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Abstract

The purpose of this paper is to study functions in the unit disk D through the fam-

ily of Toeplitz operators {Tϕdσt }t∈[0,1), where Tϕdσt is the Toeplitz operator acting the

Bergman space of D and where dσt is the Lebesgue measure in the circle tS 1. In

particular for 1 ≤ p <∞ we characterize the harmonic functions ϕ in the Hardy space

hp(D) by the growth in t of the p-Schatten norms of Tϕdσt . We also study the depen-

dence in t of the norm operator of Tadσt when a ∈ H
p
at, the atomic Hardy space in the

unit circle with 1/2 < p ≤ 1.

AMS Subject Classification: Primary 47B35; Secondary 30H10, 42B30

Keywords: Toeplitz operators, Hardy spaces, Schatten classes

1 Introduction and notation

For 0 < p <∞, let Ap be the Bergman space of all the holomorphic functions on the open

unit disk D, such that

‖ f ‖p =

(∫

D

| f |pdA

)1/p

<∞,

where dA is the normalized Lebesgue measure on D.
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Denote by L(Ap) the bounded operators inAp and for p > 0, let S p be the Schatten classes

in the Bergman space A2. For a complex Borel measure µ on D the Toeplitz operator

Tµ :A2→ hol (D) is defined by

Tµ f (z) =

∫

D

f (w)

(1− zw)2
dµ (w) ,

where hol (D) is the space of all holomorphic functions on D. The measure µ is called the

symbol of Tµ. When dµ = ϕdA with ϕ ∈ L1(D) we write Tϕ.

Consider the case when µ is a Borel measure supported at tS 1 := {z ∈ D : |z| = t} given

by

µ(A) =

∫

tS 1

a(w)dσt(w)

where a ∈ L1(tS 1) and dσt is the arc length measure on tS 1. We will write in this case

dµ = adσt. Thus we have

Tadσt
f (z) = t

∫ 2π

0

a(θ) f (teiθ)

(1− zte−iθ)2
dθ. (1.1)

If ϕ is measurable in D we can formally split the Toeplitz operator Tϕ as

Tϕ =

∫ 1

0

Tϕdσt
dt. (1.2)

In previous work [3], the authors obtained the precise dependence on t of the operator norm

and the p-Schatten norm of Tadσt
when a is a positive density in L1(tS 1). It is proved that

for a ≥ 0 in L1(tS 1) and 0 < t < 1, the norm operator
∥

∥

∥Tadσt

∥

∥

∥

L(A2)
satisfies

∥

∥

∥Tadσt

∥

∥

∥

L(A2)
∼

1

(1− t)2
sup

∫

Γ

a (ξ)dσt (ξ) , (1.3)

uniformly in [0,1), where the supremum is taken over all the arcs Γ contained in tS 1 such

that σt (Γ) ≤ (1− t). For the Schatten norms it was proved precise estimates for ‖Tadσt
‖S p

,

1 ≤ p <∞ (see (1.16) and (1.17) below). In view of (1.2) this allowed to study new classes

of Toeplitz operators Tϕ with finite mixed norms involving ‖Tϕdσt
‖S p

and a weighted Lq

norm in the variable t ∈ [0,1).

The purpose of this paper is twofold. First we want to study functionsϕ inD through the

family of operators {Tϕdσt
}t∈[0,1). In concrete we characterize the membership of a harmonic

function to the Hardy space hp = hp(D), 1≤ p<∞ by the p−Schatten norms of the operators

Tϕdσt
. On the other hand, extending the results in [3] we will study the behavior as t tends

to 1 of the norm of Tadσt
in Bergman spaces Aq, when a ∈ H

p
at the atomic Hardy space in

the unit circle for 1/2 < p ≤ 1.

We start in Section 2 by extending to complex functions, one side of the estimate (1.3)

for ‖Tadσt
‖L(Ap).

