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Abstract

We consider asymptotic behavior of e~ f for N-body Schrodinger operator H =
Ho+ Y1<i< j<n Vij(x) with long- and short-range pair potentials V;;(x) = ViL/.(x) + Vé(x)
(x € R”) such that agvfj(x) = O(|x[~71) and ij(x) = O(x7"%) (]x] = o0) with 6 > 0.
Introducing the concept of scattering spaces which classify the initial states f accord-
ing to the asymptotic behavior of the evolution e~ f, we give a generalized decom-
position theorem of the continuous spectral subspace H.(H) of H. The asymptotic
completeness of wave operators is proved for some long-range pair potentials with
6 > 1/2 by using this decomposition theorem under some assumption on subsystem
eigenfunctions.
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1 Introduction

We consider N particles 1,2,..., N (N > 2) with mass my,...,my which move in R”, where v >
1 is an integer. We assume that there is no external force', so that only possible interaction
is the one between two non-identical particles i and j. We denote the position of the i-th
particle by r; = (ri1,...,ry) € R”, and write the relative position between the i-th and j-th
particles as x;; = r;—r; € R”, where (i, j) is a pair of particles i and j with 1 <i < j<N.
Then it will be reasonable to assume that the interaction between i-th and j-th particles is
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external force.



Long range N-body Schrédinger operators 7

given by a pair potential V;;(x;;) determined by the relative position x;; of i and j. We use
the notation (x) = (1+[x>)!/2 (x e R?, d > 1 an integer), and assume the following condition
on the pair potentials.

Assumption 1.1. The pair potential V;;(x) (x € R”) is divided into a sum of a real-valued
C* function Viﬁ.(x) (long-range pair potential) and a real-valued measurable function Visj (x)
(short-range pair potential) such that the following holds for some constants ¢ € (0,1), C >0
and C, > 0 for any multi-index a.

6VE0] < Caf) ™2, (1.1)
V30l < Co~' . (12)

Under this assumption with some additional assumption, we will consider the asymp-
totic behavior as t — +oo of the evolution e~ f of the Schrodinger operator H defined in a
Hilbert space H for the state function f in the continuous spectral subspace H, = H.(H) of
H. In the case of N-body Hamiltonian H, there is a natural decomposition of H according
to cluster decomposition a = {C1,...,Ci} of the set {1,2,...,N} such as H = H, + I, with
H,=H"+T,, where H® is the subsystem Hamiltonian describing the internal world of each
cluster C; (1 < j<k), and T, is the Hamiltonian describing the intercluster free motion. /,
is the sum of the intercluster interactions described by intercluster pair potentials, which
include both of the internal coordinates and intercluster coordinates. We denote by |a| the
number k of clusters in a, i.e. |a| = k for a = {C},...,Cy}. The description of asymptotic

behavior of e~ is usually supposed to be given by channel wave operators

Wg =s- lim e e tHapa, (1.3)
—+00
where P¢ is the orthogonal projection onto the eigenspace of H, and J, is a suitable time-
independent modifier introduced to deal with the long-range tail of the pair potentials. If
such wave operators exist, they intertwine H and H, in the following way.

Ey(B\WW; = W;Ep,(B) for all Borel sets B of R. (1.4)

It has been supposed that the sum of the ranges R(W;") of the channel wave operators is
equal to the continuous spectral subspace H.(H)

H(H) = P ROWE). (1.5)

2<|al<N

This is called ‘asymptotic completeness of wave operators,” so that asymptotic behavior
of e tH f for f e H.(H) = EBz <lal SN?%(Wai) is given as a sum of partly free evolutions
Je~Hag for some g, € P*H (2 <la| < N).

Tosio Kato [18] calls this situation that the wave operators W give a similarity between
H on H.(H) and H,’s on H. Namely ‘similarity’ means the usual existence and the asymp-
totic completeness of wave operators, and this problem has been solved in the case N =2
by [19], [20], [39], [40], [34], [35], [11], [8]? for the short-range potential, and by [21], [22],
[23], [9], [17], [15]? for the long-range potential. For further references see [46]. In the
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8 H. Kitada

case N > 3, Sigal-Soffer [41] proved the similarity for the short-range pair potentials by the
use of usual channel wave operators. Their proof relies on a decomposition of phase space.
Later than Sigal-Soffer [41], Graf [13] gave a proof based on an improved decomposition
of configuration space. Kitada [26] also gave a proof based on another decomposition of
configuration space.

For long-range pair potentials, Enss [10] gave a proof of similarity for long-range pair
potentials with § > V3 —1 for 3-body case. Wang [42] improved the method of Enss [10]
to 3-body long-range pair potentials with 6 > 1/2 whose negative parts decaying like (x)™”
with y > 2(1 - 9)/6. Gérard [12] gave a proof of similarity for the 3-body case with the
potentials satisfying (1.1), 6 > 1/2, and virial condition: 2V;;(x) +x-V,V;;(x) < -C (x)7% for
C > 0. Derezinski [3] gave a proof of the asymptotic completeness for general N-body case
with 6 > V3 — 1. Further references may be found in [4] and [45].

In the sense that physically interesting case of Coulomb pair potentials has been com-
pleted by the work of Dereziniski [3] for general N-body problem, it might be natural that
further investigation has not been done for longer-range potentials.

However, from the mathematical view point, it is an important problem to pursue
whether or not the similarity extends to general long-range pair potentials. Further due
to the progress after Sigal-Soffer [41], we now have advanced techniques such as the par-
tition of unity associated with the decomposition of configuration space as the ones in [13]
and [26] and the extended micro-localizing factor in [30] introduced for N = 2. Given those,
it would now be an appropriate time to begin with the investigation of general long-range
pair potentials with ¢ > 0.

