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Abstract

We prove a weighted Poincaré inequality in a subspace of BV}, whose elements have
variation measure in a Wiener amalgam space of Radon measures.
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1 Introduction

In the study of partial differential equations, a basic problem is to obtain controls on a func-
tion in terms of the norms of its distributional derivatives in some Banach space. Widely
used examples of such controls are Poincaré inequalities. The global form of these inequal-
ities are usually established in the Sobolev spaces (see [2], [8], [9]) and the space of func-
tions of bounded variation (see [1], [4], [11]). In this paper we derive a global, weighted,
weak-type Poincaré -Wirtinger inequality in the setting of a class of subspaces of the space
of functions of locally bounded variation on R, which contains properly Sobolev spaces.
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2 Results and notations

Let d be a fixed positive integer. R? is endowed with its usual Euclidean norm x ~ |x| and
Lebesgue measure E — |E| = fde.
If Q is an open subset of R? then

. we denote by LlloC (€Q2) the standard Lebesgue space of (equivalence classes modulo equal-
ity almost everywhere in Q of) locally integrable real valued functions on Q

. for any element @ of [1; 0], L*(Q2) is the classical Lebesgue space on Q equipped with its
usual norm || [lo. (I[|l e 18 simply denoted ||[|o)

. for any element f of Llloc(Q) we set

of of . of,

8x1 ’ o'?xz . Bxd

Vi=(

where a—f stands for the partial derivative, in the sense of distribution, of f with respect

to the j- th coordinate (1 < j < d).

Let M(R?) denotes the space of Radon measures on R?. We set
={0(x,r) = H[xj Lixj+ 51/ (x,r) € RYx(0;00)}

. S ={{Qiliecr CA/Icountableand Q;NQ;=0 if j+#i}

Lforl <a<p<oo,
TP R?) = {u € MR?Y) / |lullrra < oo}

with, for any element u of M(R9),
UP{(ZI(|Q1'|‘1’_1|/J|(Q1'))”)’I’ / {Qilier C S} if p<eo
sup{l0l=~'ul(Q) / Q € A} if p = oo

where |u| denotes the total variation of u.

llllrre =

Let us recall that:

. BVie(®R) = (f € L}, (®") | 55 € MR) for j=1,2,---,d)
is the space of functions of locally bounded variation,

. the variation measure |Df| of an element f of BVioe(RY) is defined by
IDfI(Q) = sup{ f FOdive(x)dx | ¢ = (@102, »pa) € CLOQRY), |g| < 1}
o)

for any open subset Q of R?, and there is a function oy from R4 to R, |D f|-measurable
and such that

1, almostevery x € Rd,

- fR 900 (IDSI), ¢ € ClR?,RY).

lom ¢ ()]
f fx)dive(x)dx
Rd
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Definition 2.1. For 1 < @ < p < o0, we set
BVPY(RY) = {f € BViec(RY) / IDf € T (R}
Our main result reads as follows.
Theorem 2.2. Let us suppose that 1 <« < d and f belongs to BV**(R).
1) There is a real number f() such that

1
|O(x, 1)l o(x,r)

lim fO)dy = fio)y x€RY 2.1)

1_1
1 o o771
2 If0sj<g if=

of T*%(RY) then

<< }y, f belongs to BVP*(RY) and v is a non negative element

<=

M = Fieolyen = SUpADAx € BRI J1F(0) = fiol > ANV <AL MNIDS llrne (2:2)

where A is a real number not depending on f and v.
Point 2) of Theorem 2.2 has the following non weighted form.

Theorem 2.3. Let us suppose that: 1 < a <d, é - [ll = % and f belongs to BVP*(RY). Then
1
I1f = fioolls.co := sup Alfx R/ |f(X) = fiowl > A7 < ANIDS] ll7pe (2.3)
>0

where A is a real number not depending on f.

In the sequel, we shall identify each element f of Llloc(Rd ) to the Radon measure yy on
R4 defined by duys(x) = f(x)dx. So Llloc(Rd) is viewed as the subspace of M (RY) consisting
in its absolutely continuous (with respect to the Lebesgue measure) elements.
Notice that

loc

WA = A = f Fldx, AcRL, ferl ®9)
A
Therefore, for 1 <a < p < oo,

F(Lp,@®RY) = {feLl R /IIflrapa = lylirra < oo}

is a subspace of TP2(RY). These spaces have been introduced in [5]. Let us recall some of
their properties and links with classical spaces.

Proposition 2.4. [5] Let us assume that 1 < a < p < co.

1) (TP2RY), || |I7pe) and (F(1, p,a), || llF(1,p.a)) are real Banach spaces.

2) If p<q<oothen
lellrae < lldllgra,  pe MER?)
and therefore, TP*(R?) is continuously embedded in T4*(R?).
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3) @) IfllFape) <Uflas f € L (R
and so L*(R?) is continuously embedded in F(1, p,a).
b) F(1,00,a)(RY) is the classical Morrey space Ll’d(l_é)(Rd) if @ < oo,
c) F(l,p,a)(Rd) = L*(RY) if a belongs to {1, p}.
d) L*(RY) is a proper subspace of F(1,p,a0)(RY) if 1 <a < p.

4) If p < co then
1im [l g0, tllrre =0, e TP@RY).

