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Abstract

The aim of this paper is to study the time asymptotic propagation for mild solutions
to the fractional reaction diffusion cooperative systems when at least one entry of the
initial condition decays slower than a power. We state that the solution spreads at
least exponentially fast with an exponent depending on the diffusion term and on the
smallest index of fractional Laplacians.
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1 Introduction
The reaction-diffusion equation with Fisher-KPP nonlinearity
O+ (—2)u= f(u) (1.1)

where (—A)® is the fracctional laplacian with index @ € (0, 1) appears in models of physics,
chemistry and biology, when the diffusive phenomena is described by Lévy processes allo-
wing long jumps. Concerning equation (1.1), Cabré and Roquejoftre showed in [3] that, the
speed of propagation of solutions is exponential in time when the initial value decays faster
than the critical power |x|~%~2%, where d is the dimension of the spatial variable.

In the case in which the initial condition decay slower than the critical power, [8] states
that the level sets of the solutions move exponentially fast as time goes to infinity. Moreover,
a quantitative estimate of motion of the level sets is obtained in terms of the decay of the
initial condition. All these results are in great contrast with the standard case i.e. taking @ =
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1 in (1.1). Indeed, [1] shows that there exists a critical speed such that, for any compactly
supported initial value, there is a linear propagation in time of the fronts.

Moreover, the work on the single equation (1.1) with standard laplacian can be extended
to cooperative systems. In a series of papers, [10], [11], [14], [15], spreading speeds and
traveling waves are studied for a particular class of cooperative reaction-diffusion systems,
with standard diffusion. Results on single equations in the singular perturbation framework
proved in [7] have also been extended in [2].

In the fractional case, the recent paper [5] studies the time asymptotic propagation of
sectorial solutions to the fractional reaction-diffusion cooperative systems when the initial
conditions decay faster than a power, they prove that the propagation speed is exponential in
time and they find a precise exponent of propagation, which depends on the smallest index
of the fractional laplacians and on the principal eigenvalue of the reaction term derivative.
It is interesting to note, if we assume that each entry of the initial condition in [5] belongs
to the domain of the fractional laplacian, using Theorems 2.3 and 2.6 below, it is possible to
prove that the mild solution of the system studied en [5] spreads with the same speed than
in the sectorial case.

Following the line, we are interested in the large time behavior of solutions u = (;)"
with m € N*, to the fractional reaction diffusion system:

Ot + (= 0)%u; fi(w), V(t,x) € R* xRY
ui(0,x) = ugi(x), VxeRd

(1.2)

where «; € (0,1] for all i € [1,m] := {1,...,m} with at least one a; # 1, we note, if @; =1
then the fractional laplacian becomes in the standard laplacian. Without loss of generality,
we suppose a4+ < @; for all i € [1,m— 1] and we set @ := a@,, < 1. Henceforth, we impose
the nonnegative initial conditions ug; # 0, bounded by the constant A > 0 and u; € Co(R%)
for all i € [1,m], where the Banach space Co(R?) is the set of continuous functions in R?
which decay to zero as |x| — oo, doted with the L®(R?) norm. Also, to state the main result,

we need to consider that at least one entry of ug = (uo,)}" | satisfies
upi(x) > Cilxl_d_ﬁ" as |x| — oo, for some B; < 2¢; (1.3)
with C; a positive constant and the other entries satisfy
uo(x) = O(x™72%)  as|x| — oo, i # j. (1.4)
In general, the function F = (f)]_, satisfies
£0)=0, fieC'R™ Vie[l,m] and 0ifi>0 Vi#j (1.5)

i.e., the system (1.2) is cooperative. Moreover, we will make additional assumptions on
the reaction term F that are not general but enable us to understand the long time behavior
of a class of monotone systems, however, it is important to note that these hypothesis are
compatible with strongly coupled systems.

(H1) The principal eigenvalue A; of the matrix DF(0) is positive,
(H2) f;is globally Lipschitz on R™ for all i € [1,m].
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(H3) Forall s = (s;)1", € RY satisfying [s| > A, we have fi(s) <0,
(H4) Forall s = (s;)72, € RY satisfying [s| < A, Dfi(0)s — fi(s) > cs, ;1401
(HS) Forall s = (s;), € RY satisfying |s| < A, Dfi(0)s — fi(s) < cs, 5|1 92,

where the constants ¢, and c5, are positive and for all j € {1,2}

0; = ﬁ with 8= r?eiln{,Bi}
where I = {i| ug; satisfies (1.3)}. This lower bound on §; and §; is a technical assumption to
make the supersolution and subsolution to (1.2), we construct, to be regular enough. Note
that one may easily produce examples of functions F satisfying (H1) to (HS).

This paper is devote to understand the time asymptotic spread of solutions to (1.2).
We consider the case, when the entries of the initial datum ug satisfy (1.3) or (1.4). We
show in part b) of Theorem 1.1 below, that the speed of propagation for mild solutions is at
least exponential in time, with an exponent depending on the smallest index §; and of the
principal eigenvalue of the matrix DF(0). We prove also that this exponent is larger than
the exponent founded in [5] for sectorial solutions, when u; satisfies (1.4) for all i € [1,m].