Our strategy to investigate general long-range pair potentials in this paper is firstly to
introduce scattering spaces with utilizing the refined decomposition of configuration space.
Then we will prove a generalized decomposition theorem of the continuous spectral sub-
space ‘H.(H) of H by scattering spaces under the following additional assumption.

Assumption 1.2. Every eigenvector ¥ of any subsystem Hamiltonian H* (2 < |a| < N-1)
satisfies |||x*[y?|| < oo.

As it is known [11] that the nonthreshold eigenvectors decay exponentially, this as-
sumption concerns the threshold eigenvectors. We will consider the case ¢ — oo in the rest
of the paper, since the case t — —oco can be treated similarly.

The scattering space S|, (2 <|a| <N, 0<r<1) consists of the state functions f € H such
that the evolution e~ f develops into the region where |x;;| > ot ((ij) £ a) and |x| < ut" as
t — oo for some o > 0 and any ¢ > 0. In particular for the case » = 1, we have the following
generalized decomposition theorem of H_.(H).

Theorem 1.1. Let Assumptions 1.1 and 1.2 be satisfied. The continuous spectral subspace
H.(H) is decomposed as an orthogonal sum of the scattering spaces S ‘14 with2 <la|l < N.

H.(H)= P 5. (1.6)

2<lal<N

In section 8 we will introduce in wave operator (1.3) an auxiliary factor P:(¢) asin (1.7)
below, where P%(f) is an extension of micro-localizing factor introduced in [30] for N =2
and localizes the state microlocally in the extended phase space R x X X X’. Here R is the
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space for time parameter ¢, X = R"™~1 is the configuration space, and X’ = R"™~D denotes
the conjugate momentum space.
Wi =s- lim e PE(r)J e "Hap?, (1.7)
t—xo0
With this extended microlocal factor, it is possible to apply the simple and beautiful Kato’s
celebrated ‘smooth operator’ technique [18] to prove the existence of wave operators W
and the related limits for general 6 > 0. This makes it possible to characterize the range

of wave operators in terms of scattering spaces as in the following theorem, which will be
proved in section 10 together with Theorem 1.1.

Theorem 1.2. Let Assumptions 1.1 and 1.2 be satisfied. Then wave operators (1.3) exist,
and satisfy

RWH =8 (2<al <N). (1.8)
Further we will prove the following.

Theorem 1.3. Let Assumptions 1.1 and 1.2 be satisfied with 6 € (1/2,1) for all long-range
pair potentials ViLj and assume that short-range pair potentials vanish: ij =0 (VG )).
Suppose that the eigenspace of subsystem Hamiltonian H* (2 < |a| < N — 1) is of finite
dimension and that V;j(x) = Vl.e(x) > 0 for all pairs (i, j) and x € R”. Then wave operators
(1.3) exist, and satisfy

RWH=82=8! @2<a <N). (1.9)

Theorem 1.1 therefore implies the asymptotic completeness for the long-range pair po-
tentials specified in the theorem.

Theorem 1.4. Let the assumptions of Theorem 1.3 be satisfied. Then wave operators (1.3)

Wi =s- lim "] e " pa (1.10)

t—=+o00

exist, and are asymptotically complete.

H(H) = P RW). (1.11)

2<lalsN

A traditional proof of the asymptotic completeness for the short-range case will be given
in section 9 in order to contrast the new point of our method. At an early stage of the present
investigation, we expected that for large part of long-range pair potentials, the asymptotic
completeness would hold except for some special cases when Yafaev channel ([43], [44])
occurs. However we noticed in the midst of the investigation that Yafaev channels seem
to be rather dominant for the very long-range case when ¢ € (0,1/2). Yafaev channel is
characterized by the condition that the initial condition f € H.(H) satisfies f € S Lll \S 2. Al-
though we could not find any effective condition to control the occurrence of such channels,
the traditional formulation of the asymptotic completeness survives as a new form as the
equation (1.6) in Theorem 1.1.
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The proof for the short-range case given in section 9 will use a traditional argument by
mathematical induction originated in Sigal-Soffer [41]. In this proof there needs to prove
the existence of the limit like

Quf = lim " Pi(0)J5e ™" f. (1.12)

In the short-range case the proof of the existence of this limit produces no problem, as the
pair potentials are short-range and the integrability of the differentiation

d . .
E(e”HaPj(t)fj;e—”ﬂ’ ) (1.13)

is not hard to show by smooth operator technique due to the extended micro-localizing
factor Pi(¢). However in the long-range case, the proof of the existence of the limit itself is
a problem, since the long-range part of intercluster interaction / aL(xa, x%) (see (2.8)) includes
both of intercluster coordinate x, and internal coordinates x* when N > 3. This makes it
hard to prove the integrability of (1.13) unless long-range pair potentials vanish even if we
prepare a modifier J, that can handle the general long-range tail with 6 > 0. To overcome
this difficulty, one inserts an intermediate interaction Ig(xa, 0) as in Derezinski [3], and tries
to evaluate the difference

1
I, x*) = T5(x,4,0) = x°- f VI (x4,0x7)d6. (1.14)
0

To control the extra factor x* and get the integrability of (1.13), one needs to analyze the
internal motion and assume the condition 6 > V3 — 1. To avoid such problems of the tradi-
tional approach, we will firstly expand the scattering state in terms of subsystem scattering
states, and reduce the problem to the consideration of the following limit including eigen-
projection P? of subsystem Hamiltonians under an additional Assumption 1.2 on subsystem
eigenfunctions.

Qaf = tlgg PaeitH"JZPZ(l‘)e_itHf. (1.15)

This step will give Theorems 1.1 and 1.2. These two theorems imply that the asymptotic
completeness is equivalent to the condition

§0=51 (1.16)

When long-range pair potentials vanish, this condition readily follows from the existence
of the limit (1.12) by the traditional method of induction with detouring the hard part of
the discussion. When long-range pair potentials do not vanish, it is necessary to attack this
problem directly, which constitutes a hard step of the problem as we will see in section 10.