Let us recall that, if 1 < a < oo, then

. for any open set Q of R? the Sobolev space W'%(Q) is defined by

wh Q) = {fe L*(Q) / ;’Tf e LYQ) for j=1,2,-- ,d}
j

. WHRY) = (f e Ll (R / f € W(Q) for any open and bounded subset Q of R?}.

loc

Notice that if f belongs to Wllo’c1

measure satisfies

(RY) then it is an element of BVjoc(R?) and its variation

diDfl(x) = [Vf(x)ldx
and therefore, by Proposition2.4
HDflzre = [[IVflHlFapa) SV lle, 1 <@ <p<oo

It is clear from what precedes that Theorem 2.2 and Theorem 2.3 are strongly related to the
following result obtained by G.Lu and B.Ou.

Proposition 2.5. [9] Let us assume that 1 <a <d, f € Wllo’g(Rd) and |Vf| € L*(RY). Then
there exists:

1) areal number f) such that

lim VY = fico); 24)
P10 Jug,” VP T

where B(0,r) = {x e R / |x| < r}

2) a real number A4, not depending on f such that

If = freollp < Adall IV f1 e 2.5)

1_1_1
wherep—a -

It is worth noticing that Theorem 2.2 and Theorem 2.3 deal with functions belonging
to BVjoc(RY), while Proposition 2.5 is concerned only in elements of Wllo’c1 (RY). Even if we
focus exclusively on elements of Wllo’c1 (R?) the following comments are relevant.
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a) It is easy to see that the relations (2.1) and (2.4) are equivalent. But, if 1 <a < o0
then L*(RY) is properly included in F(1, p,a@) [see point 3) d) of Proposition 2.4] and
therefore the hypothesis on f in Proposition 2.5 is stronger than that under which (2.1)
is true in Theorem 2.2

b) Inequality (2.3) is a weak form of inequality (2.5). But again we notice thatif 1 <a < p
then the hypothesis on f in Theorem 2.3 is weaker than the one in Proposition 2.5.

The proof of Theorem 2.2 relies upon two results interesting for their own right.
The first one is a norm inequality for the fractional integral operator 1,,(0 <7y < 1) defined
by

Lo = [ =3Vt and 150 = [ =yt oy

for yin M(RY), fin L} (R?) and the points x of R? where the above integrals make sense.

1_
Proposition 2.6. Suppose that 0 <y < é <1,0< (l, <ayand n ’ . Then there

111
q [0

Sl

9

exists a real number B > 0 such that for any non negative Radon measures y and v on R?

[*2}

1
Ahillgeo < BV ollllrra. (2.6)
We have also the following result.
a7 _ 1
-~ p
non negative Radon measure on R? satisfying the following condition (Ae) :
< for any real number § > 0 there is a real number p > 0 such that, if Q is a cube of R¢ and

E a Borel subset of Q then [|E| < p|Q| = v(E) < ov(Q)] >.
Then there is a real number C > 0 such that for any non negative Radon measure yt on R¢

Proposition 2.7. Let us assume that : 0 <y < é <1,0< %o <ay,

1
il < ClIVITGolillzre. (2.7)

Let p be a fixed non negative element of C° (R, R), with support included in the unit
ball B(0;1) = {x e R? / |x| < 1} of R and satisfying [ ,p(x)dx = 1.
For any real number £ > 0, we set

e '), xe R?
pexfr feLL ®RY.

pe(X)
f&‘

It is well known that, for any real number @ > 1 and any element f of Lﬁ)c(Rd), {felesois a
subset of C*(R?,R) satisfying

im|I(f = f*xalle = 0

for any bounded measurable subset Q of R.
The second result we shall use in the proof of Theorem 2.2 reads as follows.
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Proposition 2.8. Let us assume that 1 < a <d. We have

é and f belongs to BVP*(R?) then there is a subset N of R¢ such

a) for any element x of R*\ N,

f(x) f()dy exists inR,

lim
=0 |Q(x, 1) o(x,r)

) If &)= f(ldy = 0;

lim f°(x) and lim
£—0 =0 100X, P Jox.r

b) H(N)=0, t>dp(:—2%);
where H' denotes the t-dimensional Hausdor{f measure.

Point 2) of Proposition 2.8 gives a measure of the thinness of the complementary set
of the Lebesgue points of an element of BV”*(R%), in the spirit of the following classical
result.

Proposition 2.9. [4] Let us assume that f belongs to BV,c(RY). Then there is a subset N
of RY such that :

1) for any element x of R*\ N, f*(x) = hm
£1(0 = lim ().

|Q(x ol fQ(x " fO)dy exists in R and satisfies
2) H'(N) =0

The remainder of this paper is organized as follows. In Section 3 we study the asymp-
totical mean value of an element of the space BV**?(R¢). Section 4 is devoted to the precise
representative f* of an element f of BV”*(R%) and the thinness of the complementary set
of its Lebesgue points. In Section 5 we prove our main result, that is point 2) of Theorem
2.2. Finally in Section 6 we define on BV”*(R¢) a structure of Banach space.

3 Existence of asymptotical mean value of elements of BV *%(R%)

We consider a fixed element f of BVioc(RY).
The variation measure |Df| of f dominates the gradients of its regularization f® (& > 0) as
stated below.

Lemma 3.1. Let € be a positive real number and Q a bounded open subset of R?. We have
[wrecix < [ Ipr@-pp.oy <A@
Q R4

where Q. = {x R/ inf{lx—y| /yeQ} <¢e}.
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Proof. a) Let ¢ be an element of C’J; (Q,RY) satisfying |¢| < 1. We have :

f VW e(dr = - f FOdive(0dx = - f f pe()f(x = dive()dydx
Q Q R4 JR4

- f [ f f(x=y)dive(x)dx]ps(y)dy
Rd Rd

_ fR i fR S @dive(y +2)dz]pe(y)dy.