Theorem 1.1. Let a ∈ L1(tS 1), 0 < t < 1.
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a) For every p > 1 there exists a constant Cp > 0 such that

‖Tadσt
‖L(Ap) ≤

Cp

(1− t)2
sup

∣

∣

∣

∣

∣

∫

Γ

a(ξ)dσt(ξ)

∣

∣

∣

∣

∣

,

where the supremum is taken over all the arcs Γ contained in tS 1 such that σt (Γ) ≤

(1− t).

b) There exists a constant C > 0 such that

‖Tadσt
‖L(A1) ≤

C log(1/(1− t))

(1− t)2
sup

σt(Γ)<1−t

∣

∣

∣

∣

∣

∫

Γ

a(ξ)dσt(ξ)

∣

∣

∣

∣

∣

,

where the supremum is taken over all the arcs Γ contained in tS 1 such that σt (Γ) ≤

(1− t).

Next in Section 3 we characterize those functions u in D that belong to the Hardy space

hp by the growth of the Schatten norms ‖T|u|dσt
‖S p

.

Theorem 1.2. Let u : D→ C be a harmonic function and 1 ≤ p < ∞. Then the following

statements are equivalent

a) u ∈ hp.

b) L = sup
t0<t<1

‖T(1−t)1+1/p |u|dσt
‖S p

<∞, for some 0 < t0 < 1.

c) sup
0≤t<1

‖T(1−t)1+1/p |u|dσt
‖S p

<∞.

Some work has been done about Toeplitz operators with distributional symbols, see for

example [4, 5]. For h ∈ D′(S 1) we define the Toeplitz operator

Thdσt
f (z) =

〈

h,
f (tei·)

(1− zte−i·)

〉

, f ∈ hol(D), (1.4)

where 〈·, ·〉 is the duality pairing of D′(S 1)-C∞(S 1). We end the paper giving in Theorem

1.3 estimates for the growth in t of Schatten norms ‖Thdσt
‖S q

when h ∈ D′(S 1) belongs to

the atomic Hardy space H
p
at . We have

Theorem 1.3. Let h ∈ H
p
at with 1/2 < p ≤ 1 and q ≥ p then

a) For q > p given, there exists C > 0 such that

‖Thdσt
‖L(Aq) ≤

C‖h‖Hp
at

(1− t)1/q+1/p+1
.

b) There exists C > 0 such that

‖Thdσt
‖L(Ap) ≤

C

(1− t)2/p+1

(

log(1/(1− t))
)1/p
‖h‖Hp

at
.
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The following notations and facts will be used in the paper: We denote by D (z,r) the

hyperbolic disk in D, namely the disk centered at z and radius r > 0 with respect to the

Bergman metric

β (z,w) =
1

2
log
|1− zw|+ |z−w|

|1− zw| − |z−w|
.

The following inequalities will be useful.

∫ 1

0

ds

(1−αs)1+β
≤

C

(1−α)β
, α ∈ [0,1),β > 0, (1.5)

∫ 1

0

ds

1−αs
=

1

α
log

(

1

1−α

)

, α ∈ (0,1), (1.6)

If 0 ≤ t < 1,β > 0 then (see [2, Theorem 1.7])

∫ 2π

0

1

|1− teiθ|1+β
dθ ∼

1

(1− t)β
. (1.7)

The following estimate holds (see [6, Proposition 4.13]):

For each r > 0, q > 0, α > −1, there exists a constant Cr > 0 such that

| f (z)|q ≤
Cr

(1− |z|2)2+α

∫

D(z,r)

| f (w)|qdAα(w) (1.8)

for every holomorphic function f on D where dAα(z) = (1− |z|2)αdA(z).

In particular, for each q > 0 we have that

| f ′(z)|q ≤
Cr

(1− |z|2)2+q

∫

D(z,r)

(1− |w|2)q| f ′(w)|qdA(w) (1.9)

for every holomorphic function f on D.