2 Notation

We will give in this section basic notation which we will need in the following. In doing so
we will avoid unnecessary abstraction, and will concentrate on the most important points.
We will also assume that the reader is familiar with pseudodifferential operators, Fourier
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integral operators, and their calculus (see e.g., [31]-[33]), and will avoid the unnecessary
complication of calculation with just stating the principal symbols and the support relations.
The coordinate space of N-particles is

RN = {xlx = (r1,...,ry) ER™V,r; eR(j = 1,...,N)}.

Let the center of mass of the N particles be denoted by

miry+---+myry
= eR”.

mp+---+my

We set withn=N -1
Xc={rlreR’,r=xc}=R", X={xdxeRM,xc=0}=R™MV=Rr" (2.1
Then the total space RV is decomposed as a direct product of X¢ and X.
RN =R"XR"V D = X- x X. (2.2)

As the coordinates of X, we adopt Jacobi coordinate system which describes the relative
position of the N-particles.
miry+---+m;r;

Xi:ri+1—m€Rv, i=12,...,.N—1. (23)
1

The corresponding reduced mass y; is given by

1 1 1
= + . 2.4)

Hi M ompteeetmy

We equip X with the inner product

N-1

(X3 = ) Hixi i 2.5)
i=1

where - denote the Euclidean scalar product of R¥. With respect to this inner product, the
change of variables between Jacobi coordinates (2.3) is realized by orthogonal transforma-
tions of the space X, while y; and x; depend on the order of the construction of the Jacobi
coordinates (2.3).

To consider the behavior of the particles, we need to introduce the notion of clustered
Jacobi coordinate. Let a = {C,...,Cy} be a disjoint decomposition of the set {1,2,...,N}:
Ce#20(6=1,2,...,k), U§=1Cg ={1,2,...,N}, CeNC,, =0 (€ # m). We denote the number of
elements of a set S by |S|. Then |a| = k. We call a a cluster decomposition with |a| clusters
Ci,...,Clq- A cluster decomposition b is called a refinement of a cluster decomposition a,
denoted by b < a, iff every C € b is a subset of some D € a, and b £ a is its negation: there
exists a cluster C € b such that no D € a includes C € b as a subset. The notation b < a
means that b < a and b # a. For a pair (i, j), (i, j)) < a means that {i, j} ¢ D for some D € a,
and (i, j) £ a means that {i, j} ¢ D for all D € a.
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A clustered Jacobi coordinate x = (x,,x%) associated with a cluster decomposition a =
{C1,...,Cyt} is obtained by first choosing a Jacobi coordinate

xCt =

= (ol ) EX =RUEED (0 =12, k)

for the |C¢| particles in the cluster C; and then by choosing an intercluster Jacobi coordinate
Xg= (X150 Xke1) € X, = RVED

for the k centers of mass of the clusters Cy,...,C;. Then x% = (xcl,...,xck) e X=X x
o x XCG = RYW0 and x = (x4, x%) € X, x X¢ = RED x R'V-b — RVIN-D =R = X We
denote the conjugate momentum space of X by X’ = {£|¢ e R"“V-D),

Given Jacobi coordinate (2.3), the Schrodinger operator H defined in the Hilbert space
H = L*(X) with the domain D(H) = H*(X), and the corresponding classical Hamiltonian
H(x,&) with the center of mass motion separated and removed are expressed in the form

H=H(x,D,)=H(x,D)=Hy+V,

Ho = Ho(Dx) = Hy(D), V =V(x), (Dyx=D =-idy),
(2.6)

H(x,£) = Ho(€)+ V(x), Ho(§>—2—|§,|2 Ve = > Vi),

1<i<j<N

Passing to the clustered Jacobi coordinates x = (x,, x*) € X and the corresponding conjugate
momentum & = (&,,&%) € X’ for a cluster decomposition a = (Cy,...,Cy) with la| =k, 2 <k <
N, we see that the free part of the Hamiltonian is given by

Hy = Hy(D,) =T, + H,
Ty =Tu(Dy), Hj = Hg(Da), (Do = DxaaDa =D,a),
k—1

Ho(€) = Tu(€a) + HYED,  Tuléa) = Z—I&I @.7)

ICzl 1

1
Hg@“):ZHOCf’(fo), Hg (€)= Z e —= P
=1

where M, and ,uic" are reduced masses corresponding to the clustered Jacobi coordinates.
The potential part of the Hamiltonian is given by

V@ = D Vi) = L)+ VOGO, La(ax®) = IS (0, 2%) + I (g x°),

1<i<j<N
I (x4, x%) = Z V,Sj(xij)’ IE (xq, %) = Z Viﬁ'(xij)’ (2.8)
(i.j)ta (i.)ta

Vi) = 3T Ve, veaty = Y V.

Crea (i,))<C¢
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The total Hamiltonian is given by

H=Hy+V=Hy+1,=T,+H"+1,, H=H(x,D,) = H(x,D),
Ho = Hy(D), H, = H,(x,D), H* = H(x",D") = Hy(D“) + V*(x"),
H(x,8) = Ho(€) + V(x) = Ha(x,8) + (),
Ha(x,8) = Tu(€a) + H'(¥,£%), 29
H (% = HyE)+ V() = ) HOGE €9,
Crea

HE 6,690 = H (€90 + ver©).

Here T, acts in the Hilbert space H,, = L*(R"!~1); H%, HY, and V* actin H* = L*(R"V-laD);
H,=T,+H*=T,1+I® H* and H = H, + I, act in the total Hilbert space H = H,Q H*,
where 7 in T,®1 and I in I ® H* denote the identity operators in H* and H,, respectively.