Let us notice that, for any element y of R?, z —> ¢(y +z) belongs to C(Q - y,R%) and
satisfies

le(y+2)<1, zeR%

Therefore one has
[ vr-emix < [ IDA@-yp.0as
Thus
[ < [ pA@-ypoa.
b) Let us notice that, for any element y of RY,

(Y >e=p:(y)=0] and [lyl<e=>Q-yCQ]

Therefore

[ ipA@-ppnay < DR [ puray=iDfi@0)
O

Notation 3.2. For g belonging to LllOC (R%), E a subset of R such that |E| # 0 and an element
(x,r) of R x (0, 00), we set

d
- r r
ge = |EI”! fg(y)dy; 8(er) = 80(xr)s  Ux, 1) = | |(X,,- — 5%+ )
E =1

Lemma 3.3. Let us assume that (x,R) and (y,r) are two elements of R x (0; 00) such that
0@, r) is included in Q(x,R). Then

Rd
f lf@) - fynldz < Ca—=IDfI(Q(x,R))
O(R) rd

where Cyq = |B(0, 1)|'~4d5.
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Proof. Let ¢ and & be two real numbers such that 0 <d <rand 0 < & < %(r —0).
We notice that Q(y,d) € Q(x,R — (r —9)). Therefore, we have

f If°@) = fuolds < CaR=-r+5)'s" f IV 2 (2)ldz.
Q(x,R—r+6)

O(x,R—r+6)

(see formula (7.45) in section 7.8 of [7]).
Thus, by an application of Lemma 3.1, we get

f @)= fPyaldz < CaR—r+06)6" " IDfIQ(xX,R-r+5+8)).
Q(x,R—r+0)

Furthermore lin(l)ll(fg—f))(Q(x’R)lll =0. So,
E—

f |f(2) = fip.o)ldz lim sup f 1@ = ¥ y0)ldz
Q(x,R—r+0) e—0 O(x,R—r+0)
< CiR-r+6)""DfI(O(x,R-r+6))

IA

A

and

fQ o @ folde = Jim f@) = fiysldz < CaR'r'~|DAIQ(x.R)).

"J Q(x,R—r+06)

Proposition 3.4. Let us assume that f belongs to BV®*(RY) with 1 < a < co.

1) For any elements (x,R) and (y,r) of R? x (0; 00) such that O®,r) is included in Q(x,R),
we have

R ;i _1y_a
[feer) = fonl < cd<7>d“ PG D e

where Cq = |B(0, 1)]'~4d5.

2) If @ < d then there is a real number f() such that

lim fier) = fi), x€RY

Proof. 1) Let (x,R) and (y,r) be elements of R? x (0; ) such that O(y,r) is included in
O(x,R). We have

\fek) = fiyr| = R f [f(2)~ fiynldzl < R f
O(x,R)

O(x,

1f @) — fiynldz
R)
and therefore by Lemma 3.3
_ _ _1
[fer) = fonl < Car' ™D FI(Q(x,R)) < Car' R\ DS Ia.

2) Let us assume that 1 < a <d.
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a) We consider an element x of R? and two real numbers r and R such that 0 < r < R.
Let k be the unique non negative integer satisfying 2¢7 < R < 2%*1r. We have

k-1
feer = Foenl £ DV ixarin = Feaiml +feer = Fixzin)
=0

and therefore, by the result obtained in part 1),

1-4

k—1
_1 i—dy, 1—4 R 4q_1
fier = fienl  Cal2" 172y 200775 4 () =@ D) DA e

J=0
1 k d d
it = finl < Ca2072) 3 2K S D] o
=0

L
Since 1 - g < 0 by hypothesis, we have }; 2/0-D <o and lim r'=% = 0.

j:O Fr—00

Hence, for any real number & > 0 there is a real number d, > 0 such that :
0:<r<R= |f(x,R) —f(x’r)| <E.
Therefore, there is a real number f, ) satisfying

1 fiep = fireon

b) Let x and y be two elements of R¢ such that |x—y| = s > 0. For any real number
r>2s, Q(y,r—2s) is included in Q(x,r) and therefore, by the result obtained in part
1)
qd(1-1 _d
fisn = for-29] < Calr(r =210 (r = 29) 2 | IDf] liga.

So, because of the inequalities d(1 - é) >0and 1- g < 0, we have
rll_{l;lo |f(x,r) - f(y,r—Zs)l =0.

Therefore

foeoor = M fiepy = 1im fiyagy = Tim fiv) = o

This means that f(, ., does not depend on x and so, there is a real number f() such
that

M fon = f), xR

Proposition 3.5. Let us suppose that f belongs to BV®>%(R?) with 1 <a < d. Then

fg(oo) = ﬁOO)’ g€ (Oa OO)
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Proof. Let € be a positive real number. For any element (x,r) of R? x (0, 0). We have

foon = 1 f fO=2)pe(2)dzdy = r™¢ f f FOdyps(z)dz
Q(x,r) JR? R¢ JQ(x—2z,r)

fd f(x—z,r)ps(z)dz = fd (f(x—z,r) - f(x,r+21—:))ps(z)dZ + f(x,r+28)-
R R

It follows that

|f(8x’r) - ﬁx,r+28)| = |fl(f(x—z,r) - ﬁx,r+2a))p8(2)d2| < f{ |ﬁx—z,r) - f(x,r+28) |p£(Z)dZ
R¢ R¢
and therefore, by point 1) of Proposition 3.4,

