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Abstract

We prove a weighted Poincaré inequality in a subspace of BVloc whose elements have
variation measure in a Wiener amalgam space of Radon measures.
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1 Introduction

In the study of partial differential equations, a basic problem is to obtain controls on a func-
tion in terms of the norms of its distributional derivatives in some Banach space. Widely
used examples of such controls are Poincaré inequalities. The global form of these inequal-
ities are usually established in the Sobolev spaces (see [2], [8], [9]) and the space of func-
tions of bounded variation (see [1], [4], [11]). In this paper we derive a global, weighted,
weak-type Poincaré -Wirtinger inequality in the setting of a class of subspaces of the space
of functions of locally bounded variation on Rd, which contains properly Sobolev spaces.
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2 Results and notations

Let d be a fixed positive integer. Rd is endowed with its usual Euclidean norm x 7→ |x| and
Lebesgue measure E 7→ |E| =

∫
E dx.

If Ω is an open subset of Rd then

� we denote by L1
loc(Ω) the standard Lebesgue space of (equivalence classes modulo equal-

ity almost everywhere in Ω of) locally integrable real valued functions on Ω

� for any element α of [1;∞], Lα(Ω) is the classical Lebesgue space on Ω equipped with its
usual norm ‖ ‖α,Ω (‖‖α,Rd is simply denoted ‖‖α)

� for any element f of L1
loc(Ω) we set

∇ f = (
∂ f
∂x1
,
∂ f
∂x2
, · · · ,

∂ f
∂xd

)

where ∂ f
∂x j

stands for the partial derivative, in the sense of distribution, of f with respect
to the j-th coordinate (1 ≤ j ≤ d).

Let M(Rd) denotes the space of Radon measures on Rd. We set

� ∆ = {Q(x,r) =
d∏

j=1
[x j−

r
2 ; x j+

r
2 ] / (x,r) ∈ Rd × (0;∞)}

� S = {{Qi}i∈I ⊂ ∆ / I countable and Q j∩Qi = ∅ if j , i}

� for 1 ≤ α ≤ p ≤∞,
T p,α(Rd) = {µ ∈ M(Rd) / ‖µ‖T p,α <∞}

with, for any element µ of M(Rd),

‖µ‖T p,α =

 sup
{

(
∑
i∈I

(|Qi|
1
α−1|µ|(Qi))p)

1
p / {Qi}i∈I ⊂ S

}
if p <∞

sup
{
|Q|

1
α−1|µ|(Q) / Q ∈ ∆

}
if p =∞

where |µ| denotes the total variation of µ.

Let us recall that:

� BVloc(Rd) = { f ∈ L1
loc(Rd) / ∂ f

∂x j
∈ M(Rd) for j = 1,2, · · · ,d}

is the space of functions of locally bounded variation,

� the variation measure |D f | of an element f of BVloc(Rd) is defined by

|D f |(Ω) = sup
{∫
Ω

f (x)divϕ(x)dx / ϕ = (ϕ1,ϕ2, · · · ,ϕd) ∈ C1
c(Ω,Rd), |ϕ| ≤ 1

}
for any open subset Ω of Rd, and there is a function σ f from Rd to Rd, |D f |-measurable
and such that

|σ f (x)| = 1, almost every x ∈ Rd,∫
Rd

f (x)divϕ(x)dx = −

∫
Rd
ϕ(x) ·σ f (x)d|D f |(x), ϕ ∈ C1

c(Rd,Rd).
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Definition 2.1. For 1 ≤ α ≤ p ≤∞, we set

BV p,α(Rd) = { f ∈ BVloc(Rd) / |D f | ∈ T p,α(Rd)}.

Our main result reads as follows.

Theorem 2.2. Let us suppose that 1 ≤ α < d and f belongs to BV∞,α(Rd).

1) There is a real number f(∞) such that

lim
r→∞

1
|Q(x,r)|

∫
Q(x,r)

f (y)dy = f(∞), x ∈ Rd. (2.1)

2) If 0 ≤ 1
θ <

α
d ,

1
α−

1
d

1− 1
θ

= 1
q <

1
p ≤

1
α , f belongs to BV p,α(Rd) and ν is a non negative element

of T∞,θ(Rd) then

ν‖ f − f(∞)‖
∗
q,∞ := sup

λ>0
λ[ν({x ∈ Rd /| f (x)− f(∞)| > λ})]

1
q ≤ A‖ν‖

1
q

T∞,θ
‖ |D f | ‖T p,α (2.2)

where A is a real number not depending on f and ν.

Point 2) of Theorem 2.2 has the following non weighted form.

Theorem 2.3. Let us suppose that: 1 < α < d, 1
α −

1
d =

1
p and f belongs to BV p,α(Rd). Then

‖ f − f(∞)‖
∗
p,∞ := sup

λ>0
λ|{x ∈ Rd / | f (x)− f(∞)| > λ}|

1
p ≤ A‖ |D f | ‖T p,α (2.3)

where A is a real number not depending on f .

In the sequel, we shall identify each element f of L1
loc(Rd) to the Radon measure µ f on

Rd defined by dµ f (x) = f (x)dx. So L1
loc(Rd) is viewed as the subspace of M(Rd) consisting

in its absolutely continuous (with respect to the Lebesgue measure) elements.
Notice that

|µ f |(A) = µ| f |(A) =
∫

A
| f (x)|dx, A ⊂ Rd, f ∈ L1

loc(Rd).

Therefore, for 1 ≤ α ≤ p ≤∞,

F(1, p,α)(Rd) = { f ∈ L1
loc(Rd) / ‖ f ‖F(1,p,α) = ‖µ f ‖T p,α <∞}

is a subspace of T p,α(Rd). These spaces have been introduced in [5]. Let us recall some of
their properties and links with classical spaces.

Proposition 2.4. [5] Let us assume that 1 ≤ α ≤ p ≤∞.

1) (T p,α(Rd), ‖ ‖T p,α) and (F(1, p,α), ‖ ‖F(1,p,α)) are real Banach spaces.

2) If p < q ≤∞ then
‖µ‖T q,α ≤ ‖µ‖T p,α , µ ∈ M(Rd)

and therefore, T p,α(Rd) is continuously embedded in T q,α(Rd).
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3) a) ‖ f ‖F(1,p,α) ≤ ‖ f ‖α, f ∈ L1
loc(Rd)

and so Lα(Rd) is continuously embedded in F(1, p,α).

b) F(1,∞,α)(Rd) is the classical Morrey space L1,d(1− 1
α )(Rd) if α <∞.

c) F(1, p,α)(Rd) = Lα(Rd) if α belongs to {1, p}.

d) Lα(Rd) is a proper subspace of F(1, p,α)(Rd) if 1 < α < p.

4) If p <∞ then
lim
r→∞
‖χRd\Q(0,r)µ‖T p,α = 0, µ ∈ T p,α(Rd).

Let us recall that, if 1 ≤ α ≤∞, then

� for any open set Ω of Rd the Sobolev space W1,α(Ω) is defined by

W1,α(Ω) =
{

f ∈ Lα(Ω) /
∂ f
∂x j
∈ Lα(Ω) for j = 1,2, · · · ,d

}

� W1,α
loc (Rd) = { f ∈ L1

loc(Rd) / f ∈W1,α(Ω) for any open and bounded subsetΩ of Rd}.

Notice that if f belongs to W1,1
loc (Rd) then it is an element of BVloc(Rd) and its variation

measure satisfies

d|D f |(x) = |∇ f (x)|dx

and therefore, by Proposition2.4

‖ |D f | ‖T p,α = ‖ |∇ f | ‖F(1,p,α) ≤ ‖ |∇ f | ‖α , 1 ≤ α ≤ p ≤∞

It is clear from what precedes that Theorem 2.2 and Theorem 2.3 are strongly related to the
following result obtained by G.Lu and B.Ou.