Making a change of variable £, = VM,£) and §in = ,ul.C”flfC‘ , We obtain a more convenient
form of the Hamiltonian

1
H(x.8) = Ho&)+ V(). Ho@) = Tu(a) + Hi(E") = S kP,
k k |Cel-1
DT
=1 i=1

We note that in this setting the inner product defined by (2.5) is just the Euclidean inner
product: (x,y) = Zfi _11 x;-y; of X =R". As we write the configuration space R” by X and
the conjugate momentum space R by X’, respectively, the phase space will be denoted
by XX X' = R”XR"” = {(x,¢)|x € X,& € X’}. In the following, we consider the Hamilto-
nian H = H(x,D,) in (2.10) for an N-body quantum-mechanical system with N > 2 under

Assumptions 1.1 and 1.2.

(2.10)

S
| =

Tu(és) = Ee®,  HEE) =
1

(=

3 Continuous spectrum

We need to introduce some notation concerning the bound states of Hamiltonians. Let
a be a cluster decomposition with 1 < |a| < N. We let P* = [ for |a| = N, and let P* be
the orthogonal projection onto the eigenspace H,(H") of H* defined on H“ = L*(X%) =
L2R"WV-l4Dy for 1 < |a| < N —1. We write the extension / ® P* as P%, where I denotes the
identity operator of H, = L*(X,) = L*(R"14=DY and for |a| = 1 we write P* = P = Py. For
an integer M we let P}, be an M-dimensional partial projection of the eigenprojection P*
such that P = s-limy e P§,. We use the notation P4, = I® P}, for the natural extension of
P}, Leta sequence of integers M|, M;,...,My be ﬁerd, and define M, = (My,...,Mg-1)
and M, = (Ma,M|u|) = (Ml,...,M|a|_1,M|a|). Set for M = (My,...,M;) (1 <£<N-1) and
Pa, = Py, (il = 1)

%:("Z”%]---["ZPZZ]U—PMJ G.1)

lacl=¢ laz|=2
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and
= Alal—1
P, = P%Plga , 2<la<N. (3.2)
Then we have
P§, =1—Py,. (3.3)
2<|al<N
We also set
T = U o p(H), (3.4)
1<lalsN

where o ,(H“) denotes the point spectrum of the selfadjoint operator H (1 < |a| < N) with
o p(H*) =10} for |a| = N. Namely 7" is the sum of the point spectrum of H and the thresholds
of H. We note that

He(H)= Y En(BYH. (3.5)

BeR\T"

We remark that the result of [11] implies that 7 C [b,0] for some constant b < 0. The first
purpose of this section is to prove the following lemma which is an extension of the theorem
known as RAGE theorem ([38]).

Lemma 3.1. Let {B(s)|s € R} be a continuous family of uniformly bounded operators in H.
Let B C R be a bounded open set satisfying Eg(BYH C H.(H) and let 2 < |b| < N. Then
there is a constant €y > 0 that goes to 0 when the components M ; of the multi-index M,
tend to oo such that as T — oo

~em 0 (36)

1 (T L
HT f B(s)F(|xij| < R)P}, e " Ey(B)ds
0

for any pair (i, j) £ b. Here ~¢,, means that the norm of the difference of the both sides is
asymptotically < ey as T — oo, and F(S) denotes a smooth positive cut off function which
is 1 on the set S < X = R"™=Y and is 0 outside some neighborhood of S. We write ~ for ~y.

Proof. We prove a general version of Lemma 3.1:

Under the assumption of the lemma, we have as T — oo

1T bl
H7 f B(s)F (Ixijl < RF (x| < )PP e Epy(B)ds|| ~e,, 0 (3.7)
0 b

forany (i, j) £ b.
We prove (3.7) by induction on k = |b|.

D) 1st step: We prove that (3.7) holds for |b| = 2. Since [|F(|x| > §)F(|x;;| < R)F(|x*’|<R)||— 0
as S — oo for |b| =2, R < o0, (i, j) £ b, it suffices to show

lim

Tooo =0. (3.8)

T
‘l f B(s)F(|x| < R)E(B)e *Hds
T Jo
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As the operator F(|x| < R)Eg(B) is compact, the first step follows if we prove the lemma
with F(|x| < R)Eg(B) replaced by one dimensional operator K f = (f, ), where ¢ € H.(H).

We compute
17
=H—f e“HK*B(s)*ds
T Jo

2

2 2

1 (T .
H—f B(s)Ke Hds
T Jo

I
= sup ||— f e“HK*B(s)* fds (3.9)
Ifl1=1 0
- sup 7 f f (B(s)" fo) W BUY (e g, g)dds,
1
The RHS is bounded by
1 T T ) 1 T .
C— f f (e " ¢, p)ldtds < C— f (e, ¢)ldt (3.10)
72 Jo Jo T Jr
for C = |jy? SUp g IB(s)|*> = 0. By Schwarz inequality, the RHS is bounded by
1
1 ’ —itH 2 :
V2c = | le™p.p)ar) . (3.11)
-T

Noting that the function u(1) = (Eg ()¢, ¢) is of bounded variation, we calculate the formula
inside the parentheses.

f f f -0 gy )l = 2 f f S‘“( s en ;;;T D).

Dividing the integration region R? into |1 — 2’| < € and the other, we obtain a bound.

2 f A du() + —. (3.12)
N-|<e €T

The first term is equal to

A+e
fR L du()du() = fR IER((A— €, A+ eDglPdu(d).

Since [|[Ex((A,u])¢l1> < ||¢l|* is continuous with respect to (1, u) € R? by ¢ € H.(H) and the
measure du is finite on R, the first term of (3.12) can be arbitrarily small if € > 0O is taken
small enough. Letting then T — oo in (3.12) makes the second term go to 0.