_ _1 _d
1% e — foorszel < Cal(r+28)r™ 1@ r =5 IDf] [l

Thus, letting r goes to infinity, we obtain, by point 2) of Proposition 3.4

1f 00y = fiepl =0 thatis ) = fico)-

4 Precise representative of an element of BV”%(R%)
For any element S of [1;c0] and non negative Radon measure ¢ on R, we set
. mgu(x) = sup{lQ(e, NP w(Q(x.r)) /0 < r < o), xeRA

. mppu(x) = sup{| Q. P (Q(x,r)) /0<r <R}, 0<R<oo, xeRd
Proposition 4.1. Assume that f belongs to BV,.(RY), and d < B < oo,

1) There is a real number C4p > 0, not depending on f such that

_d
o= fon| < R f FO) = foanldy < CagR'™ S mgrlDfI(2),
O(x,R)

2) If x is a point of R? such that mg 1|Df|(x) < co then

lir% forn = [f(x)exists inR;
r—

0 = lim 7700 and Tim f F0) = F(0ldy = 0.

Q(x,r)

Proof. 1) Let us consider a point x of R? and 0 < r < R < co.
We denote by k the unique positive integer satisfying 27*R < r < 27%*1R. We have

|f = foenl I(f = fer) + (fixm) = fao-ir) + -+ +(fixar1r) = foun)l

If = faerl + 1 for) = fa-ip)l +-oneee w2+ 1R) = Sl

IA
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and therefore
R fQ(x,R) If ) = fonldy < R f o [fO) = fiumldy

k—1 .
+ ng (2_j+1R)_d fQ(x,Z’j”R) |f(y) - f(x,2‘/R)|dy + (2_k+1R)_d fQ(x,Z””lR) |f()’) - ﬁx,r)ldy-

An application of Lemma 3.3 leads to
k=1 :

R fQ(x,R) |f )= fixrldy < CalR'™IDFI(Q(x, R) + 21(2_’R)1_d|Df|(Q(x, 27 R) + D FIQ(x, 27 R))]
j=

A

k
R L( ® /) _f(x,r)ldy < Cy Z(z_jR)l_dlDﬂ(Q(x, Z_jHR))

/=0

k
1 . d 1_
C2P Y @R)'F sup 100x,8)F ' IDSI(Q(x.6))
= 0<6<2R

_d
CagR' " FmgarIDfI(x)

IA

IA

where Cy g is a real number not depending on f, R and x.
Furthermore, we have

oo = foun] = IR f GO =l <R fQ IO fiy

QxR

Therefore .
[fixk) = feen| < CapR' ™ B mgarIDfI(x).

2) Let us suppose that x is a point of R such that mg 11D f|(x) < 0.

a) From the result obtained in point 1) we get

N —

_d
) = forn| < Capd' BmgiIDfl(x), 0<r<R<6<

Furthermore, we have
d
lim Capb' P mpg1|DfI(x) = 0.

Thus there is a real number f*(x) such that

lim i) = S (0.

b) For any element r of (0; %), we have

IA

r f IfO) = f*(0)ldy r f [fO) = feenldy +1foen — 7 ()]
() o)

_d y
< Capr' Emp 1D + | frer — fF ).

Therefore

lim f FO) = F(0ldy = 0.
Q(x,r)

r—0
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¢) For any real number & > 0, we have also

=01 = 7 [ = @l <lolloe [ 1fy) =7 ol

Qx.g)

and therefore, by the result obtained in b)

lim| /() = /() = 0.

Proposition 4.2. Let us assume that 1 < a < p < o and f belongs to BVP*(R?). Then
11
HP@D(x e R [ mglDf|(x) = o0}) =0, B € (a,00].
Proof. Let us suppose that 5 belongs to (a, oc].

a) We consider a real number 2> 0 and set £, = {x e R? / mg|D f|(x) > A}.
For any element x of E, there is a real number r(x) such that :

A< 1QCe, rC)IF 1DAIQCx, ()

and therefore

AQCx, re)[*F < 1Q(x, )l IDAIQx, r(x)) < [ DS g < 1 IDS] g

T
r(x) < @7 IDflllzra) ™ < co.
By Vitali’s covering Lemma, there is a subset {Q; / i € I} of {Q(x,r(x)) / x € E,} such
that
E,cUS0;
iel
0;NQ;=0 fori, jelwithi#j

where 50; is the cube of R? having the same center as Q; and with side length five times
that of Q;.
We notice that

1< 270 IDAQy, el

and therefore

SR < s S 0PI D)

iel iel

IA

Ssoires < SRS |GV IDAQNY < SR APINDA D0
i€l i€l
Thus

iel iel

a4 ﬂ)(EA)—lnf{Z(dlamA WG ) E, CUA} ([CA DA lpral?,

where C is a real number not depending on f and A.
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b) We notice that
{x eR? / mgIDf|(x) = +o0} C Ej, A€ (0,0).

Thus, by the result obtained in point a), we have
HPG P (x e R / mgIDf|(x) = +oo}) = 0,

(see Lemma 1 of Section 2.1 of [4]).

