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Abstract

In this paper, we prove L” estimates of a class of parabolic maximal functions
provided that their kernels are in L?. Using the obtained estimates, we prove the
boundedness of the maximal functions under very weak conditions on the kernel. In
particular, we prove the L”-boundedness of our maximal functions when their kernels

are in Llog L (S"™ 1) or in the block space Bg’_l/z(S”_l), qg>1.
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1 Introduction

Let R”, n > 2 be the n—dimensional Euclidean space and let S"~! be the unit sphere in R”
equipped with the normalized induced Lebesgue measure do-. For nonzero x € R", we set
x" = x/|x|. Let (R",p) be the metric space of Fabes and Riviere [9]. It is shown in [9] that p
is the unique solution to the equation

n —_ .
F(x,p) = ijlxﬁp 205 = 1,

Here, ay,...,a, are fixed real numbers in the interval [1, c0). The space (R",p) is commonly

known by the mixed homogeneity space related to {a j};?: |- Itis evident that if @y = ... =

a, =1, then p(x) = |x|, the standard Euclidean metric on R”.
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For A > 0, let D, be the n X n diagonal matrix with diagonal entries 1*',...,4%", i.e.,
AM 0
D, =diag(1*,..,A") = )
0 A%
A measurable function Q : R* — R is said to be homogenous of degree zero with respect to
D, if

QD) = Q(x),1 > 0. (1.1)
Using the change of variables
X1 = pYcosy;...co8¢, ,COSP, |,
X = pcosg;...cosp, ,sing,_;,
— X1 1
Xp-1 = P 7 COS@;SINY,,
X, = p*sing,

it follows that
dx=p* ' (@, dpdo

where J(¢y,....¢,_1) is the Jacobian of the above transformation.
For a suitable function ¢ : Ry — (0,00), we let S (¢) be the surface introduced by Al-
Salman [1]. More precisely, we let S (¢) be the image of the mapping

Dypiy() i R x ST S R”,
where Dy(y())(.) is given by
Dypp(X") = ((@(p(0))™ X5 ey (9 (0(2)) " 7). (1.2)

Let L*>(R,,r~'dr) be the Hilbert space of all measurable functions /: R, — R satisfying
the integrability condition

1

o 2
h(@))?
||h”L2(R+,r1dr):[f| (t)l dt] < 00, (1.3)
0

Consider the operator

Q) hp(y)dy

: 1.4
p)! 15

Map,(f)(x) = sup

||h||L2(JR+,r71dr)S

f " f(x = DoY)
1[Jrn

where @ = Z;?: (@, P:R" — Ris a polynomial mapping, and Q is a homogenous function
of degree zero (with respect to D,) that is integrable on S"~! and satisfies the cancellation
property

| 26NI6)de () =o0. (1.5)

S
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By specializing to the case p(x) = |x] and Dy x)(x’) = x, the resulting operator was
considered by Al-Salman in [3]. In fact, Al-Salman studied the operator

f eiP(y)f(x_y))Q(y')h(b’Ddy . (1.6)

Iyl"~!

Map(f)(x) = sup

||h||L2(JR+ rildr) <1

By establishing suitable L” bounds of Mg p when Q € L4(S""!), ¢ > 1, Al-Salman proved
that the operator Mg p is bounded on L? provided that Q is in Llog L: (S" 1) or in the block
space B0 1/ 2(S”‘l), q > 1 (see definition in Section 6 below).

On the other hand, when P = 0, the resulting operator Mq , = Mq o, Was considered
in [1]. Itis proved in [1] that Mg, is bounded on L? for certain values of p provided that
¢ is a polynomial mapping and Q satisfies certain size conditions introduced by Grafakos
and Stefanov in [11]. It is worth pointing out here that the conditions introduced in [11]
are distinct from the condition Q € Llog L (S"1) or the condition Q € Bg’_l/z(S"_l), qg>1.

Also, it is known that the spaces LlogL%(S”‘l) and Bg’_l/ 2(S"‘l) are distinct in the sense
Llog L3 (") ¢ BS™12(s7~1) and BY™1/2(S"1) ¢ Llog L2 (S""). Moreover, |J L'(S"!) C

r>1
LlogL3(S" )N BY (s ).

The main concern of this paper is to consider the general parabolic operator Mg p, and
to prove results analogous to those proved in [3]. Our results will generalize as well as
improve previously obtained results.

Our main results are the following:

Theorem 1.1. Suppose that Q € L1(S"™1), q > 1, and satisfy the conditions (1.1) and (1.5)
with [|Q; < 1. Let ¢ : [0,00) — R be a real valued polynomial of degree d. Let Mq, be
given by (1.4) with P =0. Then

IMayp(F), <11 +1og2 (e +IIQUNCp g Il (1.7)

2114

forall p>2 where C,, = zl/q iz Cp- Here 1/q" =1-1/q and C, is a constant that may
depend on the degree of the polynomial ¢ but it is independent of the function Q and the
index q.

Theorem 1.2. Suppose Q € L1(S""!), ¢ > 1, and satisfy the conditions (1.1) and (1.5) with
[1Ql; < 1. Suppose also that ¢ : [0,00) — R is a real valued polynomial of degree d such
that D (yy) is an odd polynomial. Then

IMape (P, < (1 +1og> (e +1IQUNIC, g lIf, (1.8)

2114

for all p > 2 where C,,, = zl/q 5w Cp- Here 1/q" =1-1/q and C, is a constant that may
depend on the degree of the polynomial ¢ but it is independent of the function Q, the index
q, and the coefficients of the polynomial P.