Proposition 2.5. [9] Let us assume that 1 ≤ α < d, f ∈W1,α
loc (Rd) and |∇ f | ∈ Lα(Rd). Then

there exists:

1) a real number f(∞) such that

lim
r→∞

1
|B(0,r)|

∫
B(0,r)

f (y)dy = f(∞); (2.4)

where B(0,r) = {x ∈ Rd / |x| < r}

2) a real number Ad,α, not depending on f such that

‖ f − f(∞)‖p ≤ Ad,α‖ |∇ f | ‖α (2.5)

where 1
p =

1
α −

1
d .

It is worth noticing that Theorem 2.2 and Theorem 2.3 deal with functions belonging
to BVloc(Rd), while Proposition 2.5 is concerned only in elements of W1,1

loc (Rd). Even if we
focus exclusively on elements of W1,1

loc (Rd) the following comments are relevant.
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a) It is easy to see that the relations (2.1) and (2.4) are equivalent. But, if 1 < α < ∞
then Lα(Rd) is properly included in F(1, p,α) [see point 3) d) of Proposition 2.4] and
therefore the hypothesis on f in Proposition 2.5 is stronger than that under which (2.1)
is true in Theorem 2.2

b) Inequality (2.3) is a weak form of inequality (2.5). But again we notice that if 1 < α < p
then the hypothesis on f in Theorem 2.3 is weaker than the one in Proposition 2.5.

The proof of Theorem 2.2 relies upon two results interesting for their own right.
The first one is a norm inequality for the fractional integral operator Iγ(0 < γ < 1) defined
by

Iγµ(x) =
∫
Rd
|x− y|d(γ−1)dµ(y) and Iγ f (x) =

∫
Rd
|x− y|d(γ−1) f (y)dy

for µ in M(Rd), f in L1
loc(Rd) and the points x of Rd where the above integrals make sense.

Proposition 2.6. Suppose that 0 < γ < 1
α ≤ 1, 0 ≤ 1

θ < αγ and
1
α−γ

1− 1
θ

= 1
q <

1
p ≤

1
α . Then there

exists a real number B > 0 such that for any non negative Radon measures µ and ν on Rd

ν‖Iγµ‖∗q,∞ ≤ B‖ν‖
1
q

T∞,θ
‖µ‖T p,α . (2.6)

We have also the following result.

Proposition 2.7. Let us assume that : 0 < γ < 1
α ≤ 1, 0 ≤ 1

θ ≤ αγ,
1
α−γ

1− 1
θ

= 1
p ≤

1
α and ν is a

non negative Radon measure on Rd satisfying the following condition (A∞) :
� for any real number δ > 0 there is a real number ρ > 0 such that, if Q is a cube of Rd and
E a Borel subset of Q then [|E| ≤ ρ|Q| ⇒ ν(E) ≤ δν(Q)]�.
Then there is a real number C > 0 such that for any non negative Radon measure µ on Rd

ν‖Iγµ‖∗p,∞ ≤ C‖ν‖
1
p

T∞,θ
‖µ‖T p,α . (2.7)

Let ρ be a fixed non negative element of C∞c (Rd,R), with support included in the unit
ball B(0;1) = {x ∈ Rd / |x| ≤ 1} of Rd and satisfying

∫
Rd ρ(x)dx = 1.

For any real number ε > 0, we set

ρε(x) = ε−dρ(ε−1x), x ∈ Rd

f ε = ρε ∗ f , f ∈ L1
loc(Rd).

It is well known that, for any real number α ≥ 1 and any element f of Lαloc(Rd), { f ε}ε>0 is a
subset of C∞(Rd,R) satisfying

lim
ε→0
‖( f − f ε)χΩ‖α = 0

for any bounded measurable subset Ω of Rd.
The second result we shall use in the proof of Theorem 2.2 reads as follows.
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Proposition 2.8. Let us assume that 1 ≤ α < d. We have

1) ( 1
α −

1
d ) d

d−1 <
1
α ;

2) if ( 1
α −

1
d ) d

d−1 <
1
p ≤

1
α and f belongs to BV p,α(Rd) then there is a subset N of Rd such

that

a) for any element x of Rd \N,

f ∗(x) = lim
r→0

1
|Q(x,r)|

∫
Q(x,r)

f (y)dy exists in R,

f ∗(x) = lim
ε→0

f ε(x) and lim
r→0

1
|Q(x,r)|

∫
Q(x,r)

| f (y)− f ∗(x)|dy = 0;

b) Ht(N) = 0, t > dp( 1
α −

1
d );

where Ht denotes the t-dimensional Hausdorff measure.

Point 2) of Proposition 2.8 gives a measure of the thinness of the complementary set
of the Lebesgue points of an element of BV p,α(Rd), in the spirit of the following classical
result.

Proposition 2.9. [4] Let us assume that f belongs to BVloc(Rd). Then there is a subset N
of Rd such that :

1) for any element x of Rd \ N, f ∗(x) = lim
r→0

1
|Q(x,r)|

∫
Q(x,r) f (y)dy exists in R and satisfies

f ∗(x) = lim
ε→0

f ε(x).

2) Hd−1(N) = 0.

The remainder of this paper is organized as follows. In Section 3 we study the asymp-
totical mean value of an element of the space BV∞,α(Rd). Section 4 is devoted to the precise
representative f ∗ of an element f of BV p,α(Rd) and the thinness of the complementary set
of its Lebesgue points. In Section 5 we prove our main result, that is point 2) of Theorem
2.2. Finally in Section 6 we define on BV p,α(Rd) a structure of Banach space.

3 Existence of asymptotical mean value of elements of BV∞,α(Rd)

We consider a fixed element f of BVloc(Rd).
The variation measure |D f | of f dominates the gradients of its regularization f ε (ε > 0) as
stated below.

Lemma 3.1. Let ε be a positive real number and Ω a bounded open subset of Rd. We have∫
Ω

|∇ f ε(x)|dx ≤

∫
Rd
|D f |(Ω− y)ρε(y)dy ≤ |D f |(Ωε)

where Ωε = {x ∈ Rd / inf{|x− y| / y ∈Ω} < ε}.
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Proof. a) Let ϕ be an element of C1
c(Ω,Rd) satisfying |ϕ| ≤ 1. We have :∫

Ω

∇ f ε(x) ·ϕ(x)dx = −

∫
Ω

f ε(x)divϕ(x)dx = −
∫
Rd

∫
Rd
ρε(y) f (x− y)divϕ(x)dydx

= −

∫
Rd

[
∫
Rd

f (x− y)divϕ(x)dx]ρε(y)dy

= −

∫
Rd

[
∫
Rd

f (z)divϕ(y+ z)dz]ρε(y)dy.

Let us notice that, for any element y of Rd, z 7−→ ϕ(y+ z) belongs to C1
c(Ω− y,Rd) and

satisfies
|ϕ(y+ z)| ≤ 1, z ∈ Rd.

Therefore one has ∫
Ω

∇ f ε(x) ·ϕ(x)dx ≤

∫
Rd
|D f |(Ω− y)ρε(y)dy.

Thus ∫
Ω

|∇ f ε(x)|dx ≤

∫
Rd
|D f |(Ω− y)ρε(y)dy.

b) Let us notice that, for any element y of Rd,

[|y| ≥ ε⇒ ρε(y) = 0] and [|y| ≤ ε⇒Ω− y ⊂Ωε].