Proof of Proposition 2.8. 1t is easy to verify that the hypothesis 1 < @ < d implies that

1 1\ d 1
G—daT1<a

Let us assume that (é - %)d;fl < % < é and f belongs to BV”*(RY).
1

a) Itis easy to verify that: ap < é - % < 5, B o(B) =dp( é — é) is an increasing function

on R, ¢(d) = dp( - 1)y and d - 1 = p(By), with ﬁio =1- il——; Thus ¢ is a bijection of
(d.Bol on (dp(: —1).d—1].

b) For any element ¢ of (a’p(l - [ll),d —1] we set

Ni={xeR?/ mg,IDfI(x) = e} with B=¢~'(1).

We notice that for 0 <81 < 8, we have mg, 1|Df| < mg, 1|Df].
Therefore

1 1
N11CNI‘27 dp(a—g)<t1<t2sd—l

Letusset N = N N;.
d-1>t>dp(L-1)

¢) Let us consider a point x of RY\ N.

There is an element ¢ of (dp(é - %),d— 1] such that x € R?\ N,. We notice that 8= ¢ 1(r)

satisfies 0< }; < é and  mg|Dfl(x) < oo,

Therefore, by Proposition 4.1,
- fr@x) =lim oo fQW) f()dy exists in R
L £ = lim £20) and lim ks [ 1FO) = £ (0ldy = 0.

d) . Let us consider an element ¢ of (a’p(l - %),d —1]. We notice that 8 = ¢~ !(¢) satisfies

02

0< é < é < é Thus, by Proposition 4.2, H'(N;) = 0 and therefore H'(N) = 0.
. As H"1(N) = 0, we have H'(N) = 0 for any real number ¢ > d — 1.

O

For 1 < 6 < oo, the elements of TY(R?) are absolutely continuous with respect to the
d(l- é)—dimensional Hausdorff measure as stated belove.

Proposition 4.3. Let us assume that 1 <6 <ocoandvisa non negative element of T*%(RY).
Then for any v-measurable subset A of R¢ satisfying H*'~#)(A) = 0, we have v(A) = 0.
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Proof. Let A be a v-measurable subset of R¢ satisfying H¥1=3)(A) = 0.
For any real number £ > 0 there is a family {B(x;,r;) /i € I} of balls of R satisfying

_1
AcC UB(Xi,ri) and er(l D < g

i€l i€l
Therefore
V(A) < 3 B, 1) < ) (0, 2r)) < 20Dl D 107D < 290D s,
iel icl iel
Thus
v(A) =0.
O
1_1
Corollary 4.4. Let us assume that : 1 <a <d, 0 < % <, T_f’ < % < é, f belongs to

7
BVP*(RY) and v is a non negative element of T®?(R?). Then for v-almost every element x
of R4

lin(l)f’s(x) = (x) = lin(l)f(x,r) eR.

£ r—

Proof. 1®'case 0< é < 5
By hypothesis f belongs to BV”*(R?) and therefore to BV oc(RY).
So, by Proposition 2.9 there is a subset N of R? such that

lin(l) fe(x) = f*(x) = hn% fon€R, xeRI\N
HTY(N) =0.

Furthermore d -1 < d(1 - é) and v is a non negative element of 7°%(R%). Thus, by Propo-

sition 4.3, v(N) = 0.
d 1_1
2%case <z <7 1
%Sé,weget0<(é—$)m< «
Therefore, by Proposition 2.8, there is a subset N of R? such that :
{ lim f2(x) = f*(x) = lim fi.,), x€RI\N
&—0 r—0

H'(N)=0, t>dp(t-1).

11
From inequalities 4 < 1 and £=Z <
d =0 1-4

By hypothesis dp(é - %l) <d(1- %). Therefore Hd(l_é)(N) = 0 and thus, by Proposition 4.3,
v(N)=0. O

| —

1_
Remark 4.5. Let us assume that : 1 <a <d, 0 < % <g, <o < (ll and f belongs to

BVP2(RY). Let us define f* on R? by:

1
p

=

. lim f, , when this limit exists in R
fx)=q =0 :
0 if not.

By the Lebesgue differentiation Theorem and Proposition 2.8, f* is a representative of the
element f of Llloc(Rd) (the so called precise representative). Actually, by Corollary 4.4,
if v is a non negative element of 7°Y(R¢) then f* is a representative of f as element of
Ll (R?,v).

loc
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5 A Poincaré Inequality in BV”%(RY)

In [3] an inequality similar to (2.2) was established for a function f whose variation mea-
sure |Df| belongs to MPYRY [ a space of Radon measures containing TP2(R?) (see [5])]

_1

but under the supplementary hypotheses : }0 < %1 and i—‘{ < 1‘; The proof of point 2) of
~9

Theorem 2.2 given below is strongly based on ideas developed in [3]. We start by estab-

lishing a norm inequality for the maximal fractional operator mg(1 < 8 < co) defined in the

beginning of Section 4.

1.1

Proposition 5.1. Let us assume that : 0 < é < % <1,0< % < %, % = ‘1’__? and p and v are
5
non negative Radon measures on RY. Then
" A=Y 15
limpll, oo < 57 BVl ollllzre. (5.1

Proof. The claim is trivially true when ||u||7re = co. Thus we may assume that

lellra < co.

Let us consider a real number 2> 0 and set E; = {x e R? / mpu(x) > A}.