Combining Theorem 1.1, Theorem 1.2, and suitable decomposition of the function Q,
we have the following two results.
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Theorem 1.3. Suppose that Q € L(Log)"/*(S"!) and satisfy the conditions (1.1) and (1.5).
Let ¢ : [0,00) = R be a real valued polynomial of degree d with the property that Dy (x) is
an odd polynomial whenever deg(P) > 0. Then

IMa.pe(F)|, < Cpllfll, (1.9)
p 4

forall p>?2. Here C), is a constant that may depend on the degree of the polynomial ¢ but
it is independent of the function Q and the coefficients of the polynomial P.

_1
Theorem 1.4. Suppose that Q € Bg’ 2(S"1,q > 1 and satisfy the conditions 1.1 and 1.5.
Let ¢ : [0,00) = R be a real valued polynomial of degree d with the property that Dy x) is
an odd polynomial whenever deg(P) > 0. Then

[Mare (N, < Collfll, (1.10)

forall p>?2. Here C), is a constant that may depend on the degree of the polynomial ¢ but
it is independent of the function Q and the coefficients of the polynomial P.

In order to prove our results, we need to invest new ideas in addition to some ideas from
[1], [3], and [10]. The argument in this paper has a significant difference from that used in
[3], where suitable decompositions are needed (See Lemma 3.1 and the proofs of Theorems
1.1 and 1.2.). It should be remarked here that the method presented in this paper is general
enough to enable us to study more general operators. Finally, we would like to point out
that this work is part of master thesis of done by the first author under the supervision of
the second author[14].

Throughout this paper, the letter C will denote a constant that may vary at each occur-
rence, but it is independent of the essential variables.

2 Introductory estimates

This section is devoted to prove necessary estimates that we shall need in the proofs of the
main results. We start by recalling the following lemma due to Van der Corput:

Lemma 2.1 (van der Corput). Suppose that ¢ is a real valued function which is smooth in
(a,b), and that |¢®(x)| > 1 for all x € (a,b). Then

b

b
fei’l""(x)l//(X)dx Sck/l% |1//(b)|+f|l//(x)|dx . 2.1

a

holds when:

1. k>2 or

2. k=1 and ¢’ (x) is monotonic.

The bound c, is independent of ¢ and A.

The following three lemmas will be useful:
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Lemma 2.2 ([10]). Let P(x) = ), a.x® be a real valued homogeneous polynomial of degree
lal=d

d in R" where d is an odd integer. Then

Sup f |P(x) - w| ™ do(x) < Aepa [ Z Iaal} (2.2)

MERSn—I |a/|:d

or each € < &=. The bound A, ,, 4 does not depend on the coefficients {a,}.
2d s

Lemma 2.3 ([15]). Let P : R" — R? be a polynomial mapping and let Qe L'(S"™) be a
homogeneous function of degree zero on R". For every 1 < p < oo there exists a positive
constant C,, such that the maximal function

1
Mq pf(x) =sup prs f S x=P»)Q(y)dy (2.3)
r>0 bizr
satisfies
1Mpfll, < Cp QUL 11l 2.4)

for fel? (Rd). The constant C, may depend on the degree of the polynomial P. But, it is
independent of the coefficients of the polynomials.

Lemma 2.4. ([10]). Let [ and n be positive integers. Let Vi(n) be the space of real-
valued homogeneous polynomials of degree | on R". Let U;(n) be a subspace of V;(n) with
Ix|' ¢ Ui(n). Let Q € LI(S"1),q > 1 and that s = min{2,q}. Then there exists a positive
constant A independent of Q such that

2k+ 1

e , .| dr -7
f f FQ ()|~ < AlQl @Y P57

2k n—1

for all k € Z and function F : R" — R of the form

)
F(x)= > P+ W(lx))

J=0

where P is a homogeneous polynomial of degree j, 0 < j <m,P; € Uj(n), and W is an
arbitrary function. The constant A may depend on the subspace Uj(n) if | is even, but it is
independent of U;(n) if | is odd. Here, ||Pj|| = ), where Pi(y) = 3, anyn.

| o=l

a(I
al=1

By following the argument in [1], we prove the following proposition:

Proposition 2.5. Suppose that ¢ is a polynomial of degree d. Then there are linear trans-
formations L;,1 < j <d, where d, = dmax{a;: 1 < j < n}such that

d‘ﬁ
Dy ()6 = D (L (&)X )1 2.5)
i=1
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Proof. For 1 < j<n, let

d @
(@) = > bjir.
j=1
For 1 <i<n,setbj=0for j>da;. Then
d‘%’
((r)"'= ) bjir’ (26)
j=1

and
n d‘P
Dyir(¥)€ = D (@) &, = 3 (L)1 )
i=1 i=1

where L;(§) = (bj1&4,...,Dj»&,). This completes the proof.

Throughout this paper, we shall let
gk = log(e+|Qlk (2.7)

and
Cy(Q) = log(e +1€|,). (2.8)
Now, we prove the following lemma.

Lemma 2.6. Let Q € Lq(S'H) with ||Q|l; < 1,9 > 1. Let ¢ be a polynomial of degree d. For
keZ, let

22Cq(©) 2
’ i 4 ’ d
Jea@) = f f Q) )e P O gy X2 (2.9)
1 sn-1 p
Then, Ji o(€) satisfies
d, “Tm
supJi.a(€) < CC(Y) |(agusr)” La, &) , (2.10)

where Lg,(§) is a linear transformation, C is constant independent of the function Q, the
parameter k, and the index q.