Therefore ∫
Rd
|D f |(Ω− y)ρε(y)dy ≤ |D f |(Ωε)

∫
Rd
ρε(y)dy = |D f |(Ωε).

�

Notation 3.2. For g belonging to L1
loc(Rd), E a subset of Rd such that |E|, 0 and an element

(x,r) of Rd × (0,∞), we set

gE = |E|−1
∫

E
g(y)dy; g(x,r) = gQ(x,r); Ω(x,r) =

d∏
j=1

(x j−
r
2

; x j+
r
2

).

Lemma 3.3. Let us assume that (x,R) and (y,r) are two elements of Rd × (0;∞) such that
Q(y,r) is included in Q(x,R). Then∫

Q(x,R)
| f (z)− f(y,r)|dz ≤ Cd

Rd

rd−1 |D f |(Q(x,R))

where Cd = |B(0,1)|1−
1
d d

d
2 .



90 Bacary Savadogo and Ibrahim Fofana

Proof. Let δ and ε be two real numbers such that 0 < δ < r and 0 < ε < 1
2 (r−δ).

We notice that Ω(y, δ) ⊂Ω(x,R− (r−δ)). Therefore, we have∫
Ω(x,R−r+δ)

| f ε(z)− f ε(y,δ)|dz ≤ Cd(R− r+δ)dδ1−d
∫

Q(x,R−r+δ)
|∇ f ε(z)|dz.

(see formula (7.45) in section 7.8 of [7]).
Thus, by an application of Lemma 3.1, we get∫

Ω(x,R−r+δ)
| f ε(z)− f ε(y,δ)|dz ≤ Cd(R− r+δ)dδ1−d |D f |(Q(x,R− r+δ+ε)).

Furthermore lim
ε→0
‖( f ε− f )χQ(x,R)‖1 = 0. So,∫

Ω(x,R−r+δ)
| f (z)− f(y,δ)|dz ≤ limsup

ε→0

∫
Q(x,R−r+δ)

| f ε(z)− f ε(y,δ)|dz

≤ Cd(R− r+δ)dδ1−d |D f |(Q(x,R− r+δ))

and ∫
Q(x,R)

| f (z)− f(y,r)|dz = lim
δ→r

∫
Q(x,R−r+δ)

| f (z)− f(y,δ)|dz ≤CdRdr1−d |D f |(Q(x,R)).

�

Proposition 3.4. Let us assume that f belongs to BV∞,α(Rd) with 1 ≤ α ≤∞.

1) For any elements (x,R) and (y,r) of Rd × (0;∞) such that Q(y,r) is included in Q(x,R),
we have

| f(x,R)− f(y,r)| ≤ Cd(
R
r

)d(1− 1
α )r1− d

α ‖ |D f | ‖T∞,α

where Cd = |B(0,1)|1−
1
d d

d
2 .

2) If α < d then there is a real number f(∞) such that

lim
R→∞

f(x,R) = f(∞), x ∈ Rd.

Proof. 1) Let (x,R) and (y,r) be elements of Rd × (0;∞) such that Q(y,r) is included in
Q(x,R). We have

| f(x,R)− f(y,r)| = R−d |

∫
Q(x,R)

[ f (z)− f(y,r)]dz| ≤ R−d
∫

Q(x,R)
| f (z)− f(y,r)|dz

and therefore by Lemma 3.3

| f(x,R)− f(y,r)| ≤Cd r1−d |D f |(Q(x,R)) ≤Cd r1−dRd(1− 1
α )‖ |D f | ‖T∞,α .

2) Let us assume that 1 ≤ α < d.
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a) We consider an element x of Rd and two real numbers r and R such that 0 < r < R.
Let k be the unique non negative integer satisfying 2kr < R ≤ 2k+1r. We have

| f(x,R)− f(x,r)| ≤

k−1∑
j=0

| f(x,2 j+1r)− f(x,2 jr)|+ | f(x,R)− f(x,2kr)|

and therefore, by the result obtained in part 1),

| f(x,R)− f(x,r)| ≤Cd[2d(1− 1
α )(

k−1∑
j=0

2 j(1− d
α ))r1− d

α + (
R

2kr
)d(1− 1

α )(2kr)1− d
α ]‖ |D f | ‖T∞,α .

| f(x,R)− f(x,r)| ≤Cd 2d(1− 1
α )

k∑
j=0

2 j(1− d
α ))r1− d

α ‖ |D f | ‖T∞,α .

Since 1− d
α < 0 by hypothesis, we have

k∑
j=0

2 j(1− d
α ) <∞ and lim

r→∞
r1− d

α = 0.

Hence, for any real number ε > 0 there is a real number δε > 0 such that :

δε ≤ r < R⇒ | f(x,R)− f(x,r)| < ε.

Therefore, there is a real number f(x,∞) satisfying

lim
r→∞

f(x,r) = f(x,∞).

b) Let x and y be two elements of Rd such that |x− y| = s > 0. For any real number
r > 2s, Q(y,r−2s) is included in Q(x,r) and therefore, by the result obtained in part
1)

| f(x,r)− f(y,r−2s)| ≤Cd[r(r−2s)−1]d(1− 1
α )(r−2s)1− d

α ‖ |D f | ‖T∞,α .

So, because of the inequalities d(1− 1
α ) ≥ 0 and 1− d

α < 0, we have

lim
r→∞
| f(x,r)− f(y,r−2s)| = 0.

Therefore
f(x,∞) = lim

r→∞
f(x,r) = lim

r→∞
f(y,r−2s) = lim

r→∞
f(y,r) = f(y,∞).

This means that f(x,∞) does not depend on x and so, there is a real number f(∞) such
that

lim
r→∞

f(x,r) = f(∞), x ∈ Rd.

�

Proposition 3.5. Let us suppose that f belongs to BV∞,α(Rd) with 1 ≤ α < d. Then

f ε(∞) = f(∞), ε ∈ (0,∞).
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Proof. Let ε be a positive real number. For any element (x,r) of Rd × (0,∞). We have

f ε(x,r) = r−d
∫

Q(x,r)

∫
Rd

f (y− z)ρε(z)dzdy = r−d
∫
Rd

∫
Q(x−z,r)

f (y)dyρε(z)dz

=

∫
Rd

f(x−z,r)ρε(z)dz =
∫
Rd

( f(x−z,r)− f(x,r+2ε))ρε(z)dz+ f(x,r+2ε).

It follows that

| f ε(x,r)− f(x,r+2ε)| = |

∫
Rd

( f(x−z,r)− f(x,r+2ε))ρε(z)dz| ≤
∫
Rd
| f(x−z,r)− f(x,r+2ε)|ρε(z)dz

and therefore, by point 1) of Proposition 3.4,

| f ε(x,r)− f(x,r+2ε)| ≤Cd[(r+2ε)r−1]d(1− 1
α )r1− d

α ‖ |D f | ‖T∞,α .

Thus, letting r goes to infinity, we obtain, by point 2) of Proposition 3.4

| f ε(∞)− f(∞)| = 0 that is f ε(∞) = f(∞).

�

4 Precise representative of an element of BV p,α(Rd)

For any element β of [1;∞] and non negative Radon measure µ on Rd, we set

� mβµ(x) = sup{|Q(x,r)|
1
β−1µ(Q(x,r)) / 0 < r <∞}, x ∈ Rd

� mβ,Rµ(x) = sup{|Q(x,r)|
1
β−1µ(Q(x,r)) / 0 < r ≤ R}, 0 < R <∞, x ∈ Rd.

Proposition 4.1. Assume that f belongs to BVloc(Rd), and d < β ≤∞.