An argument similar to point a) of the proof of Proposition 4.2 shows that there exists a
family {Q;};e; of pairwise disjoint cubes of R4 satisfying :

Eic| J50; and 1<27Q45'u(@) for iel.

iel

Therefore we have

1_
WED) < Y v50)< Y VSO IO m(Q)
iel iel
-p d(1-1) .l_l ) .l—l NP
WE) < APSNT0 N 1500 WS @NIQ T (@)
iel
WE) < A5 lpealll.
L d-B v
WEF < SR e

This inequality being true for any real number A > 0, we have

d(

1_1 1
Aimguly, oo < U P lllra

Proof of Proposition 2.6. We notice that

a ¥ _a B 1
O0<e+1 < > =

-7 " 1-5 B>y

11
lim <2 =2 and lim & = ay >
ﬁ—)%/ I-3 9 ﬁ—)%
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Therefore there is a real number 8y > % such that

1

1
<g and = f
B 1-3

0

1 1
<=, Be(=.pol
p 4

SN

Let us consider a fixed element 8 of (1,8)]. We have 0 < ;3, <y< é <l

Thus, by Welland Inequality (see[10]) there is a real number D > 0 not depending on p,
such that :

ol—

y-

RI—
|
<

Ll T 1

Lu(x) < Dlmgu(x)]“# [meu(x)] " #, xeR?
T
1_1

L) < Dimguo]* 7 lullich, xeRY,

Therefore

B

> llull &7 1ot € (0, 00).

Tol—

RI—

Q\'—‘

v({x eR? | Lu(x) > 1) < v({xeR? [ mpu(x) > (D 't)

From this inequality and Proposition 5.1 we deduce

_1 1
y B -5
1_1 1_1
W R/ L > 1) < SO Dlvls (Dl Sy 1€(0.)
9 103
5
d d(1-) ~1ya1|19
vt R L) > 1) < SCTOMrea DY l® 1€ (0,00),
6 a
T
Hence,
1
* L_ 7
Ayl < SEIDIg Al oy
reh
1-1
Furthermore we have p < +—% and therefore ||| ! < |\lrpe-
@ B @
7%
Thus
Ml < BIVIE il
where B = 59GVD. ]

Beside the Welland inequality used in the proof of Proposition 2.6 there is another
control of the fractional integral operator by the fractional maximal operator. Actually the
following result was established in the proof of Proposition 2.7 of [3].

Proposmon 5.2 Let us assume that
O<y<y L<1,0<! 7 <L, 1 < mln(l ) and v a non negative element of T*Y(R?) satisfying

the condltlon (Aoo) in Proposmon 2. 7 Then there is a real number C > 0 such that, for any
non negative Radon measure 1 on R?

Al < Cvllm%,ullf;,w- (5.2)
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Proof of Proposition 2.7. The desired result is obtained by a direct application of Proposi-
tion 5.1 and Proposition 5.2. O

A weighted form of the Hardy-Littlewood-Sobolev inequality for fractional integral in
Lebesgue spaces is obtained from Proposition 2.7 as follows.
1y
=
negative element of T*%(R?) satisfying the condition (A) in Proposition 2.7. Then, for
any element f of F(1, p,@)

Corollary 5.3. Let us assume that : 0 <y < é <1,0< % < ya, % = and v is a non

a) I, f(x) = fR" Ix = Y90V f()dy converges (absolutely) for v-almost every element x of
Rd,'
b)

1 1

Mo < CIME A Epay < CIVIZ ol - (5.3)

Proof. Let us consider an element f of L}OC(Rd ).

The Radon measure y 7, defined by du¢(x) = f(x)dx, satisfies : Lz = I |f]
Therefore by Proposition 2.7

1 1

AL . < CIVIElsllzre = CIAL L IAlFG pa- (5.4)

where C is a real number not depending on f.

a) Let us suppose that f belongs to F(1, p,a).
By the inequality (5.4) we have, for any real number ¢ > 0

VxR LI > 1) < PP Wlpall 1B

Furtheremore

COMIsll I, g < 0
Therefore, for v-almost element x of R¢
LIfl(x) = { lx =y DI f)ldy < oo
Rl
and so,
L f(x) = fR |x —y|“O=D £(y)dy converges absolutely and satisfies
|ny(x)| < Iy|f|(x)~

b) From the inequality above, inequality (5.4) and point 3) of Proposition 2.4,

we get
1 1

1y .0 <Myl fNp 00 < CIVI ol fllF(1pa) < CIVIZ ol flla-
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O
1_
Corollary 5.4. Let us assume that : 0 <y < é <1,0< é < ya, % = TTZ and v is a non
6
negative element of T*%(R?) satisfying the condition (Aw) in Proposition 2.7. Then there
is a real number C > 0 such that

1
ALl < CIME o lflles f € L2RD, (5.5)
1_
Proof. Let us consider ap and a; such that % <vya) <ya <yay <1 and set r%; = ‘I’—ly for

i€{0,1}.
By Corollary 5.3, for i € {0, 1} there is a real number C; > 0 such that

1
oy fllpc0 < CilMl ol flleys f € LY(RY.
Furthermore there is an element s of (0, 1) such that

1 1-s 1 1-s5s =
—=—+—and — = —+—.
(04 Qo (03] p Po P1

Therefore, by Marcinckiewicz interpolation theorem, there is a real number D > 0 such that

1

€L 1 1
AL fllp, < DColVe, ) > (CHIVIL D I lle = CIMIZ L ollflles— f € L7®RD.

In the proof of Theorem 2.2 we shall use the following result.

Lemma 5.5. Let us assume that f belongs to BV;ye(R?) and 1 < a < p < co. Then

IIVEFapay < HDfHlzpegay €€ (0,00).
Proof. Let us consider a real number & > 0.