Proof. Using the boundedness of J and the fact that ||Q|| < 1, we get
Jea(&) < CCHQ). (2.11)

Next, by making use of the observation

e iD‘p(p“q,kJr Do’ )'g/e_iD‘p(p“q,kJr @€

ei[sz(paq’kJrl )(}’,)_D‘P(p“q,lﬁl )(Z,)]-f’ — ei[sz(paq’kJrl )(}" _Z,)]-f’ ,
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it follows that

92Cq(@)
- ; ‘o , d
f fo‘(Z,)J(Z/)Q‘(y )J(y')e Drp(paq,kﬂ)(} 7)€ dO'(y .z );p

1 g1
22C4(@)

f f |Q(z’)J(z')Q(y’)J(y’) f eiD¢<paq,k+l><>”—z')-§%P doy.2).

sn-1 1

Jia(é)

IA

By Holder’s inequality, we have

Jea&)
i 1/q
PN 4 ’ q ’ ’

< ff Q)Y )JO)| do(y',2)| X

| gn-1

2264 7 e
ff f eiDV’Wq,kﬂ)(}"_z')-fd_p do_(y/’z/)
0
»Snfl 1
2264 7 e
S ”Q”;M ff f eiD‘P(Pal],k+l)(y,_Z,)'§d_p do—(y/’z/)
sn-1 1 p
Thus,
22C4(Q) q
’ ’ . I & d
(Jea@)? <l f f f ' Petvagre) 074 ;p do(y',2). (2.12)
Snfl 1
Now, we claim that
22C4(©)
iDytpa, o)/ ~2)E AP dg N
o/ Deteagsn =< C|(agunt)’ La, .0 -2)| (2.13)
0

1

In order to see (2.13), notice that
n
Doy =2) = ) (@)™ () — )&
i=1

It should be noticed here that Dy (y" —z').¢ is a polynomial of degree d,. Thus by Propo-
sition 2.5, there exist linear transformations L;,1 < j < d,, that satisfy

d‘P
DyipagienV’ =€ = D (Li©.0 = )pagus).

=1
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Therefore, by Lemma 2.1, we have

22C4©@
f o Potoagip ' =€ %0 <C (aq,kﬂ)d“’ Ly, =) _E_ (2.14)
1
Thus, by (2.14) and the trivial estimate
22C4(®)
f Doty )= dFP < CC,(Q), (2.15)
1
we get
22C4()

€

g

(agiet) Lo @' =) 7. @16)

: ’ ’ _L
f &' Petvagri 2 )-fd_p < [Cq(Q)]l e
4 P

By (2.16) and (2.12), we get
Jra()

cloRc @] f f c

sn-1

L
7

(dgsert) ™ Lo, @7 =2)| * dor(y/.2)

o f f 10 =) (La, @) dor

sn-1

IA

=

cliel; [Cq@)]l‘* (agun) " La,©

Since 0 < € < 1, the last integral is bounded in & € S, In fact, by Lemma 2.2, we have

d,| €4 1-1/4¢’
1@ < CIQIE|La, @ (agin )| [Co@] ™. (2.17)
By interpolation between (2.11) and (2.17), we get

d —el/4q’ 1-0/4¢'
i) < CIQUIP |La, ) (agrer) [c@] .

forany 0 <6 < 1. By choosing 8 = %, we get

—€/4q'C4(Q)

Jeo® < CCo| (g L, 4@

Now, we assume that the polynomial P is given by P(y) = 3’ 4<sdey®. Then

d¢ d¢
D) = (O b1ip s buip ) = 9(p) @'
i=1 i=1
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where
d‘%’ d‘%’
¢0) = (Y brip'sss ) buip)
i=1 i=1
and b j; are as in the proof of Proposition 2.5. Here, we use the notation

X®Y = (X1 V15-e0s XnVn)-

Now, for 1 < s <d, , we let oy, be the measure defined by

n—1

f fdos, = f PP (T (' NQY N Y (Y)
S
where I ,(y') = ¢ (p)®)" and

N N
0= biipss Y buip).
i=1 i=1

For later use, it is worth observation that

&3 plE) = f PPV )e E 0 der(y),

g1

Also, we let

050 £.p). = PO ) = ETp(0) = D aapy' = > (Lil) ¥ '
i=1

la|<d
Now, we have the following proposition:
Proposition 2.7. Let J 44 be given by

Qg k+1 2

1 ) ’ ’ ’ d
Joax@) = f f e E00) 16 )y L.

agk | sn-1

Then

-k S
Jsa1(&) < CCH(Q)2 (Z lag|) 7 Cq@
||=d

ford > s and
k _—€
Jsax(€) < CC,(Q)Q2%W “P|L (&) T

for1 <d < s. Here, for the case d = s, we assume all terms of Dy,)(y") are odd.

Proof. Notice that

Agk+1

Jsax@) < M? f f 0)][Q@)] f (s E0r-0,a £ P 4

0

Sn-1 aqk

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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By Lemma 2.1 and the observing
‘px,d(y/’g’p) - ‘P‘v,d(Z/,g,P)

= DA =N+ ) auy" " =M - 2(@-(5) O =P,
1

lol=d lal<d i=

we get
Agk+1

& Psa0V EP)~psa(@ £p)) dp < C(af;’k )%l. (2.24)

D@ =)

||=d

Aqk

Here, L;,(¢) are the linear transformations given by Proposition 2.5. By Combining the
estimate (2.24) and the trivial estimate

Agk+1
f ei(sox,d@’,élp)—sox,d(z’,é-‘,p))d_p < CCl(Q),
P
agk
we get
Agk+1
. sy ) d ~L
f et 0o e 2 < oc @)t | agyr -2
p lal=d
aq’k