We are now in a position to state our main theorem, which shows that the solution to
(1.2) moves exponentially fast in time.

Theorem 1.1. Let 2a > 8 and assume that F satisfies (1.5) and (HI) to (H4). Let u be
the solution to (1.2) with a non negative, non identically equal to 0 and continuous initial
condition ug satisfying (1.3) and (1.4). Then, for all i € [1,m], the following two facts are
satisfied:

a) Forallt> 0 and g; > 0, there exists r; > 0 such that

0<u(t,x)<eg;, forall|x|>r;
b) There exist T > 0 large enough, C > 0 and 6; € (0, A) such that
A
ui(t,x) > 0;, forallt>tand|x| < Ces',

It is interesting to note that, if we assume for the moment that u; € L*(RY) forallie I,
then we can find a sectorial solution u of (1.2), easily using Theorems 1 and 2 stated in
[5], and we can deduce that the spread speed of u is at least exponential as t — co, with
an exponent given by A;/(d +2a). The aim of this paper is to improve this exponent when
we consider only mild solutions, thus to establish Theorem 1.1, similarly to [5], but in this
case using the fact that at least one entry of the initial condition satisfies (1.3), we state
suitable sub and super solutions, in order to prove that the mild solution of (1.2), which
is not necessarily classical or sectorial, spreads at least with an exponential speed with an
exponent given by A;/(d + (). Furthermore, since 2a > 8, then A;/(d + ) > 41/(d + 2a),
which shows that the mild solution associated with an initial datum satisfying (1.3) and
(1.4) spreads faster than the sectorial solution of the problem studied in [5].

In sake of completeness, we state the following result which shows an upper bound for
the movement of the solution in a particular case.
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Theorem 1.2. Let 2a > 8 and assume that F satisfies (1.5), (HI) to (H3) and (H5). Let u be
the solution to (1.2) with a non negative, non identically equal to 0 and continuous initial
condition ug satisfying (1.3) and (1.4). If ugi(x) = O(x|~4P) as |x| > +o0 foralliel, then
for every positive € € R™, there exist T > 0 and ¢ > 0 such that,

A
u(t,x)<e, forallt>tand|x|> ce®@s

The plan to set Theorems 1.1 and 1.2 is organized as follows. First, we present some
preliminaries in which we prove the existence and uniqueness of mild solutions for coope-
rative systems involving fractional diffusion and we state a comparison principle for mild
and classical solutions, also we present some results which help us to find auxiliary classical
solutions. Then, by the manipulation of some Polya integrals, we set algebraically upper
and lower bounds for solutions of (1.2), which give us the space decay of the solution at
any time ¢ > 0. The end of this paper gives the proof of Theorems 1.1 and 1.2, that relies on
the construction of explicit classical subsolutions and supersolutions.

2 Mild solutions and comparison principles

In order to state the existence of the unique solution to the system (1.2) in a Banach space
X, we consider a function G : [0, +00) x X" — X", G = (G;(t,u))", that satisfies for all
iel,m]

G; € CI([0, +00) X X™; X), @1
Gi(t,-) is globally Lipschitz in X™ uniformly in ¢ > 0, '
where X™ is the product space doted with the norm ||u[x» = 3.7 llu;llx. Given any T > 0,

we are interested in the nonlinear problem

G(t,u), in(0,T)
uo,

1(0) (2.2)

{ O+ Lu

where L = diag((=2)",...,(=2)"), u = (u;)!L, and up € X" In the sequel, the heat kernel of
the Laplace operator of order @; € (0,1] in R¢ is denoted by p,,. It satisfies

1. pa; € C((0,+00) xRY), py. > 0and [, pe,(t,x)dx =1 for all £ > 0,

2. Pa;(t,) % Pa;(5,) = pai(t+s,-) for all (¢, 5) € R2,

3. If @; € (0, 1), then there exists B > 1 such that, for (z,x) e R, xR :
B! B

d_ 1 Spafi(t’x)S d 1 .
Z—Z(ri(l + |xt 2 |d+2a,») t2(y,‘(1 + |xt 2 |d+2a,-)

We define the map N, : C([0,T]; X)" — C([0,T]; X)" by

Ny, (w)(@) := T +f T,_sG(s,u(s))ds 2.3)
0
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where T; = diag(T1,..., Tt ,n) and T ;w(x) = (pg,(2,-) * w)(x) is a strongly continuous semi-
group of bounded linear operators for all i € [1,m]. Similarly to [16], we can prove that
there exists u € C([0,T];X)™ such that

w= lim (N,,)' ), (2.4)

where u(r) = T,ug for all T > 0. The limit  is the unique fixed point of N, hence u is the
unique mild solution of (2.2) for all T > 0. By uniqueness, under assumption (2.1), the mild
solution of (2.2) extends uniquely to all 7 € [0, +00), i.e., it is global in time.