Since for holomorphic functions is ‖(1− |z|) f ′‖q ≤Cq‖ f ‖q, we have for f ∈ Aq and q > 0,

| f (teiθ)| ≤
C

(1− t)2/q
‖ f ‖q, (1.10)

| f ′(teiθ)| ≤
C

(1− t)2/q+1
‖ f ‖q. (1.11)

If c > 0, t > −1, then (see [6, Lemma 3.10])

∫

D

(1− |w|2)t

|1− zw̄|2+t+c
dA(w) ∼

1

(1− |z|2)c
as |z| → 1−, (1.12)

and
∫

D

(1− |w|2)t

|1− zw̄|2+t
dA(w) ∼ log

1

1− |z|2
as |z| → 1−. (1.13)

For a function f defined and integrable on S 1 and τ > 0 we let the averaging operator

Eτ f (θ) =
1

2τ

∫ θ+τ

θ−τ

f (eiη)dη, (1.14)
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and denote the Hardy Littlewood maximal function as

M f (θ) = sup
τ>0

1

2τ

∫ θ+τ

θ−τ

f (eiη)dη = sup
τ>0

Eτ f (θ).

Notice that for τ > 0,

Eτ f ∗g(θ) = f ∗Eτg(θ), θ ∈ [0,2π),

where f ∗ g denotes the convolution in S 1. If ϕ is defined in D we will also write Eτϕ

meaning

Eτϕ(teiθ) =
1

2τ

∫ θ+τ

θ−τ

ϕ(teiη)dη.

Consider ψ : R→ R defined by

ψ(s) =
1

c

s1+p

(1+ s)1/2
χ[0,1)(s), (1.15)

with c chosen so that
∫ 1

0
ψ(s)ds = 1 and where χ[0,1) stands for the characteristic function of

[0,1).

For λ > 0, denote by ψλ(s) = λ−1ψ(λ−1s), so that ψλ acts as an approximate identity,

namely ψλ tends to the Dirac δ as λ goes to 0. If f is a nonnegative function in L1(tS 1),

0 ≤ t < 1, it was proved in [3] the two sided estimate of the Schatten norm of the Toeplitz

operator T f dσt
, valid for 1 < p <∞:

‖T f dσt
‖S p
∼ t1/p′(1− t)−(1+1/p)

{
∫ 1−t

0

‖Eτ f ‖
p

Lp(tS 1)
ψ1−t(τ)dτ

}1/p

, (1.16)

and

‖T f dσt
‖S 1
∼ (1− t)−2

∫ 1−t

0

‖ f ‖L1(tS 1)ψ1−t(τ)dτ, (1.17)

with constants independent of f and t. Here p′ denotes the conjugate exponent of p > 1.

2 Norm estimates for Tadσt
on the Bergman spaces Ap with a ∈

L1(tS 1)

Proof of Theorem 1.1. Fix r > 0 and let Kz be the reproducing kernel of A2 at the point

z ∈D. By (1.12) we have

‖Kz‖p ≤C(1− |z|)−2/p′ (2.1)

for all z ∈D, whenever p > 1.

We choose a partition {x0, . . . xN } of the interval [0,2π] such that the corresponding arcs

in tS 1 have lenght less than 1− t.
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For j = 0, . . . ,N −1 we set

D j :=
⋃

x j≤θ<x j+1

D(teiθ,r).

Let f ∈ hol(D), we integrate by parts to rewrite

Tadσt
f (z) =

N
∑

j=1

(

I j(z)+ J j(z)+L j(z)
)

,

where

I j(z) = t













∫ x j+1

x j

a(tei%)d%













f (teix j+1)

(1− zte−ix j+1)2
,

J j(z) = −it2

∫ x j+1

x j













∫ θ

x j

a(tei%)d%













eiθ f ′(teiθ)

(1− zte−iθ)2
dθ,

L j(z) = 2it2z

∫ x j+1

x j













∫ θ

x j

a(tei%)d%













e−iθ f (teiθ)

(1− zte−iθ)3
dθ.

Moreover, we set

γ = γa,t := sup

∣

∣

∣

∣

∣

∫

Γ

a(ξ)dσt(ξ)

∣

∣

∣

∣

∣

,

where the supremum is taken over all the arcs Γ contained in tS 1 with σt(Γ) ≤ 1− t.

