence of strictly positive real numbers, such that H(b) < +∞, lim

n→+∞
b(n) = +∞ and

lim
n→+∞

‖T n‖L(X)
b(n) = 0 (so that r(T ) ≤ 1 by Theorem 6.1). If s : N→ R is any sequence of strictly

positive real numbers, such that ∆ps is concave and unbounded from above for some p ∈
N, and the sequence

(b(n)
s(n)

)
n∈N

is bounded, then lim
n→+∞

‖T n‖L(X)
s(n) = 0, and each of conditions

(6.7.2)–(6.7.4) is equivalent to the following:

(6.9.1) the sequence
( n∑

k=0
(∆s)(n−k)T k

s(n)

)
n∈N

converges in L(X).

Finally, if P ∈ L(X) is such that

n∑
k=0

(∆s)(n−k)T k

s(n) −→ P in L(X) as n→ +∞ (so that condi-
tions (6.7.2)–(6.7.4) are also satisfied), then P is the projection of X onto N(IX −T ) along
R(IX −T ).

Let α ∈ (0,+∞). By applying Theorem 6.7 or Corollary 6.9 to the sequences b =(
(n+1)α

)
n∈N and s = Aα (see Example 4.9, (2.2) and Theorem 4.7; see also (2.1)), we

derive that if T is a bounded linear operator on a complex nonzero Banach space X, such

that lim
n→+∞

‖T n‖L(X)
nα = 0, then the sequence

( n∑
k=0

Aα−1(n−k)T k

Aα(n)

)
n∈N

converges in L(X) if and only

if 1 is either in ρ(T ), or a simple pole of RT . From this and from the result by E. Hille
mentioned in the Introduction ([8], Theorem 6), together with Remark 6.8, Theorem 2.6
can be deduced. We remark that, however, Theorem 6.7 does not completely extend The-
orem 2.6 to a larger class of sequences than the one of the sequences of Cesàro numbers
(that is, the class of divergent nondecreasing sequences s of strictly positive real numbers
for which lim

n→+∞
s(n+1)

s(n) = 1 and ∆qs ∈ `1 for some q ∈ N2), and neither does Corollary 6.9
relative to the class of all sequences s of strictly positive real numbers for which ∆ps is
concave and unbounded from above for some p ∈ N. Indeed, if X is a complex nonzero
Banach space, T ∈ L(X), and s is a nondecreasing sequence of strictly positive real num-
bers, such that lim

n→+∞
s(n) = +∞, lim

n→+∞
s(n+1)

s(n) = 1, ∆qs ∈ `1 for some q ∈N2, and the sequence( n∑
k=0

(∆s)(n−k)T k

s(n)

)
n∈N

converges in L(X), then ‖T n‖L(X)
s(n) need not converge to zero as n→ +∞,
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even if ∆ps is concave and unbounded from above for some p ∈ N. The following is an
example.

Example 6.10. Let us consider the complex Banach space C2, endowed with the infinity
norm (that is, ‖(z1,z2)‖C2 = max{|z1|, |z2|} for all (z1,z2) ∈ C2). If A ∈ L(C2) is the operator

represented by the matrix
(
1 1
0 1

)
(with respect to the canonical basis of C2), then σ(A) =

{1}. Furthermore, for each n ∈ N, An is represented by the matrix
(
1 n
0 1

)
.

Now let T ∈ L(C2) be defined by T = −A. Then σ(T ) = {−1}, which gives r(T ) = 1 and
1 ∈ ρ(T ).
We define a sequence a : N→ R of strictly positive real numbers as follows:

a(n) =


1 if n = 0
5
2 if n = 1

1
n−1 +

2
n +

1
n+1 if n ∈ N2.

Since a(2) = 7
3 <

5
2 = a(1), it follows that the sequence

(
a(n))n∈Z+ is strictly decreasing. Now

let s :N→ R be the sequence defined by s = Σa. Then ∆s = a. We also remark that s(n) > 0
for each n ∈N, and lim

n→+∞
s(n) = +∞. Furthermore, since the sequence

(
s(n+1)− s(n)

)
n∈N =(

a(n+1)
)
n∈N is strictly decreasing, it follows that s is concave. Then s satisfies the hypothe-

ses of Theorem 4.7 for p = 0 (so that lim
n→+∞

s(n+1)
s(n) = 1 and ∆2s ∈ `1).

We prove that
n∑

k=0
(∆s)(n− k)T k

s(n)
−−−−−−→

n→+∞
0L(C2) in L(C2). (6.9)

We remark that, for each k ∈ N, T k is represented by the matrix
(
(−1)k (−1)kk

0 (−1)k

)
. Hence

proving (6.9) is equivalent to proving that

n∑
k=0

(−1)k(∆s)(n− k)

s(n)
−−−−−−→

n→+∞
0 (6.10)

and
n∑

k=0
(−1)kk (∆s)(n− k)

s(n)
−−−−−−→

n→+∞
0. (6.11)

We begin by proving (6.10). We observe that for each n ∈ N we have

n∑
k=0

(−1)k(∆s)(n− k) =
n∑

k=0

(−1)n−k(∆s)(k) = (−1)n
n∑

k=0

(−1)ka(k). (6.12)

Since a is eventually nonincreasing and lim
n→+∞

a(n) = 0, we conclude that the series
+∞∑
n=0

(−1)na(n) converges, and consequently the sequence
(

n∑
k=0

(−1)ka(k)
)

n∈N
is bounded.
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Since lim
n→+∞

s(n) = +∞, the desired result now follows from (6.12).