IT) 2nd step: Assuming (3.7) for |b| < k (3 < k < N), we prove (3.7) for |b| = k. Let b =
{C1,-++,Cypy} with |b| = k and assume (i, j) connects the clusters C; and C; of b. We denote
the new cluster decomposition by d = {C; U C,,C3,---,Cy}. Then |d| = k—1, and K| =
F(lxijl <RF (|x%] < R) bounds? the variable x¢. We decompose f";;; bl (see (3.1))in (3.7) as

k—1 _ k—2 b k— 2
P = -Pyy P2 - Z Pt P (3.13)
by—1#d

3Here ‘K; bounds x4’ means that ||[F(jJx?| > L)K;|| = 0 as L — co.
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where My = (My,--- ,M;_»). Each Pﬁ,’;:l in the second term bounds the variable x?! with
|br—1l = k—1. Since by #d, |d| = k-1 and F(|x;;| < R)F(|x’| < R) bounds the variable
x4, F(|x; I <RF (1x?] < R)Pﬁz_‘1 connects at least one pair of different two clusters in by_;.
Thus the terms in the second summand on the RHS of (3.13) are treated by the induction
hypothesis. Thus we have to show when T — o

! ' pk—2 —is
H; fo B(s)F(Ixijl < RF (| < R)I = Py, )P 2e " Ey(B)ds| ~e, 0. (3.14)

Let S > 0 be arbitrary but fixed and let #(s) = s —mS for mS < s < (m+1)S. The norm of

(3.14) is bounded by with K| = F(|x;j| < R)F(Ix’| < R) and K» = K;(I — wak_l)

1 (T o ,
H— f B(s)K\(I-P§, | )e"’(")Hde”(")HP';;;dze_”HEH(B)ds
0

T
1 (T (3.15)
+l|= | B(s)Ko(I— e MOHapltOH)pk=2 ,=isH By .
T 0 My
Since H-H;=1,,
. . (s) .
[ — e 1OHa pitHH f e ™ai(H, - He™dr  (0<1(s)<S) (3.16)
0

is a sum of the terms, each of which bounds at least one variable xg with 8 = (k,m) connect-
ing two different clusters of d. Noting that ' (Ix% < CR) = K, = F(|x; I <RF (|x%] < R) holds
for some constant C > 0, we can treat the second term of (3.15) by induction hypothesis.
The first term in (3.15) is rewritten as

I . . _
H7 f B(s)Ki(I =Py, e "M E(B) P 2™ T dy (3.17)
0

with some remainder terms. These remainder terms come from the commutator of ¢4

and Eg(B) with 13’]‘(; 2, and can be treated by induction hypothesis. Since s —#(s) = mS,
d
(3.17) is rewritten for T = nS

n—1 S
1 —is. Dk— —im,
- Z;) j; B(s+mS)K\(I= Py, e ™ Ey(B)PY; 2dse M. (3.18)
Since K; bounds x?, the difference
K({I-Py, )—U-PH=K(@P'-P ) (3.19)

tends to O in operator norm as My_; — co. Thus we can replace K;(/ — Pj{,[k_l) in (3.18) by
K, (I - P%) with an error €);. This step yields the error €y, in the lemma. To estimate (3.18),
we first get an energy cut off for H¢ from Ey(B). Then we can apply (3.7) for |b| = 2 to
(3.18) with H replaced by H?. This proves (3.7) for |b| = k, and the proof of Lemma 3.1 is
complete. O
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The following theorem is partially due to Volker Enss. An outline of a proof was given
at a seminar as a response to my question made at his office at California Institute of Tech-
nology when both of us visited there in 1984. Later he gave a partial proof in [5] leaving
the details to [6], [7]. However both of [6] and [7] seem not have been published. So a
complete proof is given here.

Theorem 3.2. Let N =n+1> 2 and let H be the Hamiltonian H in (2.10) for an N-body
quantum-mechanical system. Let Assumptions 1.1 and 1.2 be satisfied. Let f € H.(H).
Then there exist a sequence t,, — +o0o (as m — oo) and a sequence M)} of multi-indices
whose components all tend to co as m — +oo such that for all cluster decompositions a with

2<lal <N, forall g € C3(X,) = C3(R™D), R> 0, and (i, j) £ a

|Xa|2 pa —itmH -0 (3 20
2 mpe S 20)

I tisi<rr Pgme ™ £l = 0 (3.21)
(P (Xa /1) = (V) P e~ f1] = 0 (3.22)

as m — oo, Here yy is the characteristic function of a set S.

Proof. By (2.10)

1, 1
H=Hy+YV, HO:ED =—§A, V= Z Vij(xij).

where L
D=-— eR™.
iox
Let f € H satisfy (x)*f € H and f = Ey(B)f € H.(H) for some bounded open set B of R.
Note that such f’s are dense in H (H). Writing P}, = P, we have Yocqen P* = 1 Py
from (3.3). Hence

Z f, eitH();C _ D)2 PeeitH f

2<|al<N

(f _D)e—itHsz _ (f, eitH(% —D)2 e—isz)

! (3.23)
1 itH 2 —itH _ 2 2 itH 4 —itH
=5 (£ =) f) = Z(f e A )
: ‘ 1
+ (f, eltHDzefttHf) + l_z(f, x2f)’
where A = %(x- D+ D-x). A direct computation gives
i[Ho, x*] = 2A. (3.24)
Therefore the first term on the RHS of (3.23) is equal to
1 'd isH 2 —isH 1 ! isH - 27 —isH
S | (e te ™ pas = | (feMilHo,x*1e ™ fds
? Jo ds 1~ Jo (3.25)

2 ' ] —is.
zﬁﬁ(f,e’SHAe " £)ds.
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The sum of the first and second terms of the RHS of (3.23) is thus equal to

G(t) = t%( f (f.e""Ae ™M frds —1(f, e Ae™ f)
0
1 ("d(s’G)
=3 " ds (s)ds (3.26)

2 [ , ,
=-3 f s(f,e*Hi[H,Ale™H f)ds.
0

Noting

i[H,A] = i[T,, Al +i[l,, Al +i[H* Al = 2T, +i[l,, Al +i[H?,A%],
where A? = %(x“ -D*+ D*- x%), we have

Z . eitH( 3_; _ D)2 peiH f)

2<|a|l<N

!
= f S PMLH, AN s + (1 DR 4 ()
0

!
=_t32 Z f s(f,e" T, +i[l,, Al +i[H*,A“))P'eH f)ds
0

2<la|l<N

2N (LM H P ) ()
2<lal<N

s (3.27)
= Z [_t_Z f S(f, etsHTaPae—tst)ds + 2(f, ethTaPae—thf)
2<|al<N 0
2 Z f, o™t HY po-itH 1
2<lal<N
2

!
> > f s(f,e*Mill,, A1P*e™! f)ds

2<lal<N YO

2 . o 1
7 2 fo (. MH AP fds + 5 (f. ).