We use (1.8) with α = 0, and (2.1) to get

‖I j‖p ≤
Cpγt

(1− t)2/p
‖K

te
ix j+1 ‖p

(∫

D(te
ix j+1 ,r)

| f (w)|pdA(w)

)1/p

(2.2)

≤
Cpγ

(1− t)2













∫

D j

| f (w)|pdA(w)













1/p

.

We use the Minkowski integral inequality, the inequality (1.9), and the assumption about

the points x j to obtain

‖J j‖p ≤ γt2

∫ x j+1

x j

| f ′(teiθ)|‖Kteiθ‖pdθ (2.3)

≤
Cpγt2

(1− t)3

∫ x j+1

x j

(∫

D(teiθ,r)

(1− |w|2)p| f ′(w)|pdA(w)

)1/p

dθ

≤
Cpγ

(1− t)2













∫

D j

(1− |w|2)p | f ′(w)|pdA(w)













1/p

.

In a similar way, we use (1.12) to get

‖L j‖p ≤ γt2

∫ x j+1

x j

| f (teiθ)|‖(1− ·teiθ)−3‖pdθ (2.4)

≤
Cpγt2

(1− t)3

∫ x j+1

x j

(∫

D(teiθ,r)

| f (w)|pdA(w)

)1/p

dθ

≤
Cpγ

(1− t)2













∫

D j

| f (w)|pdA(w)













1/p

.
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For small enough r > 0, we notice that the sets D j overlap each other at most twice. Thus

‖Tadσt
f ‖p ≤Cpγ(1− t)−2‖ f ‖p for all f ∈ Ap.

For p = 1 the Fubini theorem and (1.13) imply that

‖I j‖1 ≤ t

∣

∣

∣

∣

∣

∣

∫ x j+1

x j

a(tei%)d%

∣

∣

∣

∣

∣

∣

‖K
te

ix j+1 ‖1

(1− t)2

∫

D(te
ix j+1 ,r)

| f (w)|dA(w) (2.5)

≤ Cγ
log(1/(1− t))

(1− t)2

∫

D j

| f (w)|dA(w),

and

‖J j‖1 ≤ γ

∫ x j+1

x j

| f ′(teiθ)|‖Kteiθ‖1dθ (2.6)

≤ Cγ
log(1/(1− t))

(1− t)2

∫

D j

(1− |w|2)| f ′(w)|dA(w).

Using (1.12) we get that

‖L j‖1 ≤ 2γ

∫ x j+1

x j

| f (teiθ)|‖(1− ·teiθ)−3‖1dθ (2.7)

≤
Cγ

(1− t)2

∫

D j

| f (w)|dA(w).

Therefore ‖Tadσt
f ‖1 ≤Cγ(1− t)−2 log(1/(1− t))‖ f ‖1 for all f ∈ A1. �

3 Hardy classes and Toeplitz operators

Recall that the Hardy space hp, 1 ≤ p <∞ consists of all the harmonic functions u in D such

that

sup
t∈[0,1)

{∫ 2π

0

|u(teiθ)|p
dθ

2π

}1/p

<∞.

If u is any function defined in D, we denote by ut the function given in D as ut(z) =

u(tz), t ∈ [0,1), z ∈ D.

Proposition 3.1. Let p ≥ 1. There exists C > 0 such that if f ∈ Lp(S 1) and u is the harmonic

extension of f on D, then

sup
0≤t<1

‖T(1−t)1+1/pudσt
‖S p
≤C‖ f ‖Lp(S 1). (3.1)

Moreover, if f ≥ 0 then for t close to 1,

‖T(1−t)1+1/pudσt
‖S p
∼ ‖ f ‖Lp(S 1). (3.2)
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Proof. Let p > 1. To prove (3.1) assume first that f ≥ 0. Notice that the continuity ofM in

Lp(S 1) implies that

‖Eτu‖Lp(tS 1) ≤C‖ f ‖Lp(S 1), τ > 0, (3.3)

hence (3.1) follows by (1.16). Indeed,

‖Eτu‖Lp(tS 1) = t1/p‖Eτut‖Lp(S 1)‖ ≤ t1/p‖Mut‖Lp(S 1)

≤ C‖t1/put‖Lp(S 1) ≤C‖ f ‖Lp(S 1).