Let u = (u;)!, be the unique mild solution of (2.2). We define

Hl([5w) = Gi(t9ula sy ui—l’we ui+la cey Mm)

and we have
H; € C([0,+0) X X; X),

H;(t,-) is globally Lipschitz in X uniformly in 7 > 0. 25
Consider now the problem
ow+(—-2)%w = Hit,w), in(0,T)
{ WO) = o (20

Following the computations of section 2.3 in [3], we conclude that this problem has a unique
mild solution in C([0,T];X), given by w = u;. Thus, if the initial datum belongs to the
domain D(A;) in X of A; = (—A)%, we have further regularity in ¢ of the mild solution
u; = u;(t). Under hypothesis (2.5), the mild solution u; of (2.6) satisfies

u; € C1([0,7T);X) and u;([0,T)) C D(A) if ug;i € D(A)), 2.7)

and it is a classical solution, i.e., a solution satisfying (2.6) pointwise for all ¢ € (0,7).
Doing the same procedure for all i € [1,m] and for all T > 0, we conclude that u = (u,'):.’il
is a classical solution of (2.2) global in time.

Now, we set a useful fact that we need in the following computations. If u is the solution
of the system (2.2) with uy € X" and G satisfies (2.1), then for any / € R, i(¢) = eu(r) is
the mild solution of the system (2.2) with uy € X™ and G(¢,u) replaced by a(t, i) = lii+
e"G(t,e7""ii). This fact is proved in the same way as in [16].

We now consider the Banach space X = Co(RY) and set, for all i € [1,m], G;(t,u)(x) :=
fi(u(x)) so that G; satisfies (2.1). We use that f; € C'(R™) and £;(0) = 0 to check that the
map u € Co(R4Y" - filw) € Co(RY) is continuously differentiable. Thus, by the previous
considerations, there is a unique mild solution u of (1.2) starting from uy € X™. Moreover,
if the initial datum ug belongs to []/2, Do(A;), where Dy(A;) is the domain of A; in Co(RY),
then the mild solution u satisfies (2.7) for all i € [1,m] and for all T > 0 and it is a classical
solution global in time.

Since, for all i € I, ug; is not necessarily in the domain D(A;), we need to state the
following results which will be helpful at the moment to find a classical auxiliary solution
of (1.2).
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Lemma 2.1. Given uy; satisfying (1.3), then there exists a positive vy; € Do(A;) such that

el P < voi(x) < co TP if x> 2 (2.8)

for B; < 2a; and cy;, ca; positive constants. Moreover,

Tauoi(x) > voi(x), ¥ xeR?
Proof. Let

1 2
o(x) = W and vyi(x) = le‘ T,io(x)ds

where ¢ > 0 is constant and 7; is the operator associated with A; = (—A)%. Form [3], we

know that vo; € Do(A;) since o € Co(R?). Now, we prove that, there exists c¢q; > 0 such that
voi(x) > c1,4|x]747Pi for |x| > 2. Indeed,

v0;i(X)

v

2_1/2"f£f ! 5 ! dy
B Jra 1+ [y|d+20i 1 +|x — y|d+hi
= 2_1/2“"£0'1(x).

B (2.9)

Let’s analyze o;. Note, we can find C; > 0 and R € (0,1) such that m > C; for all
[y] < R. We divide the proof in two cases. We consider first |x| > R, thus

Cy c
i(x) = dy > 2.10
O-l(-x) LlSR 1 + |x—y|d+ﬁi y 1 + |X|d+ﬂ’ ( )

noting that in the last inequality, we use |x —y| < |x| +[y| < |x| + R < 2|x|. In the case in which
|x| < R, we have

L+ =y < 1+ (x+ )P < 1+ R+ DTFL if i<
hence,

1 1
o > —— | 4y
7i(x) 1+ R+ )4 f|y|<1 1+ pléra
c

yapr 2.11)

Then, from (2.9), (2.10) and (2.11), we see that there exists C > 0 such that

voi(x) = C(1+ x4 P)™"  for all x e RY. (2.12)
Moreover, if |x| > 2, we conclude that vy;(x) > cl,ilxl‘d‘ﬁi for some constant c1; > 0. Now,

by definition of vy, it is easy to see that v; < ¢ in R, moreover, we claim that

voi(x) < colx ™I, for |x| > 2.

(2.13)
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To prove the claim, we assume |x| > 2 and let us note that

voi(x) < B2 2‘””[ f ! !
{l

vi<h/2y 1+ 19290 1 + |x — y|d+hi

dy

1 1
+ dy
fuy|>|x|/2} 1+ |y[d+20i 1 4 |x — y|d+hi
= B2+ ). (2.14)

If [y| < |x1/2, we have [x—y| > x| - |y| > &, then

1 24+hi
L < f dy (2.15)
{

wi<hd/2) L+ Ip19+20 1 + |x|d+Bi

24+ f dy __C
|x|d+/3,- Rd 1+|y|d+2ai - |x|d+,B,»'

Now, if [yl > |x|/2 and since |x| > 2, we see that 1+[y[**2% > 1= |x|"*#, hence

< 2d+ﬁff ds  C
2= |x|d+ﬁ,- Rd 1+|s|d+ﬁ,~ ' |x|d+,8i'

Therefore, from (2.14), we get (2.13). To finalize the proof, we consider

T3 jugi(x) = f Hi(2,y)upi(x —y)dy
Rn

where i
1 _ iz .
e 4 17 a; = 1
Hi(t,x)={ @m? U (2.16)
pi(t,x) if aj€(0,1).