1) There is a real number Cd,β > 0, not depending on f such that

| f(x,R)− f(x,r)| ≤ R−d
∫

Q(x,R)
| f (y)− f(x,r)|dy ≤Cd,βR

1− d
βmβ,2R|D f |(x),

2) If x is a point of Rd such that mβ,1|D f |(x) <∞ then

lim
r→0

f(x,r) = f ∗(x) exists inR;

f ∗(x) = lim
ε→0

f ε(x) and lim
r→0

r−d
∫

Q(x,r)
| f (y)− f ∗(x)|dy = 0.

Proof. 1) Let us consider a point x of Rd and 0 < r ≤ R <∞.
We denote by k the unique positive integer satisfying 2−kR < r ≤ 2−k+1R. We have

| f − f(x,r)| = |( f − f(x,R))+ ( f(x,R)− f(x,2−1R))+ . . . . . .+ ( f(x,2−k+1R)− f(x,r))|

≤ | f − f(x,R)|+ | f(x,R)− f(x,2−1R)|+ . . . . . .+ | f(x,2−k+1R)− f(x,r)|



A Poincaré Inequality for Functions with Locally Bounded Variation in Rd 93

and therefore
R−d
∫

Q(x,R) | f (y)− f(x,r)|dy ≤ R−d
∫

Q(x,R) | f (y)− f(x,R)|dy

+
k−1∑
j=1

(2− j+1R)−d
∫

Q(x,2− j+1R) | f (y)− f(x,2− jR)|dy+ (2−k+1R)−d
∫

Q(x,2−k+1R) | f (y)− f(x,r)|dy.

An application of Lemma 3.3 leads to

R−d
∫

Q(x,R) | f (y)− f(x,r)|dy≤Cd[R1−d |D f |(Q(x,R))+
k−1∑
j=1

(2− jR)1−d |D f |(Q(x,2− j+1R))+r1−d |D f |(Q(x,2−k+1R))]

R−d
∫

Q(x,R)
| f (y)− f(x,r)|dy ≤ Cd

k∑
j=0

(2− jR)1−d |D f |(Q(x,2− j+1R))

≤ Cd2d(1− 1
β )

k∑
j=0

(2− jR)1− d
β sup

0<δ≤2R
|Q(x, δ)|

1
β−1
|D f |(Q(x, δ))

≤ Cd,βR
1− d
βmβ,2R|D f |(x)

where Cd,β is a real number not depending on f , R and x.
Furthermore, we have

| f(x,R)− f(x,r)| = |R−d
∫

Q(x,R)
( f (y)− f(x,r))dy| ≤ R−d

∫
Q(x,R)

| f (y)− f(x,r)|dy.

Therefore
| f(x,R)− f(x,r)| ≤Cd,βR

1− d
βmβ,2R|D f |(x).

2) Let us suppose that x is a point of Rd such that mβ,1|D f |(x) <∞.

a) From the result obtained in point 1) we get

| f(x,R)− f(x,r)| <Cd,βδ
1− d
βmβ,1|D f |(x), 0 < r ≤ R < δ ≤

1
2
.

Furthermore, we have
lim
δ→0

Cd,βδ
1− d
βmβ,1|D f |(x) = 0.

Thus there is a real number f ∗(x) such that

lim
r→0

f(x,r) = f ∗(x).

b) For any element r of (0; 1
2 ), we have

r−d
∫

Q(x,r)
| f (y)− f ∗(x)|dy ≤ r−d

∫
Q(x,r)

| f (y)− f(x,r)|dy+ | f(x,r)− f ∗(x)|

≤ Cd,βr
1− d
βmβ,1|D f |(x)+ | f(x,r)− f ∗(x)|.

Therefore
lim
r→0

r−d
∫

Q(x,r)
| f (y)− f ∗(x)|dy = 0.
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c) For any real number ε > 0, we have also

| f ε(x)− f ∗(x)| = |ε−d
∫
Rd

[ f (x− y)− f ∗(x)]ρ(ε−1y)dy| ≤ ‖ρ‖∞ε−d
∫

Q(x,ε)
| f (x− y)− f ∗(x)|dy

and therefore, by the result obtained in b)

lim
ε→0
| f ε(x)− f ∗(x)| = 0.

�

Proposition 4.2. Let us assume that 1 ≤ α ≤ p <∞ and f belongs to BV p,α(Rd). Then

Hdp( 1
α−

1
β )({x ∈ Rd / mβ|D f |(x) =∞}) = 0, β ∈ (α,∞].

Proof. Let us suppose that β belongs to (α,∞].

a) We consider a real number λ > 0 and set Eλ = {x ∈ Rd / mβ|D f |(x) > λ}.
For any element x of Eλ there is a real number r(x) such that :

λ < |Q(x,r(x))|
1
β−1
|D f |(Q(x,r(x)))

and therefore
λ|Q(x,r(x))|

1
α−

1
β < |Q(x,r(x))|

1
α−1|D f |(Q(x,r(x))) ≤ ‖ |D f | ‖T∞,α ≤ ‖ |D f | ‖T p,α

r(x) < (λ−1‖|D f |‖T p,α)
1

d( 1
α −

1
β ) <∞.

By Vitali’s covering Lemma, there is a subset {Qi / i ∈ I} of {Q(x,r(x)) / x ∈ Eλ} such
that  Eλ ⊂

⋃
i∈I

5Qi

Qi∩Q j = ∅ for i, j ∈ I with i , j

where 5Qi is the cube of Rd having the same center as Qi and with side length five times
that of Qi.
We notice that

1 < λ−1|Qi|
1
β−1
|D f |(Qi), i ∈ I

and therefore∑
i∈I

|5Qi|
p( 1
α−

1
β )
≤ 5pd( 1

α−
1
β )
∑
i∈I

|Qi|
p( 1
α−

1
β )[λ−1|Qi|

1
β−1
|D f |(Qi)]p

∑
i∈I

|5Qi|
p( 1
α−

1
β )
≤ 5pd( 1

α−
1
β )λ−p

∑
i∈I

|Qi|
p( 1
α−1)[|D f |(Qi)]p ≤ 5pd( 1

α−
1
β )λ−p‖ |D f | ‖pT p,α .

Thus

H
pd( 1

α−
1
β )

∞ (Eλ) = inf

∑
i∈I

(diamAi)
pd( 1

α−
1
β ) / Eλ ⊂

⋃
i∈I

Ai

 ≤ [Cλ−1‖ |D f | ‖T p,α]p,

where C is a real number not depending on f and λ.
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b) We notice that
{x ∈ Rd / mβ|D f |(x) = +∞} ⊂ Eλ, λ ∈ (0,∞).

Thus, by the result obtained in point a), we have

Hpd( 1
α−

1
β )({x ∈ Rd / mβ|D f |(x) = +∞}) = 0.

(see Lemma 1 of Section 2.1 of [4]).

�

Proof of Proposition 2.8. It is easy to verify that the hypothesis 1 < α < d implies that
( 1
α −

1
d ) d

d−1 <
1
α .

Let us assume that ( 1
α −

1
d ) d

d−1 <
1
p ≤

1
α and f belongs to BV p,α(Rd).

a) It is easy to verify that: 1
dp ≤

1
α −

d−1
dp <

1
d , β 7→ ϕ(β) = dp( 1

α −
1
β ) is an increasing function

on R, ϕ(d) = dp( 1
α −

1
d ) and d− 1 = ϕ(β0), with 1

β0
= 1
α −

d−1
dp . Thus ϕ is a bijection of

(d,β0] on (dp( 1
α −

1
d ),d−1].

b) For any element t of (dp( 1
α −

1
d ),d−1] we set

Nt = {x ∈ Rd / mβ,1|D f |(x) =∞} with β = ϕ−1(t).