Hence by (1.16), ‖T(1−t)1+1/pudσt
‖ ≤C‖ f ‖Lp (S 1).

To prove (3.1) for a complex-valued function f , we write f = f1− f2+ i( f3− f4), where

each fi is nonnegative, then we have u = u1−u2− i(u3−u4), where ui is the Poisson integral

of fi. We have then

sup
0≤t<1

‖T(1−t)1+1/pudσt
‖S p
≤C

4
∑

i=1

‖ fi‖Lp(S 1) ≤C‖ f ‖Lp(S 1).

To prove (3.2) notice that

∣

∣

∣‖Eτu‖Lp(tS 1)−‖Eτut‖Lp(S 1)

∣

∣

∣ = (1− t1/p)‖Eτut‖Lp(S 1) ≤ (1− t1/p)‖Mut‖Lp(S 1)

≤C(1− t1/p)‖ut‖Lp(S 1) ≤C(1− t1/p)‖u‖hp . (3.4)

Thus,

lim
t→1

∣

∣

∣‖Eτu‖Lp(tS 1)−‖Eτut‖Lp(S 1)

∣

∣

∣→ 0

uniformly in τ. Also

‖ f −Eτut‖Lp(S 1) ≤ ‖ f −Eτ f ‖Lp(S 1)+ ‖Eτ(ut − f )‖Lp(S 1)

≤ ‖ f −Eτ f ‖Lp(S 1)+C‖ut − f ‖Lp(S 1), (3.5)

and since | f −Eτ f | ≤ | f |+M f we see by the Lebesgue’s dominated convergence theorem

that ‖ f −Eτut‖Lp(S 1) tends to 0 as t→ 0.

We conclude from (3.4) and (3.5) and the fact that ‖Eτu‖Lp(tS 1) is bounded by C‖ f ‖Lp(S 1)

that

lim
t→1

∣

∣

∣

∣
‖Eτu‖

p

Lp(tS 1)
−‖ f ‖

p

Lp(S 1)

∣

∣

∣

∣
≤C lim

t→1

∣

∣

∣‖Eτut‖Lp(S 1) −‖ f ‖Lp(S 1)

∣

∣

∣

≤C lim
t→1
‖Eτut − f ‖Lp(S 1) = 0,

uniformly in τ ∈ (0,1− t). Since ψ1−t is an approximate identity we finally have that

lim
t→1

t1/p′
∫ 1−t

0

‖Eτu‖
p

Lp(tS 1)
ψ1−t(τ)dτ = ‖ f ‖

p

Lp(S 1)
.

Then (3.2) follows from (1.16). The case p = 1 can by handled in a similar way, easier,

using (1.17) instead. �
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Proof of Theorem 1.2. Consider p > 1 first. a)⇒ c) follows from Proposition 3.1. Next

c)⇒ b) is obvious.

Now suppose that b) holds. Then the same is true for us uniformly for 0 < s < 1. In fact,

we write

us(te
iθ) = Ps ∗ut(θ), (3.6)

where Ps is the Poisson kernel in D. Then

‖Eτ(|us|)‖Lp (tS 1) ≤ ‖Eτ(t
1/p|Ps ∗ut |)‖Lp(S 1)

≤ ‖t1/pPs ∗Eτ(|ut |)‖Lp(S 1)

≤ ‖t1/pEτ(|ut |)‖Lp(S 1)

= ‖Eτ(|u|)‖Lp (tS 1).