2<|al<N

By Lemma 3.1, the third term on the RHS goes to 0 with some error €y as t — oo. The last
term goes to 0 as ¢ — oo by our assumption (x)?f € H. As Lemma 3.1 implies

2 (! I -

= f s(f, e (PPY*i[H®,AY1 P  f)ds ~, O
2<lalpeN.azb T VO
as t — oo, we have asymptotically

1
t% Z f S(f, eiSHl'[Ha’Aa]Pae—iSHf)ds
0

2<|al<N

. l (3.28)
D) f S(f. (P ITH AP fds.
0

2<|al<N
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The RHS asymptotically equals

1 S -
lim = Z f (f,e"H (P i[H*,A“1P e ™H f)ds, (3.29)
2l daen Yo

if this limit exists.

We will prove that the limit (3.29) exists and equals 0. Letting #(s) = s —mS for mS <
s < (m+1)S for any fixed S > 0, we have by Lemma 3.1 and some commutator arguments
ast— oo

Z %f(f,eiSH(Pa)*i[Ha,Aa]Pae_iSHf)dS
0

2<lalsN

t
~e Z l f f, ei(s—t(s))H(pa)* "OHaj o @] pa e—ist)dS.
2daen 10

This can further be reduced and is asymptotically equal to as ¢t — oo with an error €y > 0

!
Z l f (f’ ei(s—t(x))H(i)a)*eit(s)Hai[Ha’Aa]e—it(s)Ha pae—i(s—t(s))Hf)dS.
2daen 0

Noting s —#(s) = mS formS < s <(m+1)S, we rewrite this for t = nS

1= es . o
5 E f (f, ezmSH(Pa)*etsHal-[Ha,Aa]e—tsHaPae—thHf)ds
n 0

m=0

ln_1 1 (5 d
_ imS H ¢ pavx isH, sa —isH, pa —imS H
= E _S«fo —s(f,e (PY ™A% Ple fds

m=0 (3.30)

1o 1 o o
— ; EZO § [(f7 elmSH(Pa)*ezSHaAae—tSHaPae—lmSHf)
_ (f, eimSH(i)a)*Aai)ae—imSHf)].

Writing P4 = Z}L.Zl PE; Pla=1 with P*Ej being the one dimensional eigenprojection of H®
with eigenvalue E;, we see that the norm of the RHS is bounded by

n—

|(f’ eimSH(pa)*eiS (H“—Ej)AaPa,Ejﬁ)lal—le—imSHf)

S —
“l—

L
j=1

m=0

_ (f’ eimS H(Pa)*AaPa,Ejﬁlal—le—imS Hf)|

This is arbitrarily small when S > 0 is fixed sufficiently large by our assumption |||x¢|P%£i|| <
co. Thus we have proved that the limit (3.29) exists and is equal to 0. Hence by (3.27) we
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have asymptotically

> e (2] By

2<|al<N
4 (! : L .
~er D |3 f s(f.e" T Pe ™M fyds +2(f, " T, Pl f) (3.31)
2<lal<N 0
+2 Z (f, eltHngae—ltHf)
2<|al<N

as t — oo. A computation gives

(f _D)2 - (ﬁ —Dd) +((xa)2 -~ 2‘?61 +2H6‘).

12

This with the fact that ||y xa>g) P — 0 as R — oo yields that

Z . eitH( ; _ D)z Peei py

2<lal<N

~ Z (f’eitH

2<lal<N

Z (f eth

2<la|l<N

2
( —D) Xieer Pe )R> 1)
+ ) (fe ( 7 S22 o )/\/{Ix"|<R prem™ f)

~ | =

Xa 2 a —itH
7 Xixe|<r) P id)

(3.32)

2<la|<N f

Z (f itH

2
)X{Ix“|<R Ple M f)
22JaI<N

+2 (f,e"’HHSX{|xa|SR}P“e—”Hf>
2<lal<N

asymptotically as # — co. Taking R > 1 large and removing the factor y{j<g}, we get

Z (f,e™ ( ; _ D)2 paemith f)

2<lal<N

Z f, th( )Pa ~itH gy 40 Z (fre HE et ).

2<|a|l<N 2<|al<N

(3.33)
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Comparing this with (3.31) and using Lemma 3.1, we get asymptotically as t — oo

Z . eitH(x_ta _ Da)z PeeitH f

2<|al<N
4 . o o
~er D [——2 f s(f.e* T Phe™™ frds +2(f,e" T Pe™ f)]
1<lal<N ! 0 (3.34)
4 (1 N N S .
~eu Z [_t_z f S(f, €lSH(Pa)*TaPa€_”Hf)dS + Z(f,€”H(Pa)*TaPa€_ltHf)]
2<lal<N 0
dH
=r—(t
I (),
where 5
H(r) = 3 f s(f, e (P T, P! f)ds. (3.35)
0

The following is Lemma 8.15 of [10]. For the completeness’ sake we will reproduce the
proof.