Now we prove (6.11). We first remark that, since for each t ∈ (−1,1) we have 1
(1−t)2 =

+∞∑
n=1

ntn−1, we obtain

+∞∑
n=0

(−1)nntn = −t
+∞∑
n=1

n(−t)n−1 = −
t

(t+1)2 for each t ∈ (−1,1). (6.13)

Also, since
+∞∑
n=0

tn
n+1 =

1
t

+∞∑
n=1

tn
n = −

log(1−t)
t for each t ∈ (0,1), we conclude that

−
(t+1)2 log(1− t)

t
= (t2+2t+1)

+∞∑
n=0

tn

n+1

=

+∞∑
n=0

tn+2

n+1
+

+∞∑
n=0

2 tn+1

n+1
+

+∞∑
n=0

tn

n+1
= 1+

( 1
2 +2

)
t+
+∞∑
n=2

( 1
n−1 +

2
n +

1
n+1

)
tn (6.14)

= 1+ 5
2 t+

+∞∑
n=2

( 1
n−1 +

2
n +

1
n+1

)
tn =

+∞∑
n=0

a(n) tn for each t ∈ (0,1).

Since

−
t

(t+1)2

(
−

(t+1)2 log(1− t)
t

)
= log(1− t) = −

+∞∑
n=1

tn

n
for each t ∈ (0,1),

from (6.13) and (6.14) it follows that

n∑
k=0

(−1)kk a(n− k) = −
1
n

for each n ∈ Z+. (6.15)

Since lim
n→+∞

s(n) = +∞, from (6.15) we conclude that

n∑
k=0

(−1)kk (∆s)(n− k)

s(n)
=

n∑
k=0

(−1)kk a(n− k)

s(n)
= −

1
n s(n)

−−−−−−→
n→+∞

0,

which is the desired result. We have thus proved (6.10) and (6.11), and consequently (6.9).

Hence r(T ) = 1, 1 ∈ ρ(T ), and the sequence
( n∑

k=0
(∆s)(n−k)T k

s(n)

)
n∈N

converges in L(C2) to 0L(C2),

which is, by the way, the projection of C2 onto {0C2} =N(IC2 −T ) along C2 = R(IC2 −T ).

Nevertheless, we prove that the sequence
(
‖T n‖L(C2)

s(n)

)
n∈N

does not converge to zero as
n→ +∞.
Since for each n ∈ N we have

‖T n(z1,z2)‖C2 = ‖(−1)n(z1+nz2,z2)‖C2 =max{|z1+nz2|, |z2|} ≤max{|z1|+n|z2|, |z2|}

≤ (n+1)max{|z1|, |z2|} = (n+1)‖(z1,z2)‖C2 for each (z1,z2) ∈ C2
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and
‖T n(1,1)‖C2 = ‖(n+1,1)‖C2 = n+1,

being ‖(1,1)‖C2 = 1 it follows that ‖T n‖L(C2) = n+1 for each n ∈N. On the other hand, since
s is concave, by Remark 3.4 there exists M ∈ (0,+∞) such that s(n)

n+1 ≤ M for each n ∈ N.
Since s(n) > 0 for each n ∈ N, it follows that

‖T n‖L(C2)

s(n)
=

n+1
s(n)

≥
1
M

for each n ∈ N.

Hence the sequence
(
‖T n‖L(C2)

s(n)

)
n∈N

does not converge to zero as n→ +∞.

Actually, we can see that lim
n→+∞

‖T n‖L(C2)
s(n) = +∞. Indeed, since for each k ∈N2 we have 1

k ≤
1
x

for each x ∈ [k− 1,k], and consequently 1
k ≤

∫ k
k−1

1
x dx, it follows that for each n ∈ N3 we

have

s(n) = 1+ 5
2 +

n∑
k=2

( 1
k−1 +

2
k +

1
k+1

)
≤ 7

2 +4
n∑

k=2

1
k−1 =

7
2 +4+4

n∑
k=3

1
k−1 =

15
2 +4

n−1∑
k=2

1
k

≤ 15
2 +4

n−1∑
k=2

∫ k

k−1

1
x dx = 15

2 +4
∫ n−1

1

1
x dx = 15

2 +4log(n−1).

Hence
‖T n‖L(C2)

s(n)
=

n+1
s(n)

≥
n+1

15
2 +4log(n−1)

for each n ∈ N3,

which gives lim
n→+∞

‖T n‖L(C2)
s(n) = +∞.
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