Thus,

tp/p′
∫ 1−t

0

‖Eτ(|us|)‖
p

Lp(tS 1)
ψ1−t(τ)dτ ≤ Lp, for all 0 < s < 1. (3.7)

Now write

tp/p′
∫ 1−t

0

‖us‖
p

Lp(tS 1)
ψ1−t(τ)dτ = tp/p′

∫ 1−t

0

‖Eτ(|us|)‖
p

Lp (tS 1)
ψ1−t(τ)dτ

+ tp/p′
∫ 1−t

0

H(t,τ)ψ1−t(τ)dτ

where H(t,τ) = ‖us‖
p

Lp(tS 1)
−‖Eτ(|us|)‖

p

Lp(tS 1)
, so that

tp/p′
∫ 1−t

0

‖us‖
p

Lp(tS 1)
ψ1−t(τ)dτ ≤ Lp + tp/p′

∫ 1−t

0

H(t,τ)ψ1−t(τ)dτ. (3.8)

For s fixed, us and ∇us are bounded in D and so is Eτ(|us|) uniformly in τ. Thus,

|Eτ(|us|)(θ)− |us|(θ)| ≤
1

2τ

∫ θ+τ

θ−τ

||us(te
iη)| − |us(te

iθ)||dη

≤
1

2τ

∫ θ+τ

θ−τ

|us(te
iη)−us(te

iθ)|dη

≤
C

2τ

∫ θ+τ

θ−τ

|η− θ|dη ≤Cτ,

and for 0 < τ < 1− t we have

|H(t,τ)| ≤C|‖Eτ(|us|)‖Lp (tS 1)−‖us‖Lp(tS 1) |

≤C‖Eτ(|us|)− |us |‖Lp(tS 1) ≤C(1− t).

Thus H(t,τ) tends to zero uniformly as t→ 1− and 0 < τ < 1− t. Taking the limit in (3.8) as

t→ 1 we obtain by (1.16) that ‖us‖Lp(S 1) ≤ L and hence ‖u‖hp ≤ L. Hence b)⇒ a) and the

proof of the theorem is complete for p > 1. For p = 1 the result is obvious by (1.17). �
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We recall the definition of p-atom, see [1].

Definition 3.2. For 1/2 < p ≤ 1 we say that a : S 1→ C is an p-atom in S 1 if either a(t) ≡

1/(2π) or

a) a is supported in an interval I ⊂ S 1,

b) ‖a‖∞ ≤ 1/|I|1/p, where |I| is the arc length measure of I,

c)
∫

S 1 adσ = 0.

Notice that if a is a p-atom with 1/2 < p ≤ 1, and a , 1/(2π) then for every ϕ ∈C∞(S 1)

∣

∣

∣

∣

∣

∫

I

aϕdθ

∣

∣

∣

∣

∣

≤

∫

I

∣

∣

∣

∣
a(eiθ)

(

ϕ(eiθ)−ϕ(ζ)
)

∣

∣

∣

∣
dθ ≤ |I|2‖a‖∞‖ϕ

′‖∞ ≤ 2π‖ϕ′‖∞, (3.9)

where ζ is a point in I.

Denote by H
p
at the space of distributions inD′(S 1) of the form

h =

∞
∑

i=1

λiai, (3.10)

where the complex sequence (λi) satisfies
∑

|λi |
p < ∞, and each ai is a p-atom, and we

assume 1/2 ≤ p ≤ 1. By (3.9) we have that the series converges inD′(S 1). Denote

‖h‖Hp
at
= inf





























∞
∑

i=1

|λi |
p















1/p












,

where the infimum is taken over the representations (3.10).

If h =
∑∞

i=1 λiai ∈ H
p
at, by (1.4) we have that

Thdσt
f (z) =

∞
∑

i=1

λiTaidσt
f (z). (3.11)

Notice that the convergence of the series in D′(S 1) implies the pointwise convergence of
∑∞

i=1 λiTaidσt
f (z) and in particular the series in (3.11) does not depend on the representation

of h.