In both cases «; € (0,1) and «; = 1, taking |x| > xo with xg > 1 large enough such that (1.3)
18 satisfied, we have

m&owmwzéf :

i<t [x—yld*Bi

for some small constant C > 0. Also, |x—y| < x|+ 1yl < |x|+1 < 2|x], so
Hy(t,) % ugi(x) = Clx ™.

Now, if |x| < xg, then H;(2,-) * ug;(x) > C for some small constant C > 0. Thus, since vy,
satisfies (2.13), we can take ¢ > O in the definition of vy; small enough such that 75 jug; >
Vi O

In what follows, Lip( fl.j ) denotes the Lipschitz constant of fl.j and we define the constant

= ien[f[lfzni]]{Lip(ﬁ)} (2.17)

which appears several times throughout the paper.
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Lemma 2.2. Given ug satisfying (1.3) and (1.4), there exists vo € [, Do(A;) such that
w(2,x) = vo(x), VxeR4 (2.18)
where w is the mild solution of

{ ow; +(—A)%w; = lwi+el’f,-(e_”w) (2.19)

w;(0,-) Uo;

with 1 > 0 defined in (2.17). Moreover, vy; satisfies (2.8) for all i € I and (1.4) for all i ¢ I,
also 0 <vg; < A forallie[1,m].

Proof. By the previous computations, the solution w is the limit of the iterative process (2.4)
applied to the system (2.19) with initial term given by w®(z, x) = T,uo(x). By the choice of
[ > 0 and since F satisfies (1.5), f(w) = lw; + €'t f,-(e‘l’w) is nondecreasing in its second
argument for all i € [1,m]. Using (2.3), (2.4), F(0) = 0 and the properties of F, we can
deduce that

w(t,x) > wl(t,x), Y (t,x)€[0,00) xR (2.20)

If ug; satisfies (1.3), by Lemma 2.1, there exists vy; € D(A;) satisfying (2.8). Moreover, if
up; satisfies (1.4), we define

2
voi(X) :=¢; f pi(s,x)ds
1

hence, by Lemma 2.2 in [3], we have that vy; € D(A;) satisfying (1.4) and in both cases
T iupi(x) = vpi(x), thus vo; is bounded by A. Furthermore, by (2.20), we get (2.18). O

Before stating the bounds for the solutions, we need to establish a comparison principle
for mild solutions defined in any Banach space X.

Theorem 2.3. For every j € {1,2}, set Fl= (ft.j)?i1 where, for all i € [1,m]], fl.j is CI(R’”),
satisfies (1.5) and is globally Lipschitz. Let u/ = (u{ )it be a mild solution of

O’ + Lu! = F/(u),

with initial condition u/(0,-) € X. If. for all i € [1,m]), fi1 < fl.2 in R™ and ui1 0,) < ul.z(O, 2
in X, then
ul(t,x) <ur(t,x) forall (t,x) € [0,+00)xRY,

Proof. Taking [ = max Lip(fl.j), we define for i € [1,m], je{1,2}and >0
ic[1,m],je(1,2}

Flav)=tvi+efle ).

For i € [1,m] and j € {1,2}, by the choice of / > 0 and since fij satisfy (1.5), the function

fl.j is nondecreasing in its second argument. Moreover, since fl.1 < fl.2 in R, we have at any

time t> 0, f(t,) < f2(z,").
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For j € {1,2}, we define F/ = (fij);.’il, and consider the system

{a,af+Laf = Fi@) t>0,xeR", (2.21)

w0,) = u),  xeR™
By the previous section, we know that i/(t, x) = e"u/(z,x) is the solution of (2.21), where

u/ is the solution of (2.21) with F/ replaced by F/. Therefore, it is enough to prove that
ii! < i#?. Consider the mapping N/ for j = {1,2}, defined by

NI w)(t,) = Ta() + f T,_ F/(s,w(s,))ds.
0

Taking u®/(t,-) = T,ué(-), we know that @/ = lim,_00o(N/)"(u®7). Thus, using a standard
induction argument, we only need to show that (N ])”(uo’l) < (N®"(u"?) on [0, +c0) x RY
for all n € N. This fact is obvious since ul.1 0,9 < uiz(O, 9, fi] is nondecreasing in its second
argument and fl.1 < fl.2 forallie[1,m]. O

Remark 2.4. If we suppose fl.1 < fi2 in R} and 0 < ul.l(O, )< ul.z(O,-) for all i € [1,m], we
obtain the same result as in Theorem 2.3.

Remark 2.5. Since F(0) = 0 by the previous theorem, we conclude that the solution of (1.2),
satisfies u;(¢, x) > 0 for all (£, x) € [0, +c0) x R? and all i € [1,m]).

Now, we state the following comparison principle for classical solutions, which is an
adaptation of Theorem 2 of [5]. This result will be useful to deal with sub and super so-
lutions. Indeed, we have not devised a mild representation for them, so we can not apply
Theorem 2.3 directly.