Thus, by the last estimate, the estimate (2.23), and Lemma 2.2, we get

—kCq(Q) =
Jsar(®) << M2 [QIZCQ ) laal 77 ;
||=d

which when combined with the estimate J; 44(£) < CC,(£2), imply that
—k .
Tsax(€) < C23 Cy@)( Y lagl) a7
laj=d
Next, for d = s, we observe that
N
0o E.0) = () aay — L&)y ) + .= Y ()
lal=s j=1

where

Vi) = Y @y = (L@ 1< j<s.

led=j

It is clear that ¢ ;- is a homogeneous polynomial and that

[ ell = D laal + L)) = 1Ly

led=j

(note that d = s > 1). Thus by Lemma 2.4, we get

Joax@ < ClIQI, QD L)) T
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for some € > 0. By interpolation with the estimate J; 41 (§) < CC,(Q), we get

Jsax(@) < CCLQQC DL (&) T

Finally, for d < s, we argue as for the case d > s. Notice that

‘px,d(y/ > g’p) - ‘ps,d(z/’ g’p)
s—1

= D@ =~ LG ="+ Y (L) =y )P’
i=1

la|<d

By Lemma 2.1 and interpolation, we get

=
Jsax(&) < MPC Q) |QI2 XD L&) ™ ;

which when combined with the estimate J; 44(§) < CC,(£2) imply

~1
Joax(€) < CCo(Q)|2X DL (&) "7 .

This completes the proof.
As a consequence of Proposition 2.7, we can prove the following:

Proposition 2.8. Let { o7, : p > 0,1 < s <dy} be as in (2.18). Let Lg be the transformation
as given by Proposition 2.5. Suppose that Dy,)(y') is odd polynomial. Then

Agk+1
. . 2 d _1
f |676,0(6) = G 5-1 ,5(&)| ;" < CCo(Q) |aguLy(&)|T® (2.25)
Agk
and
Agk+1 d
n 2 _—€
f Gy p@)| ;" < CCo(Q)]agaLy(@)|F™ . (2.26)
aq’k
ford <s<M and
Agk+1
RN 2 d ——€ __
f Fao1,5@)| Fp < Cy()]ag s T . 2.27)
Agk

Now we prove the following:

Proposition 2.9. Let { o, : p> 0,1 < s <d,} be given by (2.18). Let Q € Lq(SH), g>1,
with ||Qll; < 1. Let O'f;’q be the operator defined by

1
ag.k-1

d,
L) = sup f o5 £ )| ;"

1
g k+1
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Then
oo P, < CoCo @I,

for 1 < p <oo. The constants C, are independent of the essential variables.

Proof. Notice that

1

g k-1 J
Msup f f |f<x—rx,p<y'>>||Q<y’>|dcr<y’>f

IA

()

1 Sn— 1
Ag.k+1

dy
" [

IA

M (Cy())|sup f |/ (x=T5,6")]|Q0)|
J

2/<|yl<2/+!

Thus, by Lemma 2.3, the proof is complete.

3 A main lemma

This section is devoted to prove a lemma which will be the corner stone in the argument of
the proofs of the main results.

Lemma 3.1. Let {wi}rez be a collection of C® functions defined on (0, 00) that satisfy the
following

1 1
supp(wy) C [ , 1,0 <w < I,Zwk(u)z 1. 3.1
Agk+1 Agk—1 e
Let
0
Neo) = > wiw).
k=—c0
Let ng j, o be the operator defined by
- 2 1/2
. , ) d
0= [ | [P fe=Doynudr) £ G2)
1 g1

Then
6P, < CoCoIIA, for p=2.

Proof. Let{ o, :p>0,1<s5<d,}be givenby (2.20). By Lemma 6.1 in[10], ford < s <d,,,
ng = rank(Lg), I two nonsingular linear transformations H, : R — R, G, : R" — R”
such that

|HJT'G(&)| < ILy(€)] < A, |HIT!G(€)] € € R".

Let ¢ € C7(R) be such that
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Let ¢(f) = ¢(#*) and let

20© =040 | | ¢laguHIUGED =616 [ ] ellagaH TG,

s<j<d, s—1<j<d,
Then it follows that
dy dy
D &) = Zfr PO - Zm LoE)s
s=d s=d
dy, dy—1
= > 63 Om- Z FspE)ms
s=d s=d-1
= Od,pma, —0a-1pEMa-1, (3.3)

where

ro= || ¢lagun HING©).

s<j<d,
Notice that
T, = 1_[ p= 1_[ =1
dy,<j<d, jeoa

Thus,

d‘ﬁ

Z T5p(§) = Ca,p(§) = Fa-1p(E)Ma-1. (34

s=d

By Proposition 2.8, it can be shown that

[#50]| < CC4(©) (3.5)

Agk+1

d ——€ __
f'x,p(g)|2 Fp < Cq(Q) |2klog(e+“9”‘7)Lx(§)| Cq @

2 dp < C,(Q) kst (§)|cq<g)_ (3.6)

Ford < s <d,, let

1/2

My o0 (1)) = If ERGICY; <x>)|2 =
1

and
1/2

T]gpl) (Nx) = lf| Uoo(P)(CTd—l,p *Pg-1 *f(x)) @
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where (¢,_,) = 74_1. Thus,

d‘%’
Nopeol D@ < D 0 (@01 (F)(). (3.7)
s=d
Now, we estimate |ngpw(f)|| for d < s < d,. By the argument on page 818 in [10], we
p
may assume that L; is a projection, i.e., Ly(§) = m, (&).
Let {w;}; be a smooth partition of unity adapted to the intervals E; 1 T l] and
q.J+ q.J=
satisfy