We notice that for 0 < β1 < β2 we have mβ1,1|D f | ≤ mβ2,1|D f |.
Therefore

Nt1 ⊂ Nt2 , dp(
1
α
−

1
d

) < t1 < t2 ≤ d−1.

Let us set N =
⋂

d−1≥ t > dp( 1
α−

1
d )

Nt.

c) Let us consider a point x of Rd \N.
There is an element t of (dp( 1

α −
1
d ),d−1] such that x ∈Rd \Nt. We notice that β = ϕ−1(t)

satisfies 0 < 1
β <

1
d and mβ,1|D f |(x) <∞.

Therefore, by Proposition 4.1,

� f ∗(x) = lim
r→0

1
|Q(x,r)|

∫
Q(x,r) f (y)dy exists in R

� f ∗(x) = lim
ε→0

f ε(x) and lim
r→0

1
|Q(x,r)|

∫
Q(x,r) | f (y)− f ∗(x)|dy = 0.

d) � Let us consider an element t of (dp( 1
α −

1
d ),d− 1]. We notice that β = ϕ−1(t) satisfies

0 < 1
β <

1
d <

1
α . Thus, by Proposition 4.2, Ht(Nt) = 0 and therefore Ht(N) = 0.

� As Hd−1(N) = 0, we have Ht(N) = 0 for any real number t > d−1.

�

For 1 ≤ θ ≤ ∞, the elements of T∞,θ(Rd) are absolutely continuous with respect to the
d(1− 1

θ )-dimensional Hausdorff measure as stated belove.

Proposition 4.3. Let us assume that 1 ≤ θ ≤∞ and ν is a non negative element of T∞,θ(Rd).
Then for any ν-measurable subset A of Rd satisfying Hd(1− 1

θ )(A) = 0, we have ν(A) = 0.
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Proof. Let A be a ν-measurable subset of Rd satisfying Hd(1− 1
θ )(A) = 0.

For any real number ε > 0 there is a family {B(xi,ri)/ i ∈ I} of balls of Rd satisfying

A ⊂
⋃
i∈I

B(xi,ri) and
∑
i∈I

r
d(1− 1

θ )
i < ε.

Therefore

ν(A) ≤
∑
i∈I

ν(B(xi,ri)) ≤
∑
i∈I

ν(Q(xi,2ri)) ≤ 2d(1− 1
θ )‖ν‖T∞,θ

∑
i∈I

ri
d(1− 1

θ ) ≤ 2d(1− 1
θ )‖ν‖T∞,θε.

Thus
ν(A) = 0.

�

Corollary 4.4. Let us assume that : 1 < α < d, 0 ≤ 1
θ <

α
d ,

1
α−

1
d

1− 1
θ

< 1
p ≤

1
α , f belongs to

BV p,α(Rd) and ν is a non negative element of T∞,θ(Rd). Then for ν-almost every element x
of Rd

lim
ε→0

f ε(x) = f ∗(x) = lim
r→0

f(x,r) ∈ R.

Proof. 1rstcase 0 ≤ 1
θ ≤

1
d .

By hypothesis f belongs to BV p,α(Rd) and therefore to BVLoc(Rd).
So, by Proposition 2.9 there is a subset N of Rd such that lim

ε→0
f ε(x) = f ∗(x) = lim

r→0
f(x,r) ∈ R, x ∈ Rd \N

Hd−1(N) = 0.

Furthermore d−1 ≤ d(1− 1
θ ) and ν is a non negative element of T∞,θ(Rd). Thus, by Propo-

sition 4.3, ν(N) = 0.
2ndcase 1

d <
1
θ <

α
d .

From inequalities 1
d <

1
θ and

1
α−

1
d

1− 1
θ

< 1
p ≤

1
α , we get 0 < ( 1

α −
1
d ) d

d−1 <
1
α−

1
d

1− 1
θ

< 1
p ≤

1
α .

Therefore, by Proposition 2.8, there is a subset N of Rd such that : lim
ε→0

f ε(x) = f ∗(x) = lim
r→0

f(x,r), x ∈ Rd \N

Ht(N) = 0, t > dp( 1
α −

1
d ).

By hypothesis dp( 1
α −

1
d ) < d(1− 1

θ ). Therefore Hd(1− 1
θ )(N) = 0 and thus, by Proposition 4.3,

ν(N) = 0. �

Remark 4.5. Let us assume that : 1 < α < d, 0 ≤ 1
θ <

α
d ,

1
α−

1
d

1− 1
θ

< 1
p ≤

1
α and f belongs to

BV p,α(Rd). Let us define f ∗ on Rd by:

f ∗(x) =

 lim
r→0

f(x,r) when this limit exists in R

0 if not.

By the Lebesgue differentiation Theorem and Proposition 2.8, f ∗ is a representative of the
element f of L1

loc(Rd) (the so called precise representative). Actually, by Corollary 4.4,
if ν is a non negative element of T∞,θ(Rd) then f ∗ is a representative of f as element of
L1

loc(Rd, ν).
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5 A Poincaré Inequality in BV p,α(Rd)

In [3] an inequality similar to (2.2) was established for a function f whose variation mea-
sure |D f | belongs to Mp,α(Rd) [ a space of Radon measures containing T p,α(Rd) (see [5])]

but under the supplementary hypotheses : 1
θ <

1
d and 1− 1

d

1− 1
θ

< 1
p . The proof of point 2) of

Theorem 2.2 given below is strongly based on ideas developed in [3]. We start by estab-
lishing a norm inequality for the maximal fractional operator mβ(1 ≤ β ≤ ∞) defined in the
beginning of Section 4.

Proposition 5.1. Let us assume that : 0 ≤ 1
β <

1
α ≤ 1, 0 ≤ 1

θ ≤
α
β ,

1
p =

1
α−

1
β

1− 1
θ

and µ and ν are

non negative Radon measures on Rd. Then

ν‖mβµ‖∗p,∞ ≤ 5d( 1
α−

1
β )
‖ν‖

1
p

T∞,θ
‖µ‖T p,α . (5.1)

Proof. The claim is trivially true when ‖µ‖T p,α =∞. Thus we may assume that
‖µ‖T p,α <∞.
Let us consider a real number λ > 0 and set Eλ = {x ∈ Rd / mβµ(x) > λ}.
An argument similar to point a) of the proof of Proposition 4.2 shows that there exists a
family {Qi}i∈I of pairwise disjoint cubes of Rd satisfying :

Eλ ⊂
⋃
i∈I

5Qi and 1 < λ−1|Qi|
1
β−1µ(Qi) for i ∈ I.

Therefore we have

ν(Eλ) ≤
∑
i∈I

ν(5Qi) ≤
∑
i∈I

ν(5Qi)[λ−1|Qi|
1
β−1µ(Qi)]p

ν(Eλ) ≤ λ−p5d(1− 1
θ )
∑
i∈I

|5Qi|
1
θ−1ν(5Qi)[|Qi|

1
α−1µ(Qi)]p

ν(Eλ) ≤ λ−p5d(1− 1
θ )‖ν‖T∞,θ‖µ‖

p
T p,α

λν(Eλ)
1
p ≤ 5d( 1

α−
1
β )
‖ν‖

1
p

T∞,θ
‖µ‖T p,α .

This inequality being true for any real number λ > 0, we have

ν‖mβµ‖∗p,∞ ≤ 5d( 1
α−

1
β )
‖ν‖

1
p

T∞,θ
‖µ‖T p,α .