Proof of the Theorem 1.3. It suffices to prove that the estimates hold with the same constant

for any p-atom. Consider first a p-atom a different to the constant 1/(2π). Let I an interval

containing its support and satisfying (b) in the definition of p-atom. Let ζ be the center of

I, so we can write

Tadσt
f (z) =t

∫ 2π

0

a(θ)

[

f (teiθ)

(1− zte−iθ)2
−

f (tζ)

(1− ztζ)2

]

dθ

=S 1 f (z)+S 2 f (z),

where

S 1 f (z) = t

∫

I

a(θ)
f (teiθ)− f (tζ)

(1− zte−iθ)2
dθ,
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S 2 f (z) = t f (tζ)

∫

I

a(θ)

[

1

(1− zte−iθ)2
−

1

(1− ztζ)2

]

dθ.

To estimate S 1 f (z) we notice that for θ ∈ I, | f (teiθ)− f (tζ)| ≤ t|I|| f ′(teiξ)|, where ξ lies be-

tween θ and the argument of ζ. Using (1.11) we obtain

|S 1 f (z)| ≤
Ct2|I|1−1/p‖ f ‖q

(1− t)2/q+1

∫ 2π

0

χI(θ)

|1− zteiθ|2
dθ. (3.12)

Suppose first that 1/2 < p < 1 so that 1/p = 1+ s, with s ∈ (0,1). Then by Holder’s

inequality for the conjugate exponents 1/s and 1/(1− s), and using (1.7) we obtain

|S 1 f (z)| ≤
Ct2|I|−s‖ f ‖q

(1− t)2/q+1
|I|s

(
∫ 2π

0

1

|1− zteiθ|2/(1−s)
dθ

)1−s

(3.13)

≤
Ct2

(1− t)2/q+1

1

(1− |z|t)1/p
‖ f ‖q.

Now by (1.5) it follows that

‖S 1 f ‖q ≤
C

(1− t)1/q+1/p+1
‖ f ‖q, q > p (3.14)

and

‖S 1 f ‖p ≤
C

(1− t)2/p+1

(

log(1/(1− t))
)1/p
‖ f ‖p. (3.15)

On the other hand

∣

∣

∣

∣

∣

∣

∣

1

(1− zteiθ)2
−

1

(1− ztζ)2

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Γ

d

dw

1

(1− zw)2
dw

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫ θ0

θ

2tzi

(1− zteiϕ)3
dϕ

∣

∣

∣

∣

∣

∣

, (3.16)

where Γ es the arc in tS 1 connecting teiθ and ζ = teiθ0 .

Then using Holder’s inequality as in the previous estimate, Jensen’s inequality and

(1.11) we have

|S 2 f (z)| ≤t‖ f ‖L∞(tS 1)‖a‖∞

∫

I

∣

∣

∣

∣

∣

∣

1

(1− zte−iθ)2
−

1

(1− zζ)2

∣

∣

∣

∣

∣

∣

dθ (3.17)

≤
t‖ f ‖q|I|

−1/p+s

(1− t)2/q















∫

I

∣

∣

∣

∣

∣

∣

1

(1− zte−iθ)2
−

1

(1− ztζ)2

∣

∣

∣

∣

∣

∣

1/(1−s)

dθ















1−s

≤
t2‖ f ‖q‖|I|

−1/p+s

(1− t)2/q















∫

I

∣

∣

∣

∣

∣

∣

∫ θ0

θ

2zi

(1− zteiϕ)3
dϕ

∣

∣

∣

∣

∣

∣

1/(1−s)

dθ















1−s

≤
t2‖ f ‖q‖|I|

−1/p+s

(1− t)2/q

(∫

I

|θ− θ0|
1/(1−s)−1

∫ 2π

0

1

|1− zteiϕ|3/(1−s)
dϕdθ

)1−s

≤
Ct2‖ f ‖q

(1− t)2/q(1− |z|t)3−(1−s)
=

Ct2‖ f ‖q

(1− t)2/q(1− |z|t)1+1/p
.
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Hence using (1.5) we obtain for 1/2 < p < 1,

‖S 2 f ‖q ≤
Ct2‖ f ‖q

(1− t)1/p+1/q+1
, (3.18)

that together with (3.14) and (3.15) proves that there exist C > 0 such that

‖Tadσt
‖L(Aq) ≤

C

(1− t)1/p+1/q+1

and

‖Tadσt
‖L(Ap) ≤

C

(1− t)2/p+1

(

log(1/(1− t))
)1/p

for every p-atom a different to the constant 1/2π and constant independent of a.