© d C
wj € C*,0< wi<1, 3 wijp)=1,supp(w;) C E;, and ’ij(t)’ < pri
k=—00
where C is a constant independent of the sequence a, ; . Let ¥ be such that

(F5() = wj(|mn, @)

Then,
1
) - 0 2 2
ng)pw(f)(x) = If _Z _Z Wk(P)(W jox * Ty f(2))
g T
< 2 e
where 1
~l o 2d,o :
Tape D@ =| || Z o) (Fjrcnmap = f00)) 27
Notice that
0 Agk+1 d
i 2
bl = €2 [ J Weserivesof S
R~ Agk
0 Agk+1 d
2 2
<cy f Wi, ) L.
k=—00 p
Ejvk aqk

By the estimates (3.5) -(3.6), we have

||n§{jj},w(f)||zsc(Cq(Q))zz—z'ﬂk ﬁ_ f 7@ de.

E Jj+k

Thus, ' |
[n2 ), = c(ca@)2 sty (3.8)
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By similar argument as in [10] and Proposition 2.9, we have

gD, < G (Co@)171, (3.9)

for 1 < p < co. The constants C,, are independent of the essential variables. Here,

1
ag.k-1

73, () = sup f (75,0 f )| df

Ag.k+1

Next, for p > 2, choose g € LP/2 with ||g||(p/2), = 1 such that

; 2
i,

2

d
z wp) (¥ jap s 00)] g0l

IA

d,
f f 2w « f ;" 2l dx

R* 0

(o)

0 d
o) [ [ 2 w0) ¥ ey Lol

R 0

0 5 -
(Cy(@) f (k PRIy )rf;,q<g><—x>dx

R}’l

IA

IA

IA

L] P

) Hk ﬁ_w @)

(Co@)IA1R.

IA

Thus, '
||’7§§,}?’°°(f)||” < Cp (Co(@)lIf1l, - (3.10)

where the last inequality follows by (3.9) and Littlewood-Paley theory. By interpolation
between (3.8) and (3.10), we get

||n§{jj,),w(f)||p < C(Cy@) 2711, (3.11)

Now, we estimate ||ng;lgo( f )” . Notice that
P> p

gpli,(f)(x) lf| Neo(P) (O-d—l,p *Oa-1 *f(x)) L
0

IA

0 -
kzz_w”g,p,lgo,k(f )(x) (3.12)
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where
1 1/2
g k-1 d
2dp
D0 =| [ foamronga sl £
“q,IiJrl
By Plancherel’s theorem, we get
1
g k-1
- 2 A2
liolanly < [l@F| [ loup@f L fae
R" aqﬁ
< G215
Thus
[ ||, < yCa@25 1 (3.13)
Finally, for p > 2, choose g € LY with ||g||(p oy =1 such that
(d-1)
| prk<f>||
: 2
dr
= f f f PO 15 f =T o0 DR IO ()| —Igldx
g k+1 B

1

clel, f f f Isod_l*f<z>|2|sz(y’)|dcr<y’>d’7p|g<z+rd_1,p<y’>>|dz
R” -1

C f a1 * f@I o )@+ Tam1, 0 )dz
R}’l

IA

IA

IN

Cy@ a1 4@y < CCa P IAIE

Thus,
[nio 2], < co@in, G.14)

By interpolation between (3.13) and (3.14), we obtain
- @
||’7§§l,p,lﬁo,k(f)||p < C(27 |11, (3.15)

for p > 2. Hence, by (3.6), (3.11), (3.12), and (3.15), the proof is complete.
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4 LP estimates of the classical operator

This section is devoted to the proof of Theorem 1.1. The proof is very involved and contains
various estimates. The details are as follows:

Proof (of Theorem 1.1). We start by making a suitable decomposition of the operator
Maq,,. In order to do so, we choose a collection of C* functions {w}, k € Z on (0, c0) with
the properties

1 1
supp(wg) < , LO<we<1,
Agk+1 Agk—1
dS
Zwk = ], W—k(u) SC‘YM_‘Y, (4.1)
du?
keZ

where supp(wy) is the support of the function wy and Cj is independent of C,(Q) . For
k € Z, let G be the operator defined by

(Ge(H)E) = wi(IED (). 4.2)
Then
- 2 1/2
d
Moo (f)(x) < f f Fx =Dy NI ()| L (4.3)
0 [sn-1

For p € (0,00), define the measure o, by

f fdor, = f FD O DIGNQ ) y).

Snfl
Thus
00 1/2
2dp
H00,5(F)(x) = [ f |7 £ ()| ;] :
0
By making use of Fourier transform and the observation
05O = [ P 15100 dor), @4)
sn-1
one can show that
f (&= Do) YNIGNQO N () = 0 f (). 4.5)
sn-1
Now, we write
Tprf@) = Y (Wh 50 % FODN g 10

JEZ keZ

D Fif.p)

JEZ
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where
Fi(fsp)= ) (Perj* 0 FOOW (g agn 1) (4.6)
keZ
Thus
00 2 1/2
d,
Koo (N < [ f S Firp)| £
j€Z p
o I/
- 5 1/2
dp
< > f Fitp| =| =D Ei(H®
J€Z 1% p jez
where
0o 2 1/2
d,
Ej(f)(x):lf Z(\Pkﬂ*ap*f(x))/\/[aq,k,aq,k+1](p) ;,0 4.7
0 keZ