�

Proof of Proposition 2.6. We notice that
0 <

1
α−γ

1− 1
θ

<
1
α−

1
β

1− 1
θ

, β > 1
γ

lim
β→ 1

γ

1
α−

1
β

1− 1
θ

=
1
α−γ

1− 1
θ

and lim
β→ 1

γ

α
β = αγ >

1
θ
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Therefore there is a real number β0 >
1
γ such that

1
θ
<
α

β
and

1
α −

1
β

1− 1
θ

<
1
p
, β ∈ (

1
γ
,β0].

Let us consider a fixed element β of ( 1
γ ,β0]. We have 0 ≤ 1

β < γ <
1
α ≤ 1.

Thus, by Welland Inequality (see[10]) there is a real number D > 0 not depending on µ,
such that :

Iγµ(x) ≤ D[mβµ(x)]

1
α −γ

1
α −

1
β [mαµ(x)]

γ− 1
β

1
α −

1
β , x ∈ Rd

Iγµ(x) ≤ D[mβµ(x)]

1
α −γ

1
α −

1
β ‖µ‖

γ− 1
β

1
α −

1
β

T∞,α , x ∈ Rd.

Therefore

ν({x ∈ Rd / Iγµ(x) > t}) ≤ ν({x ∈ Rd / mβµ(x) > (D−1t)

1
α −

1
β

1
α −γ ‖µ‖

−
γ− 1
β

1
α −γ

T∞,α }), t ∈ (0,∞).

From this inequality and Proposition 5.1 we deduce

ν({x ∈ Rd / Iγµ(x) > t}) ≤ 5d(1− 1
θ )‖ν‖T∞,θ(Dt−1)q‖µ‖

q
γ− 1
β

1
α −

1
β

T∞,α ‖µ‖

1− 1
θ

1
α −

1
β

T

1− 1
θ

1
α −

1
β

,α

, t ∈ (0,∞)

ν({x ∈ Rd / Iγµ(x) > t}) ≤ 5d(1− 1
θ )‖ν‖T∞,θ(Dt−1)q‖µ‖

q

T

1− 1
θ

1
α −

1
β

,α

, t ∈ (0,∞).

Hence,

ν‖Iγµ‖∗q,∞ ≤ 5d( 1
α−γ)D‖ν‖

1
q

T∞,θ
‖µ‖

T

1− 1
θ

1
α −

1
β

,α

.

Furthermore we have p <
1− 1
θ

1
α−

1
β

and therefore ‖‖

T

1− 1
θ

1
α −

1
β

,α

≤ ‖‖T p,α .

Thus

ν‖Iγµ‖∗q,∞ ≤ B‖ν‖
1
q

T∞,θ
‖µ‖T p,α ,

where B = 5d( 1
α−γ)D. �

Beside the Welland inequality used in the proof of Proposition 2.6 there is another
control of the fractional integral operator by the fractional maximal operator. Actually the
following result was established in the proof of Proposition 2.7 of [3].

Proposition 5.2. Let us assume that :
0<γ< 1

α ≤ 1, 0≤ 1
θ < 1, 1

p ≤min(1, 1−γ
1− 1
θ

) and ν a non negative element of T∞,θ(Rd) satisfying

the condition (A∞) in Proposition 2.7. Then there is a real number C > 0 such that, for any
non negative Radon measure µ on Rd

ν‖Iγµ‖∗p,∞ ≤ C ν‖m 1
γ
µ‖∗p,∞. (5.2)
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Proof of Proposition 2.7. The desired result is obtained by a direct application of Proposi-
tion 5.1 and Proposition 5.2. �

A weighted form of the Hardy-Littlewood-Sobolev inequality for fractional integral in
Lebesgue spaces is obtained from Proposition 2.7 as follows.

Corollary 5.3. Let us assume that : 0 < γ < 1
α ≤ 1, 0 ≤ 1

θ ≤ γα,
1
p =

1
α−γ

1− 1
θ

and ν is a non

negative element of T∞,θ(Rd) satisfying the condition (A∞) in Proposition 2.7. Then, for
any element f of F(1, p,α)

a) Iγ f (x) =
∫
Rd |x− y|d(γ−1) f (y)dy converges (absolutely) for ν-almost every element x of

Rd;

b)

ν‖Iγ f ‖∗p,∞ ≤ C ‖ν‖
1
p

T∞,θ
‖ f ‖F(1,p,α) ≤C‖ν‖

1
p

T∞,θ
‖ f ‖α. (5.3)

Proof. Let us consider an element f of L1
loc(Rd).

The Radon measure µ f , defined by dµ f (x) = f (x)dx, satisfies : Iγµ| f | = Iγ| f |
Therefore by Proposition 2.7

ν‖Iγ| f | ‖∗p,∞ ≤ C ‖ν‖
1
p

T∞,θ
‖µ| f |‖T p,α =C ‖ν‖

1
p

T∞,θ
‖ f ‖F(1,p,α). (5.4)

where C is a real number not depending on f .

a) Let us suppose that f belongs to F(1, p,α).
By the inequality (5.4) we have, for any real number t > 0

ν({x ∈ Rd / Iγ| f |(x) > t}) ≤ t−pCp‖ν‖T∞,θ‖ f ‖
p
F(1,p,α).

Furtheremore

Cp‖ν‖T∞,θ‖ f ‖
p
F(1,p,α) <∞

Therefore, for ν-almost element x of Rd

Iγ| f |(x) =
∫
Rd
|x− y|d(γ−1)| f (y)|dy <∞

and so,
Iγ f (x) =

∫
R
|x− y|d(γ−1) f (y)dy converges absolutely and satisfies

|Iγ f (x)| ≤ Iγ| f |(x).

b) From the inequality above, inequality (5.4) and point 3) of Proposition 2.4,
we get

‖Iγ f ‖∗p,∞ ≤ ‖Iγ| f |‖
∗
p,∞ ≤C‖ν‖

1
p

T∞,θ
‖ f ‖F(1,p,α) ≤C‖ν‖

1
p

T∞,θ
‖ f ‖α.
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�

Corollary 5.4. Let us assume that : 0 < γ < 1
α ≤ 1, 0 ≤ 1

θ < γα,
1
p =

1
α−γ

1− 1
θ

and ν is a non

negative element of T∞,θ(Rd) satisfying the condition (A∞) in Proposition 2.7. Then there
is a real number C > 0 such that

ν‖Iγ f ‖p ≤ C‖ν‖
1
p

T∞,θ
‖ f ‖α, f ∈ Lα(Rd). (5.5)

Proof. Let us consider α0 and α1 such that 1
θ < γα1 < γα < γα0 ≤ 1 and set 1

pi
=

1
αi
−γ

1− 1
θ

for

i ∈ {0,1}.
By Corollary 5.3, for i ∈ {0,1} there is a real number Ci > 0 such that

ν‖Iγ f ‖∗pi,∞
≤Ci‖ν‖

1
pi
T∞,θ
‖ f ‖αi , f ∈ Lαi(Rd).

Furthermore there is an element s of (0,1) such that

1
α
=

1− s
α0
+

s
α1

and
1
p
=

1− s
p0
+

s
p1
.

Therefore, by Marcinckiewicz interpolation theorem, there is a real number D > 0 such that

ν‖Iγ f ‖p ≤ D(C0‖ν‖
1

p0
T∞,θ

)1−s(C1‖ν‖
1

p1
T∞,θ

)s‖ f ‖α =C‖ν‖
1
p

T∞,θ
‖ f ‖α, f ∈ Lα(Rd).

�

In the proof of Theorem 2.2 we shall use the following result.