1) By Lemma 3.1, we have
f IV Wldy < f IDAIQx, ) = Y)pe()dy,  (x,r) €R?X(0,00).
Q(x,r) R4
Therefore
[ wrona= [ wroms [ 00w -0y () erix0.m)
O(x,r) Q(x,r) R4
Thus for any cube Q of R, we have

OVl < [ 10 IDAQ@=purdy (5.6)

01V Lol < 11 DS llg=e fR pedy = 11Dl

That is
IV FEE 000 < DS 7.
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2) Let us suppose that p < co and consider a family {Q;};e; of mutually disjoint cubes of
R“. We have, by inequality (5.6)

{ZnQi ol |Vf8D(Q,-||1]p} < {ani - fR IDSIQ; —y)p.g(y)dy]f’}

iel iel

And therefore, by Minkowski inequality

{Z[|Qi|i—1|||Vf8LvQ,-||1]f’} < fR D SUQI DA =3V 1Py
i€l i€l
< fR DA lrvepeddy = | IDA v

Thus

IIVFlFapey < DS lIzee.

Proof of Theorem 2.2. 1) The assertion is just point 2) of Proposition 3.4.

2) Letusset g = f— fico).
We notice that g belongs to BV”*(RY) with [Dg| = |[Df| and  g) = 0.
Let us consider two real numbers £ > 0 and r > 0.

a) We know that g° = p, * g belongs to C.(R?) and therefore satisfies :

fog < a4 (Vg° <d*'1, (Vg
lg" - &% 0.no0r < 1(Ve®lroo.nxoon < 1(1VgD

(see Lemma 7.16 of [7]).
From the inequality above and Proposition 2.6 we deduce that there is a real number
C > 0, not depending on v, f, & and r, such that

1
vlI(8° = 8% 0. 00,9 lg .00 < CIMIL ol IVEE Tl F (1, p,)
and therefore, by Lemma 5.5

1 1
vII(8° = 8% 0.0 0. lg.c0 < CIVIl sl IDGH I7re = ClIVIl o ol D f1 I

b) Let us consider # and v such that 1 < u < g and % = % - % and a

v-measurable subset E of RY satisfying 0 < v(E) < co.
By the inequality above and Kolmogorov condition (see Lemma 2.8 on page 485 of
[6]) we have

1

q 1, .k 1
WI(&® = &% 0./ XEngO.llu < K(H)“ V1700 VCE) D f N0

where K is a real number not depending on v, f, &, u, v and E.
‘We notice that

18" En00.n) < 18° = 8(0.n W EN0©.n +18° (0,9 X EN0O.n
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and therefore

Lo s 1 1
goxEnoonlle < KGED ¥ IVIL o VE)Y D fI ITpe +18° 0 pV(E) .
By Proposition 3.5, g% () = &) = 0. From the inequality above and the monotone
convergence Theorem, we get

qg .1, 1 1
lgfxEll < K(ﬂ)“ V17w V(E)¥ D f1 ll7pe.

By Corollary 4.4,
1in(1)88(x) =g"(x) = f*(x) = fio), v—almost every x € RY.
E—
Therefore from the inequality above and Fatou Lemma, we obtain
s q 1 i 1
vlIGF = Seo))XElle < K(H)“ IVl s VAE) U T LD f1 70
that is, by Remark 4.5,

q
q—u

Lo 1
(= o)X Ellu < K( Vil o g VAP LD f1 I pe

Thus by Kolmogorov condition we have

1
I = e Ellgeo < AlVIL ol DS lITre

where A is a real number not depending on f and v.
m]

Proof of Theorem 2.3. The result is obtained by almost the same argumentation than that
in the Proof of Theorem 2.2. We need only to

i) use Proposition 2.7 instead of Proposition 2.6 [ clearly the Lebesgue measure on R is
a non negative element of 7°°(R¢) satisfying the condition (A) in Proposition 2.7]

ii) notice that, by the Lebesgue differentiation theorem we have
Hm(f = fieo))® = im % — fioo) = f — fioo)
&e—0 &—0

Lebesgue almost everywhere.

6 Banach space structure of BV”*(R¢)

1

L
d p°

We assume that: 1 <a<d and é

Notation 6.1. For any element f of BV”%(R%)

Ifllsvre = D f1llzre +|fieo)l- (6.1)
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Proposition 6.2. (BV”%(RY),||-||gyre) is a Banach space.

Proof. e From the definition of Sobolev spaces and Proposition 2.4 it follows easily that

whe®) = {f e Ll (RY) ] IVFle L"RY)} c BVP(RY) € BV (R?)

loc

and therefore BV”%(R?) is non void.
It is easy to see that for any element f of BV”?(R%) and 1 € R,

Ifllgvre € R, (I fllpvre =0 & f =0 and [|Afllgyre = |l fllpvre.
Let f and g be elements of BVP(RY),
An application of the definition of variation measure yields, for any open subset O of R?

ID(f +)I(0) < |DfI(0) +|Dgl(O).

As |Df| and |Dg| are non negative Radon measures, the inequality above induces that, for
any cube Q of RY,

ID(f +2)I(Q) < IDI(Q) +IDgl(Q).
Let {Q;}ic; be an element of S. We have
0=~ ID(f + 2)I(0) <10 IDFIQ) +1Q17 ' IDgl(Qy), i€l

and therefore

1 1 1

{anm‘ﬂ|D(f+g>|<Qi>]p} < {Zanwl—HDﬂ(Q,»)]”} +{Z[|Qi|é—1|0gl<Qi>]p}
i€l i€l i€l
{ZnQiﬁ-l|D(f+g>|<Q,->]P} < 11DS1 lzoe +111Dg llzve.

i€l

Thus

1D+l llrre <Dl llrre +111Dgl llzre.
This implies clearly
HD(f + N Ipvee <D S llpyra + 11Dl IByra.