Using the observation

2

Z(\Pk” *Op ¥ f(x))/\/[aq,k,aq,kn](p)

keZ

- Z |(\Pk+j *Op *f(x))|2X[aq,kaaq,k+l](p)’

keZ

it follows that

Agk+1 1/2

d,
Ej(f)x)=|) f |(Peejxopx fO] 2

P
keZ dgi

Now, we estimate ||Ej(f)||p for 2 < p < 0o. For p > 2, choose g € L with ||g||(p/2), =1
such that

|Ej(f )||,27

Qg k+1 2

d
= [ [ | 26t Degu o] Ligiiar @)

R keZ agx g1

Using the estimates ||Q||; < 1 and |J(y")| < C, we can see that

”QJZHLI(SH) = f |Q()’/)| |J(y’)|2 do(y') < C.

g1
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By last inequality and an application of Cauchy -Schwartz inequality, we get

||E,~(f)||i,
22C4(@)
d
< [l f > f f |G (N[ 8 + Do, 0 V| dor Ltz
R keZ 1 st p
Agk+1 p
< o3 [lounel [ wilsterDugu,00]drLa:
R k€Z g ol P
22C4(@)
. Cfo|Gk+j(f)(Z)|2 |20 f |g(z+D¢(paq’kH)(y’))|d_pd(rdz_
Rn kez sn-1 1 Y
By noticing that
22C4(@)

NEY
f |8z + Dypayien )| "
1

2In2C,(Q)

|8z + Dyeray) ' )| dr

0
21n2C,(QMy ,(3)(~2)

IA

where M), ,(8)(—z) is as in Proposition 2.9, it follows that
2
£,
2 , -
cc,@ [ ¥, [ 16l joe)| My @-adod:

R keZ

IA

g1

IA

CCo( 1|1 g1 f D |Grs i N[ My o @)(-2)dz.
R keZ

By Hélder’s inequality and Littlewood-Paley theory, we get

|l < @)Y lGf|  1Me @l
keZ p/2
< CCuN [[My @,y - 4.9)
On the other hand, by Proposition 2.9, we have
”My’»so(g')”(p/z)' . C”g”(p/Z)’ <C (4.10)

Therefore,
|1E;(N, < € @A, (4.11)
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Now, we claim that

1E,(P||, < c2Jc,@lifl, (4.12)
where
2
E2= Y [ QI (P~ Dit 6 i) L @)
keZ
st 2([1,a411,%)

Let d, and b;; be as in the proof of Proposition 2.5. For 1 < s < d,, let ¢ be given by (2.19).
For given 1 < s <d, and 1 <1< n, define ¢ (o) by

N

Zoi0) =) ajp’ (4.14)
j=1
and
D%(P)(x/) = (‘p)vl(p)x/l”(‘p)vn(p)x;z) (415)
Then
DwM(p)(x’) = D‘z(p)(x/). (4.16)

Let {oy;: 1 <5 <d,} be a family of measures defined by

(0, * [)(x) 4.17)
= f QO )IOG ()X =Dy (pa, (Y Ndor.
Snfl
Thus,
(Os.jrk % f) (&)
= f e f Q") IO )G ()X = Dg (payy0 V' Ndrdx (4.18)
R~ Snfl
and -
65, 1(€) = w;(1€) f Q) I ) e P o, (4.19)
Snfl

Now, we claim that o ;(£) satisfies the following properties

losill, < C. (4.20)
Agk+1
R 24, -£31/C4(Q)
f 4,8 ;"<ccq<sz>|2kcff@”wx<§>| ot 4.21)
Agk
and .

q.k+1
R R 2dp 52/Cy(Q)

f |65,/(6) = 6 5-1,/&)| ;<ccq@)|2kaf<Q”SLx<§>|‘92 ‘ (4.22)

Aqk
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foréeR"and 1 <s< M.
To see (4.20), notice that

’ ’ -iD, a (¥)€ ’
ol = [pested [ 001077 s oy
Snfl 0
< C
To see (4.21), notice that
Agk+1
2dp
&5, 1)
Agk
Agk+1 2
’ ’ -iD, a O£ , d
: f W€D f QNI e B do(y)| L
dgk Sn—l

Let
Vk’q’x(g’yl’zl):e{ ¢V(paqk)(z)§ !,0 l(paq’k)(y,).f}.
Then
Agk+1
f 2dp
Agk
Agk+1
’ INOY N ’ r r dp
< QO)IO) Q) Vigs(€,Y,2) do(y',z );
Agk sn-1
Agk+1
= fo(y')J(y')Q(z’)J(Z') kaqv(gy Z) 2oy 2y
Snfl Agk
~ 1
q
q ’ ot
< ff do(y’,7)| x
»Snfl
1
[ aq’k+1 q, l]’
’ ot d ’ ot
[[] [ Vet | dowry
»Sn—l dgk
Agk+1 q ql’

IA

/ 4 d / 4
IR f f f vk,q,x@,y,z)f do(y' 7).

S| agk
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Let I be the integral inside the double integral over "1, i.e.,

Agk+1

/7 /7 d
I= f Vigs &y .2) ;" .