Lemma 5.5. Let us assume that f belongs to BVloc(Rd) and 1 ≤ α ≤ p ≤∞. Then

‖ |∇ f ε| ‖F(1,p,α) ≤ ‖ |D f | ‖T p,α(Rd), ε ∈ (0,∞).

Proof. Let us consider a real number ε > 0.

1) By Lemma 3.1, we have∫
Ω(x,r)

|∇ f ε(y)|dy ≤
∫
Rd
|D f |(Ω(x,r)− y)ρε(y)dy, (x,r) ∈ Rd × (0,∞).

Therefore∫
Q(x,r)

|∇ f ε(y)|dy=
∫
Ω(x,r)

|∇ f ε(y)|dy≤
∫
Rd
|D f |(Q(x,r)−y)ρε(y)dy, (x,r) ∈Rd×(0,∞).

Thus for any cube Q of Rd, we have

|Q|
1
α−1‖ |∇ f ε|χQ‖1 ≤

∫
Rd
|Q|

1
α−1|D f |(Q− y)ρε(y)dy (5.6)

|Q|
1
α−1‖ |∇ f ε|χQ‖1 ≤ ‖ |D f | ‖T∞,α

∫
Rd
ρε(y)dy = ‖ |D f | ‖T∞,α .

That is
‖ |∇ f ε| ‖F(1,∞,α) ≤ ‖ |D f | ‖T∞,α .
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2) Let us suppose that p < ∞ and consider a family {Qi}i∈I of mutually disjoint cubes of
Rd. We have, by inequality (5.6)∑

i∈I

[|Qi|
1
α−1‖ |∇ f ε|χQi‖1]p


1
p

≤

∑
i∈I

[|Qi|
1
α−1
∫
Rd
|D f |(Qi− y)ρε(y)dy]p


1
p

And therefore, by Minkowski inequality∑
i∈I

[|Qi|
1
α−1‖ |∇ f ε|χQi‖1]p


1
p

≤

∫
Rd
{
∑
i∈I

[|Qi|
1
α−1|D f |(Qi− y)]p}

1
p ρε(y)dy

≤

∫
Rd
‖ |D f | ‖T p,αρε(y)dy = ‖ |D f | ‖T p,α .

Thus

‖ |∇ f ε| ‖F(1,p,α) ≤ ‖ |D f | ‖T p,α .

�

Proof of Theorem 2.2. 1) The assertion is just point 2) of Proposition 3.4.

2) Let us set g = f − f(∞).
We notice that g belongs to BV p,α(Rd) with |Dg| = |D f | and g(∞) = 0.
Let us consider two real numbers ε > 0 and r > 0.

a) We know that gε = ρε ∗g belongs to C1
c(Rd) and therefore satisfies :

|gε−gε(0,r)|χQ(0,r) ≤ d
d
2−1I 1

d
(|∇gε|χQ(0,r))χQ(0,r) ≤ d

d
2−1I 1

d
(|∇gε|)

(see Lemma 7.16 of [7]).
From the inequality above and Proposition 2.6 we deduce that there is a real number
C > 0, not depending on ν, f , ε and r, such that

ν‖(gε−gε(0,r))χQ(0,r)‖
∗
q,∞ ≤C‖ν‖

1
q

T∞,θ
‖ |∇gε| ‖F(1,p,α)

and therefore, by Lemma 5.5

ν‖(gε−gε(0,r))χQ(0,r)‖
∗
q,∞ ≤C‖ν‖

1
q

T∞,θ
‖ |Dg| ‖T p,α =C‖ν‖

1
q

T∞,θ
‖ |D f | ‖T p,α .

b) Let us consider u and υ such that 1 ≤ u < q and 1
υ =

1
u −

1
q and a

ν-measurable subset E of Rd satisfying 0 < ν(E) <∞.
By the inequality above and Kolmogorov condition (see Lemma 2.8 on page 485 of
[6]) we have

ν‖(gε−gε(0,r))χE∩Q(0,r)‖u ≤ K(
q

q−u
)

1
u ‖ν‖

1
q

T∞,θ
ν(E)

1
υ ‖ |D f | ‖T p,α

where K is a real number not depending on ν, f , ε, u, υ and E.
We notice that

|gε|χE∩Q(0,r) ≤ |gε−gε(0,r)|χE∩Q(0,r)+ |gε(0,r)|χE∩Q(0,r)
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and therefore

ν‖gεχE∩Q(0,r)‖u ≤ K( q
q−u )

1
u ‖ν‖

1
q

T∞,θ
ν(E)

1
υ ‖ |D f | ‖T p,α + |gε(0,r)|ν(E)

1
u .

By Proposition 3.5, gε(∞) = g(∞) = 0. From the inequality above and the monotone
convergence Theorem, we get

ν‖gεχE‖u ≤ K(
q

q−u
)

1
u ‖ν‖

1
q

T∞,θ
ν(E)

1
υ ‖ |D f | ‖T p,α .

By Corollary 4.4,
lim
ε→0

gε(x) = g∗(x) = f ∗(x)− f(∞), ν− almost every x ∈ Rd.

Therefore from the inequality above and Fatou Lemma, we obtain

ν‖( f ∗− f(∞))χE‖u ≤ K(
q

q−u
)

1
u ‖ν‖

1
q

T∞,θ
ν(E)

1
υ ‖ |D f | ‖T p,α ;

that is, by Remark 4.5,

ν‖( f − f(∞))χE‖u ≤ K(
q

q−u
)

1
u ‖ν‖

1
q

T∞,θ
ν(E)

1
υ ‖ |D f | ‖T p,α .

Thus by Kolmogorov condition we have

ν‖( f − f(∞))χE‖
∗
q,∞ ≤ A‖ν‖

1
q

T∞,θ
‖ |D f | ‖T p,α

where A is a real number not depending on f and ν.
�

Proof of Theorem 2.3. The result is obtained by almost the same argumentation than that
in the Proof of Theorem 2.2. We need only to

i) use Proposition 2.7 instead of Proposition 2.6 [ clearly the Lebesgue measure on Rd is
a non negative element of T∞,∞(Rd) satisfying the condition (A∞) in Proposition 2.7]

ii) notice that, by the Lebesgue differentiation theorem we have

lim
ε→0

( f − f(∞))ε = lim
ε→0

f ε− f(∞) = f − f(∞)

Lebesgue almost everywhere.

�

6 Banach space structure of BV p,α(Rd)

We assume that : 1 < α < d and 1
α −

1
d =

1
p .

Notation 6.1. For any element f of BV p,α(Rd)

‖ f ‖BV p,α = ‖ |D f | ‖T p,α + | f(∞)|. (6.1)
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Proposition 6.2. (BV p,α(Rd),‖ · ‖BV p,α) is a Banach space.

Proof. • From the definition of Sobolev spaces and Proposition 2.4 it follows easily that

W1,α(Rd) = { f ∈ L1
loc(Rd) / |∇ f | ∈ Lα(Rd)} ⊂ BV p,α(Rd) ⊂ BVloc(Rd)

and therefore BV p,α(Rd) is non void.
It is easy to see that for any element f of BV p,α(Rd) and λ ∈ R,
‖ f ‖BV p,α ∈ R , ‖ f ‖BV p,α = 0⇔ f = 0 and ‖λ f ‖BV p,α = |λ|‖ f ‖BV p,α .
Let f and g be elements of BV p,α(Rd).
An application of the definition of variation measure yields, for any open subset O of Rd

|D( f +g)|(O) ≤ |D f |(O)+ |Dg|(O).

As |D f | and |Dg| are non negative Radon measures, the inequality above induces that, for
any cube Q of Rd,

|D( f +g)|(Q) ≤ |D f |(Q)+ |Dg|(Q).