Theorem 2.6. Let u = (u;)!, and v = (v;);., functions in C 1[0, T1; Co(RHY™ such that, for
allie[1,m],
Opui +(=0)"u; < fi(w),  Ovi+(=0)"v; 2 fi(v),

where f; satisfies (1.5). If for all i € [1,m] and x € RY, u;(0, x) < vi(0,x) and for all t € [0,T]
ui(t,x) = O(x" Py and vi(t,x) = O(x["P)  as|x| - +oo, (2.22)

then
u(t,x) <vt,x) forall (t,x)€[0,T1xR%

Proof. Let us define for all i € [1,m], w; = u; — v;. Then w; satisfies w;(0, x) <0 and

1
owi+(=AN)%w; < filw)— fi(v) = f Vii(ou+ (1 -o)w)do.(u—v)
0

1
f Vfi{s)do.w, (2.23)
0

where {, = cu+ (1 —o)v. By hypothesis, for all i € [1,m]], the function w; belongs to
CY([0,T7]; Co(R?)) and consequently there exist positive constants C{(7) and C»(T') such
that for all (¢, x) € [0, T]xR?

lwi(t,x)| < C(T) and |0w;(t,x)| < Co(T). (2.24)
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Moreover, by 2.22, for all ¢ € [0, T], we have
wi(t, x) = O(x|"“*P)  as |x] - +oo. (2.25)

Thus, it is easy to see that for all € [0, T]

f lwi(t, 0)llw (1, 0)ldx < C;i(T), (2.26)
R4

where C;;(T) are constants that depend on T. Let w; be the positive part of w;. We want to
prove that

d . .
yr [ j;é v )2dx] = fR K [ow)?|ax, (2.27)

which is quite simple because (w;r)2 and 0, [(w;r)z] are continuous in (0,7) x R and

au| 2| = 2w aowi| < 2Ca(T) il < (). (2.28)

The last inequality and the existence of the integrable function g follows from (2.24) and
(2.25), thus we conclude (2.27). Now, multiplying each term of (2.23) by w" and integrating
over R?, we have

(e}
IA

fd wi (=A) " widx
R

1
fwff Vfi({(r)do:wdx—f w; dwidx. (2.29)
Rd 0 R‘]

By (2.26) and (2.28), we get

IA

wi (=) 1 widx < co.
R4

Now, since all the above integrals exist and having in mind that f; € C'(R™) forall i € [1,m]],
from (2.27), (2.29) and since 0;f;({s) > 0, we get

1d +12 ! . o
EE[[RCJ(WI) dx S \fIR;dL alﬁ((ﬂ')da-(wl) dx

m 1
L‘if(; 3 fi({o)dow; widx
.

3

J=Lj#

< CZ jl; d(w}r)zdx,

J=1

where C is a constant that depends on m. Doing this procedure for each i € [1,m] and
adding, we get for r € [0, T]

d
dt

Z Rd(w}r)zdx
=1

2
< CZ fRd(wj.) dx.
=1
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By Gronwall’s inequality

m

2 Ct 2,
OszlfRd(w}r) dx<e El fRd(w}r(O,x)) dx=0.
J= =

Thus, we conclude that for all j € [1,m] and (z, x) € [0, T] x R4
w;(t,x) <0.
O

Remark 2.7. Let u be a function that satisfies the assumptions of the previous theorem.
From hypothesis (H3), we deduce that the positive vector M = A1, where 1 is the vector
of size m with all entries equal to 1, is a supersolution to (1.2) since the initial condition
uo = (uo;)? | is smaller than M (in the sense that all functions u; are smaller than A). Thus,
we can not directly apply Theorem 2.6 to prove that u is bounded from above by the constant
vector M, since a constant vector is not in Co(R¢). However, we can adapt the proof of this
theorem to get this upper bound on u. Indeed, consider for x e R? and 1 > 0

w(t,x) = (wi(t, )Ly = e~ (u(t,x) - M),
where [ > 0 is defined in (2.17). Thus, for all i € [1,m]], w; solves on (0, +00) x R¢
Owi + (=A)"w; < I(Jwil = wy).

As in the proof of Theorem 2.6, we multiply this inequality by the positive part w of w;,
and integrate over R?. All the integrals converge since wi is continuous and compactly
supported. Moreover, we have

f I(lwil —wijw]dx =0,
Rd

m

which leads to the same conclusion as in Theorem 2.6. Thus, starting from ug = (uo,);.

smaller than M, we have

0<u(t,x)<M, forall (7,x) € [0,+00)xRY.