So (BVP2(RY), ||||gyre) is a normed space.
e Let (f,).=0 be a Cauchy sequence in BV”*(R?) and let us set g, = f, — Jin(oo) forall n > 0.
Clearly we have, for any integer n > 0

|Dgnl =|Df,| and  gu) =0
and therefore

{ gnllBvre = 11D ful llrre and lIgall, 0 < AllIDful l7re,  neN
lign = gmllavre = 1 ID(fa = fi)l llrpe, neN

where A is a real number not depending on (f;,),>0 (see Theorem 2.3).
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a) From the remarks made above, it is clear that (g,),>0 is Cauchy sequence in the weak
Lebesgue space L7 (R%) which is complete. Therefore there is an element g of L»®(R%)
such that

Jim [lg = gall 00 = 0.
Furthermore (g,),>0 is Cauchy sequence in BV?* (R?) and therefore

sup|| |1Dgul llrre = supllgnllpvre = M < co.

n>0 n>0

b) Let O be a bounded open subset of R< and Q a cube of R such that : O c Q.
The sequence (g,),>0 converges to g in L'(0) and therefore
|Dg|(O) < liminf|Dg,|(O) (see Theorem 1 in Section 5.2.1 [4]).
n—o0

We have also, for any integer n > 0,

IDg,1(0) < Dgl(Q) <101 <1l gl lirse = 101"+ M.

Therefore we have
1

IDgl(0)<|0]" M <o and ge BV(O).

For any integer n, (g, — gn)m>0 converges to g — g, in L'(O) and therefore

[D(g - gn)l0) < li’gggf ID(gm — gnI(O0).

Furthermore

1 _1
ID(gm —glO) < 10" ID(gm — gu)lllzre = 101" 11D(gm — gn)llpyre, n >0, m >0,

and (gn)s20 is a Cauchy sequence in BVP“(RY).
Therefore, for any real number € > 0 there is n. > 0 such that

ID(gn—gn)l(0)<e, n>=n, and m>=n,

sup |D(gm —gn)l(0) <&, n=ng

m>ng

ID(g ~gI(O) < liminf|Df(gm ~g)lO) <& n=ne.

Thus we have
,,h_f?o ID(g —g2)I(0) = 0.

We notice also that

IDgnl(0) < |D(gn — IO) +1Dgl(O), n=0.
limsup|Dg,|(0) < lim |D(g, ~ 8)I(O) +1Dgl(O) = |Dgl(O).

n—oo
Combining this result with inequality
IDg|(O) < liminf|Dg,|(0),

we get

IDgIO) = lim |Dg,I(O).
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c)

d)

Let Q be a cube of RY. For any integers n > 0 and m > 0 we have

1Dal(Q) ~ IDgul(Q) < ID(gn — gm(Q) < 101411 1D(gn— gl Il

and therefore (|Dg,|(Q))n>0 converges in R.
Let us consider a real number € > 0. There is a sequence (O,,),>0 of open subset of R4
satisfying :

{ 0 c Oy, |Dgl(0y) <|Dgl(Q) + & and |Dg11(O) < [Dg11(Q)+27 e
Q0 COnt1 €Oy, |IDGn+1l(Ons1) < IDgps11(Q) + 2_n_18, n>0.

We have :
IDgI(Q) < |Dgl(O,) <1D(g - gn)I(0,) +|Dgul(On) < |D(g—gn)l(01) +1Dgnl(Q)+27"e,¥n > 0

and therefore
IDSI(Q) < lim [Dg,l(Q).

Furthermore
IDgnl(Q) < |Dgnl(01), n=0

and therefore, by the result obtained in b),
1im |Dg,I(Q) < lim |Dg,|(O1) = Dgl(O1) < IDgl(Q) +e.

Thus
Dgl(Q) = lim Dgl(0).

Let {Q;}ic; be element of S with [ finite. We have

{Z[IQili‘lngl(Qi)]”}

i€l

{Z[|Q,-|l—‘ lim |Dgn|<Ql~)]P} = lim {ZnQi g,

i€l i€l
< limsup|| [Dgal llrre = M < oo.

n—oo

Thus
I11Dgl llzse < limsupl| [Dgul llzne = M < o0

n—oo

and so g belongs to BVP¢(RY).

Let us consider a real number & > 0. There is an integer n, > 0 such that
ID(gn — gm)llrre <&, n>n, and m>n,.

Let us fix n > n, and set h,;, = g, — g, for any integer m > 0.
The sequence (/,,)m>0 of elements of BVP2(RY) satisfies :

p — B llgyre = llgmw — gmllgyre  .m >0, m’ >0

|

1
p
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and therefore is a Cauchy sequence in BV”*(R%).
By applying the argumentations held in points a), b), ¢) and d), with (A;,)m>0 in place of
(gm)m=0, We obtain

ID(g — gnllrra < I}Lrgo supl|D(gm — gllzre < &

that is
llg — gnllpyra < €.

So (gn)n>0 converges to g in BVP%(R?) and therefore (f,)ns0 converges to

f=g+1im fy) in BVPERY), O
n—o0
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