Let {Qi}i∈I be an element of S . We have

|Qi|
1
α−1|D( f +g)|(Qi) ≤ |Qi|

1
α−1|D f |(Qi)+ |Qi|

1
α−1|Dg|(Qi), i ∈ I

and therefore∑
i∈I

[|Qi|
1
α−1|D( f +g)|(Qi)]p


1
p

≤

∑
i∈I

[|Qi|
1
α−1|D f |(Qi)]p


1
p

+

∑
i∈I

[|Qi|
1
α−1|Dg|(Qi)]p


1
p

∑
i∈I

[|Qi|
1
α−1|D( f +g)|(Qi)]p


1
p

≤ ‖ |D f | ‖T p,α + ‖ |Dg| ‖T p,α .

Thus
‖ |D( f +g)| ‖T p,α ≤ ‖ |D f | ‖T p,α + ‖ |Dg| ‖T p,α .

This implies clearly

‖ |D( f +g)| ‖BV p,α ≤ ‖ |D f | ‖BV p,α + ‖ |Dg| ‖BV p,α .

So (BV p,α(Rd),‖‖BV p,α) is a normed space.
• Let ( fn)n≥0 be a Cauchy sequence in BV p,α(Rd) and let us set gn = fn− fn(∞) for all n ≥ 0.
Clearly we have, for any integer n ≥ 0

|Dgn| = |D fn| and gn(∞) = 0

and therefore{
‖gn‖BV p,α = ‖ |D fn| ‖T p,α and ‖gn‖

∗
p,∞ ≤ A‖ |D fn| ‖T p,α , n ∈ N

‖gn−gm‖BV p,α = ‖ |D( fn− fm)| ‖T p,α , n ∈ N

where A is a real number not depending on ( fn)n≥0 (see Theorem 2.3).
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a) From the remarks made above, it is clear that (gn)n≥0 is Cauchy sequence in the weak
Lebesgue space Lp,∞(Rd) which is complete. Therefore there is an element g of Lp,∞(Rd)
such that

lim
n→∞
‖g−gn‖

∗
p,∞ = 0.

Furthermore (gn)n≥0 is Cauchy sequence in BV p,α(Rd) and therefore

sup
n≥0
‖ |Dgn| ‖T p,α = sup

n≥0
‖gn‖BV p,α = M <∞.

b) Let O be a bounded open subset of Rd and Q a cube of Rd such that : O ⊂ Q.
The sequence (gn)n≥0 converges to g in L1(O) and therefore
|Dg|(O) ≤ liminf

n→∞
|Dgn|(O) (see Theorem 1 in Section 5.2.1 [4]).

We have also, for any integer n ≥ 0,

|Dgn|(O) ≤ |Dgn|(Q) ≤ |Q|1−
1
α ‖ |Dgn| ‖T p,α = |Q|1−

1
α M.

Therefore we have

|Dg|(O) ≤ |Q|1−
1
α M <∞ and g ∈ BV(O).

For any integer n, (gm−gn)m≥0 converges to g−gn in L1(O) and therefore

|D(g−gn)|(O) ≤ liminf
m→∞

|D(gm−gn)|(O).

Furthermore

|D(gm−gn)|(O) ≤ |Q|1−
1
α ‖ |D(gm−gn)| ‖T p,α = |Q|1−

1
α ‖ |D(gm−gn)| ‖BV p,α , n ≥ 0, m ≥ 0,

and (gn)n≥0 is a Cauchy sequence in BV p,α(Rd).
Therefore, for any real number ε > 0 there is nε ≥ 0 such that

|D(gm−gn)|(O) < ε, n ≥ nε and m ≥ nε

sup
m≥nε
|D(gm−gn)|(O) < ε, n ≥ nε

|D(g−gn)|(O) ≤ liminf
m→∞

|D f (gm−gn)|(O) ≤ ε, n ≥ nε.

Thus we have
lim
n→∞
|D(g−gn)|(O) = 0.

We notice also that

|Dgn|(O) ≤ |D(gn−g)|(O)+ |Dg|(O), n ≥ 0.

limsup
n→∞

|Dgn|(O) ≤ lim
n→∞
|D(gn−g)|(O)+ |Dg|(O) = |Dg|(O).

Combining this result with inequality

|Dg|(O) ≤ liminf
n→∞

|Dgn|(O),

we get

|Dg|(O) = lim
n→∞
|Dgn|(O).
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c) Let Q be a cube of Rd. For any integers n ≥ 0 and m ≥ 0 we have

||Dgn|(Q)− |Dgm|(Q)| ≤ |D(gn−gm)|(Q) ≤ |Q|1−
1
α ‖ |D(gn−gm)| ‖T p,α

and therefore (|Dgn|(Q))n≥0 converges in R.
Let us consider a real number ε > 0. There is a sequence (On)n≥0 of open subset of Rd

satisfying :{
Q ⊂ O1, |Dg|(O1) < |Dg|(Q)+ε and |Dg1|(O1) < |Dg1|(Q)+2−1ε

Q ⊂ On+1 ⊂ On, |Dgn+1|(On+1) < |Dgn+1|(Q)+2−n−1ε, n ≥ 0.

We have :

|Dg|(Q) ≤ |Dg|(On) ≤ |D(g−gn)|(On)+ |Dgn|(On) ≤ |D(g−gn)|(O1)+ |Dgn|(Q)+2−nε,∀n ≥ 0

and therefore
|Dg|(Q) ≤ lim

n→∞
|Dgn|(Q).

Furthermore
|Dgn|(Q) ≤ |Dgn|(O1), n ≥ 0

and therefore, by the result obtained in b),

lim
n→∞
|Dgn|(Q) ≤ lim

n→∞
|Dgn|(O1) = |Dg|(O1) < |Dg|(Q)+ε.

Thus
|Dg|(Q) = lim

n→∞
|Dgn|(Q).

d) Let {Qi}i∈I be element of S with I finite. We have∑
i∈I

[|Qi|
1
α−1|Dg|(Qi)]p


1
p

:=

∑
i∈I

[|Qi|
1
α−1 lim

n→∞
|Dgn|(Qi)]p


1
p

= lim
n→∞

∑
i∈I

[|Qi|
1
α−1|Dgn|(Qi)|]p


1
p

≤ limsup
n→∞

‖ |Dgn| ‖T p,α = M <∞.

Thus
‖ |Dg| ‖T p,α ≤ limsup

n→∞
‖ |Dgn| ‖T p,α = M <∞

and so g belongs to BV p,α(Rd).

e) Let us consider a real number ε > 0. There is an integer nε ≥ 0 such that

‖D(gn−gm)‖T p,α < ε, n ≥ nε and m ≥ nε.

Let us fix n ≥ nε and set hm = gn−gm, for any integer m ≥ 0.
The sequence (hm)m≥0 of elements of BV p,α(Rd) satisfies :

‖hm′ −hm′′‖BV p,α = ‖gm′ −gm′′‖BV p,α ,m′ ≥ 0 , m′′ ≥ 0
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and therefore is a Cauchy sequence in BV p,α(Rd).
By applying the argumentations held in points a), b), c) and d), with (hm)m≥0 in place of
(gm)m≥0, we obtain

‖D(g−gn)‖T p,α ≤ lim
n→∞

sup‖D(gm−gn)‖T p,α ≤ ε

that is
‖g−gn‖BV p,α ≤ ε.

So (gn)n≥0 converges to g in BV p,α(Rd) and therefore ( fn)n≥0 converges to
f = g+ lim

n→∞
fn(∞) in BV p,α(Rd). �

Acknowledgments

We thanks very sincerely the referees for their comments which helped us to improve the
presentation of our results.

References
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