3 Upper and lower estimates.

First, let consider the auxiliary initial condition vg = (vo,-);?i , given in Lemma 2.2 and let v be
the mild solution of (1.2) with initial condition vy. From (H2), we know that, for i € [1,m]
and je [1,m]

|0;£i(s)| < Lip(f;), forall seR™,
where Lip(f;) is the Lipschitz constant of f;. Taking / > 0 defined in (2.17), we have for all

sz(si);.’il >0

i
fi(S)=f Dfi(os)do-s <
0

m 1 9 i
Zsjf —f(O'S)dO'
=) 0 (9Sj

<i>s). (3.1)
=1
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Let us consider v = (V,-):’i | the mild solution of the following system

by by T, m
{ 0,v+Ly Bv, t>0,xeR (3.2)

v(0,) = vy, R™,

where B = (b,-j);."j:1 is a matrix with b;; = [ for all i, j € [1,m]. By (3.1) and Remark 2.4, we
conclude that v < v in R X [0, +o0). Moreover, since vg belongs to the domain []7, Do(A)),

v and v are classical solutions to (1.2). Taking Fourier transforms in each term of system
(3.2), we have

IO, = Fv), R™,
where A(|£]) = diag(—lflzal - —Iflz"'ﬂ). Thus,
FO),&) = ADB Z(10)().

In what follows, we prove that for each time ¢ > 0, the solution v of (1.2) with initial vy
decay as |x|=4-8 for large values of |x|.

{ 9,5v) = (AlD+B)FH), £€R™1>0

Lemma 3.1. Let v = (v;))!, be the classical solution of (1.2), with initial condition vo. If
2a > B, then, there exist locally bounded functions C; : (0,00) — R, such that for all t > 0
and |x| large enough, we have

Ci(1)

vi(t,x) < ,
15, %) 1+ |x|d+8

Vie[l,m]

Proof. Defining the Fourier Transform §~! (eA®&D+B1y .= (i, > we have that

m
0<vi(t,x) V=) myjlt, ) xvo;(x),  Yiell,ml
j=1

moreover, by Lemma 3 of [5]

< —Cij(t) Y 0 R
|m:(t, 0] < T >0, |x| >

for some R > 0 and C;; locally positive bounded functions in (0, +c0). Taking R > 0 large if
necessary, there exists a constant ¢ > 0 such that

1 1 c
< , if |x| > 2R. 3.3
fRd1+|y|d+2&1+|x—y|d+ﬂ |4+ I G

Moreover, from the choice of vy, we see that, for all j € [1,m], vo;(x) = O(x|"4P) as |x| = oo
and since vy; is bounded by A, we have that vy ;(x) < C(1 + Ix|9*8)~1 for all x € RY. Hence,

for all t > 0 and |x| > 2R
Cln;i(z,
f i ( {I)I dy
<k 1+ [x—yldB

Cij(®) C
+ 2 Vs
pzr 1+ V1920 1+ |x—yld+h
I+ 1.

IA

[7:;(2,-) % vo (x|
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Now, if [y| < R, we have that |x[/2 > R > |y| and then |x —y| > |x| —[y| > |x]/2, thus, by Lemma
4 in [5], the first integral is bounded by

2d+ﬁc
I < —f m;i (2, y)Idy
1+l Jyer

CeCt 1 _ _2aqt 0 _ _2at
FyY e dr + e ar
1+|x| 0 1

C,‘ject —ZL 4
— % 412,
1+|x|d+/>’( )

Moreover, by (3.3), we have I, < aj(t)(l P O
Now, for the sake of completeness, we present an alternative proof of Lemma 3.1, for
the particular case in which @ := @; <1 for all i € [1,m]). In this case, since we are working

with a unique index @, we can bound directly in the iteration process (2.4), to prove that the
solution of the system (1.2) decay as |x|74F for all £ > 0.

Proof. From the iterative process (2.4), we have that v = lim;_, ; vi where V' satisfies
t
VI, x) = Tyvo(x) + f T, sF(V"(s,x))ds
0

with v0(1) = (Tyvo)i~,. Using the semigroup properties of the operator 7; and taking /> 0
defined in (2.17), we have for all i € [1,m] and n € N

2 ny\ M
V22, 2)] < (1 + (Imi) + (1”2”‘? b (I’Z!t) )ZTtvoj(x) (3.4)

j=1

where V' = (V). Also, we know that

“v" _v”C([O,oo),X)m —0, when n— 4oo

where X = Co(R?). Then, we deduce that
Vi, x)| = vit,x)| = vi(t,x) when n— +oo

forall (7, x) € [0,00)xR¢ and i € [ 1, m]). Taking the limit when n — +o0 in (3.4), we conclude
that

vilt, ) < €™ " Tvgj(x),  (1,%) € [0,00) xR, (3.5)
=1

Now, by definition of vy, we have that there exist ¢; > 0 large enough and r; > 1, such that

voi(x) < cilx ™, Vix = (3.6)
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also we know that 0 < vy; < A. Thus, if |x| > 2r;and > 0

d
172 Bvp;(x—y)
Tyvoi(x) < f —————dy
RY 1+ (t_ﬁlyl)d"'za
d
1" 2a Bvg;(x —
< f VIOz(x y) dy
{l

V<lal/2) 1+ (12 |y])d+2e

d
£~ % Bvo;(x —
+f 2 Bvgi(x—y) dy
{

M2} 1 + (172 [y])d+2e

= L1 +D5L.
x|
If [y| < |x|/2, we have |[x—y| > |x| - |y| = 7, then
d
B ci 24+ B; 1
Ilﬁf i T < dlf 772248
(bl<d/2) 1+ (£ 2 [y[)d+2a |x —y|=*F x| Jpa 1+]sld+2e
Ci
|x|d+,8‘

Now, if [y| > [x|/2 and since x| > 2r;, we have that 1 + (¢~ 2 [y)%+2® > (271420 )d+22|x|d+B,

hence .
24+2a py cit
I < voi($)ds < .