Lemma 3.3. Let H(t) € C'((0,0)) be a real-valued bounded function with

tlim |H' (1) = 0. (3.36)
Then for any 0 < A < oo there is a sequence Ty — oo (k — o0) such that
Tr+A
lim — tH'(t)dt = 0. 3.37
Jim — . @) (3.37)

Proof. Assume the contrary. Then there exist constants A > 0, € > 0 and J(e,A) > 0 such
that for all T > J(¢,A)

T+A
1 f tH' (H)dt > 2e (or < —2e€), (3.38)
T

since the LHS is continuous in 7. For any interval [T,T +A] and ¢ € [T,T + A], one can
decompose

H'(1)=H(t;T)+ H:(t;T), (3.39)
where
|Hi(t;T)| < |H' (1),
T+A
H(#;T)dt=0,
p D (3.40)

H)t;T)=0if HT+A)—-H(T) =0,
sign {(H(T +A)—H(T))- Hy(t;T)} > 0 otherwise.
It follows that

T+A
H(T +A)-H(T) = Hy(t;T)dt,
T
1 T+A 1 T+A
‘—f tH (t;T)dt =‘—f (t—T)H,(t;T)dt (3.41)
AJr AJ;

<A sup |H{(t;T)|<Asup|H (1) — 0
T<t<T+A T<t
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as T — oo by (3.36). Thus one has by (3.38) and (3.39) that for all sufficiently large T
T+A
—f tHy(t;T)dt > €, (3.42)
AJr

which implies in particular H»(¢; T) > 0 and

A+T

T+A T+A
[HT+A)—H(T)] = Zf; (T+A)H>(t; T)dt > ZfT tHy(t; T)dt > €. (3.43)

Thus for sufficiently large T,

H(T +A)—H(T) > e

T+A’
n (3.44)
H(nA) — H(mA) = Z {H(KA) — H((k— DA)} > € Z -
k=m+1 k= m+1
For any m this diverges as n — oo, in contradiction to the boundedness of H. O

As H(t) in (3.35) satisfies the conditions of the lemma, the relation (3.34), Lemmas 3.1 and
3.3 imply that there exist sequences Ay — oo and T} — oo (k — oo) such that as k — oo

Ti+Ak Xa —D Pa _lefH Z HX (Ll <R) Pa —ttHfHZ
xij
Ak T 2<| |<N v (3.45)

The proof of Theorem 3.2 is complete. O
The following theorem will be used in section 6.

Theorem 3.4. Let Assumptions 1.1 and 1.2 be satisfied. For a cluster decomposition a with
2 <lal £ N, let 13%,10 be defined by (3.2). Let f = Eg(B)f for B€ R\ T . Then there exist
constants 0 < dy < dy < oo such that for the sequences t,, — o and M in Theorem 3.2
depending on f

Pipe™ " f ~ xa(Da)Pyype ™ f (3.46)

as t =t, — oo. Here x4(£,) € C'(X,) such that
()SAQASQ)S 1,

( ) _ 19 O < d] S |€:a| S dz, (347)
Xl =\ 0, al<di/2 or ) 2 2ds.

Proof. Let ¢ € C3(R\T) satisfy ¢(1) = 1 for 1 € B(€ R\ 7). Then by (3.3)

D By = =g = N QP T 54

2<la|<N 2<lal<N

Theorem 3.2 gives that for any R > 0 and (i, j) £ a

I
W taesi<ri Pygme ™ 1l = 0



Long range N-body Schrédinger operators 23

as m — oo, This and (3.48) imply

> U= ¢H)Pye ™ f -0 (3.49)
2<|a|<N

as m — oo. As the summands on the LHS are mutually orthogonal for different a’s asymp-
totically as m — oo, we obtain

(I = $(H)Pne ™ f =0 (m — oo) (3.50)

for each a with 2 <|a| < N. Since H, =T, + H* and H“P;f = A; for the eigenprojection P;f
of H* corresponding to eigenvalue A; € 7" of H, supp ¢ € R\ 7 implies that there exist
constants d» > d; > 0 such that y,(D,)¢(H,)P%,. = p(H,)P% . for the function y, in (3.47).
Thus multiplying both sides of (3.50) by I — y4(D,) we obtain

(I- Xa(Da))Pg,ane—"mH f—0 (3.51)

as m — o0, O

4 A partition of unity

To state an important proposition, we prepare some notation. Let a be a cluster decomposi-
tion with 2 < |a| < N. For any two clusters C; and C, in a, we define a vector z,; € R” that
connects the two centers of mass of the clusters C; and C,. The number of such vectors
when we move over all pairs C;, C; (i # j) of clusters in a is k, = ('g') in total. We denote
these vectors by 241,242, - - - » Zak, -

Let z4 (1 <k < k,) connect two clusters C; and C,, in a (£ # m). Then for any pair (i, j)
with i € C¢ and j € Cy,, the vector x;; = r;—r; € R” is expressed as a sum of z, and two
position vectors w; € R” and w, € R” of the particles i and j in C; and Cy,, respectively. In
particular we have

x| > |zarl = (w1l +Iw2l) > |zal = 21x7). 4.1

Next if ¢ < a and |c| = |a| + 1, then just one cluster, say C; € a, is decomposed into
two clusters C; and C; in ¢, and other clusters in a remain the same in the finer cluster
decomposition c. In this case, we can choose just one vector z. (1 < k < k.) that connects
clusters C} and C}/ in ¢, and we can express x? = (z¢, X). The norm of this vector is written
as

P = lzerl + 1P (4.2)

Similarly the norm of x = (x,, x%) is written as
|x? = x> + [x“P2. (4.3)

We recall that norm is defined from the inner product defined by (2.5) which changes in
accordance with the cluster decomposition used in each context. For instance, in (4.2),
the left-hand side (LHS) is defined by using (2.5) for the cluster decomposition a, and the
right-hand side (RHS) is by using (2.5) for c.
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Given these notation, we state the following lemma, which is partly a repetition of
Lemma 2.1 in [26] or section 3 of [28]. We define subsets T, (p,6) and T,(p,0) of X = R™
for cluster decompositions a with 2 < |a| < N and real numbers p,8 with 1 > p,6 > 0.

ka
Ta(p,0) = (ﬂ (x| lzakl® > plx }]n{x | bxal? > (1 =0},
. (4.4)
Ta(p,6) = (ﬂ (] leatl® >p] (] bl > 1-6).
k=1
Subsets S and S¢ (6 > 0) of X are defined by
S ={x|xeX, [x=>1},
4.5)

Se={x|xeX, 1+0>|x>>1).