Aqk

Then it is clear that

I <CCyu(Q) (4.23)

On the other hand, notice that

D (pa, )@)€ = D pa, ) )€
= {D‘zx(pal]ak)(z/) - D‘Zx(pa%k)(y/)} ~§ = D‘Zx(palkk)(z/ _y/).g

i 2 bjli(paq,k)j((Z,/- - y:)gl)

i=1 j=1
n N
= ag ), Y b (a7 (@ -3)£)
i=1 j=1
= aq,kwk,s,n(p)'
Since
dS
| > s ®)] = |6k, 0)

n
$12(s=Dlog(e+Qll,)(k) Z bx,i((Z,’- - y;).g,-)|
i=1

|2(Y—1)(k) log(e+”Q”q)(Lv(§).(Z/ _ y/)| ,

v

it follows by Lemma 2.1 that

—1/s

agi(ags)” LO ~y)

~
A

Cs

—1/s

Cs

(aq,k)s (Ls()-(Z' =) (4.24)

By interpolation between (4.23) and (4.24), we get

s —1/44’s 1
1<C(ags) L@ -y @)t

Therefore,
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Agk+1 L,
A 2d,
f o6 7 < Il x ff 14‘

gk g1
< C(Cq(Q))l—ﬁngné ff |(aq,k)S(Lx(§)~(Z/_ , —l/4x’ i)
Sn—l
< C (Cq(ﬂ))l_ﬁ 1902 | (@4)” L©) w7
L@
ff“(m o) do(y,7);

which when combined with Lemma 2.2 imply that

Agk+1

f .

Aqk

;l
" (4.25)

S (Cy@) 12 (g4 Ls©)

Thus, the estimate (4.21) follows by interpolation between (4.25) and the estimate

log(e+IQllg)(k+1)

o, /&) o7 dp < CC,().

olog(e+Qgk
To see (4.22), we set

Ergu@y)=e oo oot

Then
q.k+1 d
[ los@-o. ef 2
“q,:l 2
’ ’ / / dp
= [ fsted [ 26050 | L
Agk Snfl
2

Agk+1

flfz(y)l flEkqv@y)I do(y)

sn-1

IA
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Notice that

(Dg,0a,00") =D, (pag )£

n s—1
= Zzb],@aqky«y)g) 2D biitpagiy (0)£)
i=1 j=1 i=1 j=1

D bsilpag ) (69 £€) = (0ag)° L€)'
i=1

Therefore,

Agk+1

d s
f 64,/©) ~ 651 5@ f < CCy(@) |(aga) Lot

Agqk

e (4.26)

By interpolation between (4.26) and the trivial estimate
Agk+1

f 66,46 =5 s- 1](§)| — < CCuQ),

Aqk

we obtain (4.22).
Now, by a similar argument as in [10], there exist family of measures {A; ;, , 1 < s <d,}
such that for £ € R" and 1 < s <d,, , we have

sup | ds,j0]| < C. 4.27)

Agk+1

W} (4.28)

) (44)" (L&)

Y,o@l 2L < €€y @ xminf|(ag)’ (L&)

and
(4
Toi= Y Asjor (4.29)
o=1

Thus by (4.29) and Minkowski’s inequality, we get

Agk+1 1/2

d
EHx = |> f Gl

keZ
d‘ﬁ

= Zf (Z/lx,j,o*‘l’kﬂ*f)(x)

»keZ o

Aqk

Agj+1 2 11/2

o=1

Qg f+1 11/2

Z Z f Yj()*\}lk+j*f)(x)|2 dp

o=1|kez aqi

IA




A Class of Parabolic Maximal Functions 25

By Plancherel’s theorem and Fubini’s theorem, we get

Agk+1
fz f Yj()*\}lk+j*f)(x)|2d_pdx
keZ ag, p
aqk+l d
Y,o@lz —pdg
n keZ
Thus,
lEsHel;
- [IExnef a
R}’l
M aqk+1 de 1722
< f > s jo®) dé.
R o=1\|keZ
Let
[ g k+1 4 %
a0 | Dbt fof [ Posute L (430)
»keZ gk
Then
||E~<f><x>||§
aqk+l d
< Z f v,o@lz—p dg
o= lR keZ
d‘ﬁ
2
< D IS isallr-
o=1
Now, it is clear that
Agk+1 d
IS jsollz <> f @l f |AY,0<§>|2 Pla
kezﬂkﬂ ag,
where
I ={xeR": < |, (x)|
a k+1 1
By the estimates (4.27) and (4.28), we get
IS jisoll, < Cs \JCo@27 V1 £11,. (4.31)



26 G. Shakkah and A. Al-Salman

Therefore,

d, d,
SIS solla < D csC @272 1113
o=1 0=1

lEshl; <
< CC( @27 V£115
which implies that
IE; (P, < Cs /C@27 W11, (4.32)

By interpolation between (4.11) and (4.32), we have

|Ei(H], < Cs \JCo @274 111, (4.33)
for some € > 0 and for all 2 < p < 0, and j € Z with constant C independent of Q and j.
Now since
Ho0s(H) < D E(HK)
JEZ
we have

kaoatnl, = 2 lIEI,

JEZ
< ) CoJCu@2 1], < Cg \JC @111, )27
jEZ jEZ
ol/q
< coj @5}

This completes the proof.

S L? estimates of the general operator

In this section, we present the proof of Theorem 1.2.

Proof.(of Theorem 1.2). Let Qe L'(S"'), 1 < ¢, with [|Ql; < 1 and satisfying (1.1)-(1.5). Let
Maq py be given by (1.4). If deg(P) = 0, then by Theorem 1.1, the result holds. Therefore,
assume that deg(P) = d > 1. We shall argue by induction on d. Assume the result holds for
all polynomials of degree less than or equal to d. Let P(x) = Z a,x“ be a polynomial of
|al<d+1
degree d + 1. We may assume that P does not contain Ix|“*as one of its terms. By dilation
invariance, we may also assume that Z lag| = 1. We choose a collection of C* functions
al=d+1
{Wi}xez defined on (0, c0) that satisfyltlhe following:

1 1
supp(w) C [ : ],OkaSI,Zwk(u):l.
Agk+1 Agk—1 e
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Notice that

Maq pe(f)(x)
- L Qh d
= sup f ") f(x = Dy (v ))W
Wil2ge, r1an<! f3, )

= sup f f ¢FPo) £(x = Dy (v ))Qh(p)dordp

||h||L2(JR+,r71dr)Sl 0 Srﬁl

= sup f h(p) f PP f(x = Dy (Y ))QJIdordp
0 sn-1

||h||L2(JR+,r71dr)Sl

which is by duality implies that

o 2 1/2
o, ) d
Maso)0=| [| [ e 5= Doy 02100 &
0 §n-1
Set
0 )
o) = D wilw) o) = ) we(w).
k=—c0 k=1
Then

No(@)+ny(w) = 1,
supp(mo)) < (0,11, supp(n.(u)) < [1,00).