Therefore, we conclude that, if |x| > 2r; then Tyvo; < 2¢;(1 +1)(1 + [x]4#)~1. Otherwise if
|X| < 2r,-

d
™22 By, 1 z:
TzVOi(X)Sf ] Yoi(y) dysABf ds< —1
R |+ (2 |x — y|)d+2e rd 1+ |s]d+2e 1 + |x|4+B

Thus, we conclude that

Tvoi(x) < 26,1+ D1+ B!,V (1,x) € (0,00) xR,

Using (3.5), (3.6), we get v;(t, x) < C;(£)(1 +|x|**F)~! for all (¢, x) € [0, 00) x R¢, where C;(¢) =
2(1+n)em ¥ c,. O

The following is an important result needed to prove Theorem 1.1, which sets an alge-
braically lower bound for the solutions of the cooperative system (1.2).

Lemma 3.2. Letv = ()}, be the solution of the system (1.2), with initial condition vy and
F satisfying (1.5) and (H2). If 2a > B, there exist constants o; > 0, 11 > 0 and C; > 0 such
that

Cite_(rit

vi(t, x) > w1
BT 4 |x]dh

, Vie[l,m]

forall xeRY and t > 1.
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Proof. 1tis easy to prove that w(t,x) = ev(t, x) is the mild solution of (2.19) with the initial
condition vy and / > O defined in (2.17). Thus, following the same computations as in
Lemma 2.2, we can deduce that

w(t,x) > Tvp(x), Y (1,x) € [0,00)xRY.
By definition of S, there exists k € I such that 8 = 8. So, we have that
Vi(t, ) > e "Hi(t,) xvo(x),  forall£>0
where Hj is the heat kernel defined in (2.16). In both cases a; € (0,1) or a; = 1, taking

|x| > 1 and ¢ > 1, since vy satisfies (2.12)

— 1
H(t,") *vor(x) = C te_’f ——d
k 0k k et l+|x—y|d+5 Yy

for some positive constant Cy. Also, |x =y < x|+ 1yl < x|+ 1 <2|x], so

d
1+|x_y|d+ﬂ < 2d+ﬁtﬁ+l +2d+ﬁ|x|d+,3

-1
then H(t,-) * vor(x) > Ckz‘e'_’(t%Jrl + |x|d+'3) .Now, if |x|<landz>1

the_’

Hi(t,") % vor(x) > Cre™" > ———

with Cy > 0 smaller if necessary. Then, taking o = [+ 1, we have

Cyte 7
vt x) > ————— YxeR%r>1.

(8! 4 |x]d P

Now, to compute the lower bound for the other entries of the solution, we note that
1 m 1 aﬁ
filz) = f Dfi(oz)do-z= szf —({y)do 3.7
0 = 0 0z

thus, if z € [0, M] then {, = 0z € [0,M] and since 373 : [0,M] — R is continuous for all

i, j € [1,m]], using the fact that the system is cooperative, there exist constants y;; > 0 such
that

ofi
<yi and ;< %(g) forall i # ] (3.8)
J

afi
(e
Now, for all i # k, by (3.7) and (3.8)

1 ap i
fi(2) =2 f %(é})do'zk + f i({o-)do-zi > YikZk = 0iZi
0 Ozk o 0%

where 0; > max(y;;,0x +2). Hence, taking v; as a fixed function and since 0 < v < M by
Lemma 3.1 and Remark 2.7, we have forall i £k, xe R? and t > 0

Opvi + (=2)"v; = Yirvi — 6.
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Then, by the maximum principle of reaction diffusion equations and Duhamel’s formula,
we have

t
vi(t,x) > e~ (Hi(t, ) *voi(X) + ik f f Hi(t - s,y)vi(s, x —y)eéisdde)
0 JRA

for all (7,x) € R, xR4. So, taking t > 7 for any 71 >3
t—1 S€(6i_0-k)s
vi(t,x) = Cyie " f Hi(t—s,y)———dyds.
1 R¢ sEt 4 x— yla+p
To conclude, we claim that it is possible to find a constant C > 0 such that

b2

se” 4 Cse™
f ™ dy > —— ., VxeR%s>1
ROSET 4 x—y|dth 5P 4 x|
and
1 s Cse™
f d+2a; dy> ——, VxeRy s> 1.
rd 1+1yl ' sﬁ+l+|x—y|d+ﬁ sﬁ+1+|x|d+,3