For the case p = 1 we have

|Tadσt
f (z)| ≤

t

|I|

∫

I

| f (teiθ)|

|1− zteiθ|2
dθ ≤

Ct

|I|(1− t)2/q

∫

I

‖ f ‖q

|1− zteiθ|2
dθ.

When q > 1 the Minkowski integral inequality implies that

‖Tadσt
f ‖q ≤

Ct|I|‖ f ‖q

|I|(1− t)2/q(1− t)2−2/q
=

Ct‖ f ‖q

(1− t)2

for all f ∈ Aq.

When q = 1 = p Fubini’s theorem and (1.13) yield

‖Tadσt
f ‖1 ≤

Ct log(1/(1− t))‖ f ‖1

(1− t)2
.

The proof of the theorem is complete for non-constant atoms.

Now for a = 1/2π we have by Theorem 1.1 that

‖T(1/2π)dσt
‖L(Aq) ≤

C

1− t
, q > 1,

and

‖T(1/2π)dσt
‖L(A1) ≤

C

1− t
log(1/(1− t)) .

which imply the estimates of the theorem. The theorem follows expanding any h ∈ H
p
at as

h =
∑∞

i=1 λiai, with ai a p-atom and
∑∞

i=1 |λi |
p <∞.

�

For 0< p ≤ 1, we say that a harmonic function u inD belongs to the Hardy space Hp(D)

if the maximal function Mu(θ) = supz∈Γθ
|u(z)| ∈ Lp(S 1), where Γθ is the Stoltz region in D

with vertex in eiθ . For 1/2 < p ≤ 1 a function u belongs to Hp(D) if and only if it is the

Poisson integral of some f ∈ H
p
at, moreover in this case ut ∈ H

p
at for every 0 ≤ t < 1. Then

from Theorem 1.3 we have
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Corollary 3.3. If 1/2 < p ≤ 1, there exists C > 0 such that

‖Tut
‖ ≤

C‖u‖Hp (D)

(1− t)3/2+1/p
,

for every u ∈ hp(D).

Example 3.4. The function

f (z) =
1

(1− z)C
, C < 1,

belongs to the Hardy space h1 and it is known that h1∩hol(D) ⊂ H1(D). Then { f (tei(·)) : 0 ≤

t < 1)} ⊂ H1
at.

We consider the symbol ϕ = f (tei(·)), so we have

Tϕdσt
(1)(z) =

∫ 2π

0

tdθ

(1− zte−iθ)2(1− teiθ)C

=

∫ 2π

0

















∞
∑

n=0

(n+1)tnzne−inθ

































∞
∑

n=0

Γ(m+C)

m!Γ(C)
tmeimθ

















tdθ

=t

∞
∑

n=0

t2n(n+1)
Γ(n+C)

Γ(C)n!
zn

=t

∞
∑

n=0

t2n(n+1)3/2Γ(n+C)

Γ(C)n!
en(z),

where en(z) = (n+1)−1/2zn.

The Stirling’s formula implies that

‖Tϕdσt
‖2
L(A2)

≥ t2
∞
∑

n=0

t4n(n+1)3

(

Γ(n+C)

n!Γ(C)

)2

∼ t2
∞
∑

n=0

t4n(n+1)1+2C

∼ t2
∞
∑

n=0

t4nΓ(n+2+2C)

n!

∼
t2

(1− t2)2+2C
.

Thus,

‖Tϕdσt
‖L(A2) ≥

At

(1− t)a

for all a < 2, where A depends on a.
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