N

Define the operators 1q, ,, 9.7, .« as follows:

00 2 1/2
) / ’ ’ d,
Mo.p0()X) = f mo(P) f ePLo) f(x = Dy 0 )NQUY) Jdor ;p
0 Snfl
o0 2 1/2
iP(D,.y") ’ dp
N0, peo(f)X) = Neo@) | €777 f(x = Dy (v )QJIdo >
0 Snfl
By Minkowski’s inequality, it follows that
Ma.pe())X) < 710,,0() +710,p.0o(f)- (3.1

Now, we estimate ”779,[),0( f)||p. Let Q(x) = Z aex®. Assume that deg(Q) = [, where
|el<d

0 <1< d. Define the operators 778)[, o and T]g)p 0 bY
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1 2 1/2
i ) _ i 4 / d,
ng?p’o(f): f f (eP(Dp.>)_eQ(Dp-> )) f(x= Dy NQJIdo Fp (5.2)
0 n—1
1 2 1/2
i y ’ d,
N ) = f f P fle= Dy (N | (53)
0 n—1

By induction assumption, it follows that

112,00 <€ {52 Yiog e+ (5.4)
nQ,p,O b= Pla2llg —q g q P .

forall 1 < p < co.
On the other hand, we notice that

| e PDpy) _ eiQ(Dp-y’)|

= |eiQ(Dp-)”)(eiP(Dp-)”)—iQ(Dp-)”) _ 1)|

i Y, auDyy)®

e lal=d+1 _

1 < < 2D,

2 aa(DpJ’/)a
la|l=d+1

Thus,

1
Moo ()
2 1/2

1
, , . , 4
= lf f(elP(Dp-) ) _elQ(Dp-) ))f(x_Dtp(p)(y/))Q(y/)JdO' Fp
0 n—1

1 1/2

3 j / j 7|2 |2 d
”Q”f ff |elP(Dp-) )_elQ(Dp-) )| |f(x_Dtp(p)(y ))| |Q||J|2do_;p

0 gn-1
[ 1 1/2

f f PP £ = Doy 6] |20 dery) | dp

[0 gt

IA

IA
a

1/2

IA
a

1
f 20| f PP | f(x= Dy dpdor
Snfl 0

0+l 1/2

-1

f|§2(y’)| 2 f.OZdH|f(X—D¢(p)(y'))|2dpd0'
Jj==eo

gn—1

217

IA
a

[ 2j+l 1/2

-1 )
f ()| ¥ 222 f | (= Dy [ dpdor
j=—o0
n—1 2j

IA
a

S
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Thus,
1
Mool < CIQE (M o)) (5.5)

where
2 Jj+1

1 /
My (D) = sup = f |f (= Dty ') dp.
J Y
By (5.5) and Proposition on page 477 in [15], we get

o], = Colisn, (5.6)
for all 1 < p < oo. Therefore by (5.4) and (5.6), we get

1/q

2
6.0, < Cplog!2 (e + 11901, ) 77— HIA, - (5.7)

Finally, by Lemma 3.1, we have

10100, < Cylog! e+ 12 A1, -

This complete the proof.

1
6 Proofs of results concerning L(log L)'/2(s* 1) and Bg’ 2(snhy

In this section, we present the proofs of Theorem 1.3 and Theorem 1.4.

Proof ( of Theorem 1.3). Given Q € L(logL)"/>(S"~!). Then Q = 2o &y where that

f QNI (y) =0,

g1

Qe LX(S" ),

190ll; < C and ||Qulle < 2*"C form = 1,2, ...,

> VIl < 1R gogy 2@t C.

m=1

Thus, we have the following

Ma pe(f)(X) < May,pp(f)(X) + Z 1Qmll Ma,, e ()(X).

m=1

By the observation that
Log'*(e+11Qul) < Vim
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and Theorem 1.1 and Theorem 1.2, we get

Mars(Hl, < {11+ VmliQuli}C, £,
m=1
< Glifl,

for all p > 2. This completes the proof.

In order to present a proof of Theorem 1.4, we recall the definition of block spaces
-1 -1
B, *(8"").q > 1. A function Qis in B, * (') if

Q=>"¢,b,
pu=1
where for each u, ¢, is a complex number and b, is a function defined on [ = B(x(,60) =

L
(x es™!: |x’ —x6| < 6y} and satisfies |||z« < |I| ¢ and

()= el 1 +0(]) <o

1

where ¢(t) ~log 2 (t‘l) as t — 0. Here, x;, € S" ! and 0 < 6y < 2. It should remarked here

that block spaces are introduced by Jiang and Lu [12] in their study of singular integral
operators.
It is known that 1
clsm e Ly c By 2 (87,

1
Proof ( of Theorem 1.4). The proof follows by the decomposition of Bg’ 2(8"1,g>1and

similar argument as in the proof of Theorem 1.3. We omit details.
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