Thus, in both cases a; € (0,1) or @; = 1, by the previous inequalities, we can bound as
follows

e
vi(t,x) > C; 7 i ds
15 BT 4 |x|d+B

-0t t—1 se(é,«—(rk—l)s Cite—(rit
>
1

d
1B+ 4 |x|a+B

for all x e R, ¢ > 7| with 7 larger if necessary and taking o; := ¢;. O

4 Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. For the proof of part a), we analyze the limit of u(z, x) as |x| = +oo
for all 7 > 0. Since ug; € Co(R?) for all i € [1,m]], from the construction of the mild solution
u of the system (1.2) with initial datum ug, we know that

u € C([0,+00); Co(RY))™

thus, for each ¢ > 0, we conclude that u(z,-) € Co(R9)™.
For the proof of part b), we consider the vector field

I
u= ae (1+bOW™ D) % ¢,

where a is a positive constant, [/ > 0 is defined in (2.17), 62 as in (HS), b(¥) is a time con-
tinuous function and ¢, = (¢1,);2, € R™ is the normalized principal eigenvector of DF(0)
associated to the principal eigenvalue A;. Note that, since the system is cooperative, by
Perron-Frobenius Theorem, we can ensure ¢; > 0. Doing a similar proof to Lemma 6 of
[5], there exist a constant D > 0 such that

2a;

; 55(d+B) : d
| (=2)"u; |< Db(1)>Py;,  inR
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87 (d+B)
with @; € (0,1], forall i € [1,m]]. Taking for the moment B < (L/ll_1 ) N with any constant

L > max{D, A;}. We consider

Bl _5p(d+B)
a8y " F  and a<

1
B m: . £
Q(t) = (Lll_l +§_W€ mlnlé[[l,m]]{¢1,l}/ll) 2

26‘52

where c;, is defined in (HS). Similarly to Lemma 8 of [5], appropriately choosing a, B and
by (HS), we can prove that

By, + (—0)"u, — fi(w) <0, foralli € [1,m]]

with fi(w) = lu; +€" fi(e " w).

Moreover, it is possible to find #; > max{T1,2L/1I1} large enough, where 7; was de-
fined in Lemma 3.2, such that "1 v;(t,x) > u,(0,x) for all x € R and i € [1,m]], note that,
it is possible by the lower bound stated in Lemma 3.2. Now, by Lemma 2.2, we know
that w(2,x) > vo(x) where w(t,x) = eu(t,x) with u the solution of (1.2), hence, applying
Theorem 2.6 to the system (2.19), by the previous considerations, we have for all i € [1,m]]

1(t-2)

wit,x) > Pyt -2, 0) 2 u(t-1-2,x), VxeRLr>1+2.

Let us define 1 |
6; = Q¢1’[el(“+2)2_@ and Cd‘*'ﬁ — e—/ll(t1+2)§—5.

AL
Then, if £ > #; +2 and |x| < Ce@#’, we have that
_1
wi(t,x) = ae D (14 b(1 — 1) — 2)|x[2 P75 > olg;.

Taking 7 :=t; +2, we conclude u;(t,x) > 6; for all i € [1,m]]. O
Proof of Theorem 1.2. We consider the function u given by
— L
a=a(1+b@ P) g,

with 61 as in (H4), a > 0 and b a continuous function. Now, we choose a constant B <
51(d+pB)

(1+DA;H” 7 and we set

Bl 51(d+p)

— —__B
b(t) = (=DA;' + B P eds'yT 5

and :
a>[(D+A1)/cs, 1Py maxeq1 my(1/¢1,:)
with ¢s, given in (H4). Similarly to Lemma 7 of [5], for all i € [1,m]], using the fact b(¢) <1,
by (H3) and (H4), we can prove that
o + (—A)%u; — fi(u) > 0. 4.1)

Now, since ug;(x) = O(|x|"47#) as |x| = +co for all i € [1,m]], let consider

2
o-(x) = and V()l'(X) = Cif TS’iO'(X)dS
1

1+ |x|4+8
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thus, following the same computations done in Lemma 2.1, we can prove that vy; € D(A;) is
bounded and

voi(x) = ¢ i(1+[x™#)™1 forall x e RY

with ¢1; a multiple of the positive constant ¢; for all i € [1,m], hence, taking c¢; large if
necessary, we have that up; < vp; in R4, moreover, vo;(x) < cz,ilxl‘d‘ﬁ if |[x| >2 forall i e
[1,m].

Thus, we define by v the mild solution of (1.2) with initial conditions vo = (vo;);Z, and
by election of vy we have that v is classical.

It is important to notice that v satisfies the conclusion of Lemma 3.1 and by Theorem
2.3 we have that u < v in R? for all > 0. To end the proof, for any 7 > 0 fixed, we can take
a satisfying the above condition and #, > g such that

(12, x) > vi(to,x), VxeR:Vie[l,m] 4.2)

note that, this is possible due to Lemma 3.1. Therefore, we conclude that u is a supersolution
to (1.2). Thus, using (4.1), (4.2) and Theorem 2.6, we get for all ¢ > ty

ui(t+t —19,x) = vi(t,x) > u;(t,x), VxeRy Vie [1,m].

—1/5, 17!

Now, given any & = (&), > 0, we define c?w = agy et 27 | B . Thus, taking

,{71
¢ = max;{c;}, for all > to and |x| > ce @5’
— L
ui(t,x) <@gy (1 +b(t+ 1, — o) xP1 4Py 700 < g,

We conclude taking 7 := fy. O
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