Lemma 4.1. Suppose that constants 1 >0y > p;>0; > py > 0y > 0 satisfy 6,1 > 0;+p; for
j=2,3,...,N. Then the following hold.

1
: sSc | Tulouba. (4.6)
2<]a|l<N
2) Lety;j>1(j=1,2) satisfy
IMiy2<ro:= ernjisl}v{pj/gj}- 4.7
If a £ c with |a| = |c|, then
Tayy " P1atrY20a) O Te(vy ' pits v2611) = 0. (4.8)

3) Fory>land2<la|<N

Ta(0ia»0a) NS oy € Ta(0la)s O) N S 6y,
€ Tay ™" pras Y8 N S 0y (4.9)
- Ta(’yll_lplul"y&elal) N SHN,

where
Yi=y(1+6y), vy=0+y)A+6y)7" (4.10)

4)  Lety>1satisfy 1 <y(1+60y) <2. Then taking p; > 6;>0(j=2, ..., N) suitably, we
have for2 <|a| < N

Ta¥, ™ Prats Y5 O0a) C 1 | 15512 > pralx? /2 for all G, j) £ a). (4.11)
5) If9y(1+vy)<ryanda £ c with |a| > |c|, then

Ta(Vi_l PralsY30a) N Te (71 Pich Yable) = (4.12)
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Proof. To prove (4.6), suppose that |x|> > 1 and x does not belong to the set

ka
A= U Hﬂ{x | lzakl® >P|a|IXI2}]ﬁ X ] xal> > (1= G IxH |
2<|al<sN-1L\k=1

Under this assumption, we prove |x; j|2 > lexl2 for all pairs (i, j). (Note that z, for |a| =
equals some x;;.) Let |a| = 2 and write x = (z41,x%). Then by (4.2), 1 < [x> = |z,1* + |x%.
Since x belongs to the complement A€ of the set A, we have |z41]> < pjglx|? or |x,]> < (1 -
OapIx?. If |za11* < pialxl?, then [x =[x = za1 [ > (1 = pa)lal* > (61 p|a|)|x| > 01> by
;-1 > 0;+pj. Thus |x,* = x> = x> < (1 - 9|a|)|x|2 for all a with |a| =

Next let |c| = 3 and assume |x|* > (1 — 9|C|)|x| . Then by x € A, we can choose z.x with
1 <k < k. such that |z]* < p|C||x|2. Let C; and C,, be two clusters in ¢ connected by z., and
let a be the cluster decomposition obtained by combining C; and C,, into one cluster with
retaining other clusters of ¢ in a. Then |a| = 2, x* = (zex, X°), and |x*?> = |z > + [x|>. Thus
ol = 132 = x4 = el = zakl? = 1P = 2 = lzatl® > (1= 6 = prepl? = (1= Gilal2, whlch
contradicts the result of the previous step. Thus x> <(1- 0|L|)|)c|2 for all ¢ with |¢| =

Repeating this procedure, we finally arrive at x> <(1- 9|d|)|x|2, thus [x9)? = |x|*— del2 >
Bl x1* > pylxl? for all d with |d| = N — 1. Namely |x;;*> > py|x[? for all pairs (i, j). The proof
of (4.6) is complete.

We next prove (4.8). By a £ ¢, we can take a pair (i, j) and clusters Cy,Cy, € ¢ such
that (i, j)) < a, i € C¢, j€ Cp, and € # m. Then C; and C,, are connected by z. for some
1 <k <k.. Thus if thereis an x € Ta(yl‘lp|a|,y29|a|) N Tc(yl‘lp|c|,y29|c|), then by (4.1)

1/2 o’
V200D 2 1x] > 16 = [xi] = lzea] = 21x°]

4.13)
> ((v7 o) = 2120 H)l.

Thus (y20a)"/* > 0y i) /> = 2(720)' 12, As bl < 0y by lal 2 |c|, we have 9y261 > ¥7 ' py»
contradicting (4.7). This completes the proof of (4.8).

(4.9) follows by a simple calculation from the inequality Ix*(1 +6y)~! < 1 that holds
on Sgy. (4.11) follows from the inequality (4.1) as follows. Let x € Ta(y’l‘1 PlalsY50al)
and (i, j) £ a. Then there are clusters C¢,C,, € a (€ # m) such that i € Cy, j € C,, and
Cr,Cyy are connected by zg (1 < k < k). Then by (4.1), x;jl > lzarl = 21x%| > p )7 (¥}7'* -

|al

29,20 /pia)"/»)Ixl. From this and the definition of ro, we have |x;;/|x| > p|1a/|27; 1/2(1 -

2(y(1 + y))l/zral/z). By taking p; > 6; > 0 suitably, we can choose constants 1 < @ <2 and
M >0 such that 1 <y} =y(1+6y) <a, 1 <y(1+y) < M 'rg and (a/2)"/? +2M7 12 < 1
hold. Then we have | /| > P e 21 =2M712) > (py/2)'2. Namely |x;;2 > pigll?/2.
(4.12) follows from yy; = y(1 +y) and 2). O

In the following we fix constants y > 1 and 1/4 > 6; > p; > 6; > py > 0y > 0 such that

9]'—1 29j+pj (j:2,3,...,N),

9y(1+y) <rg= min {p;/0;}, 1<y<2(1+6y)". (4.14)
2<j<N

We recall (4.10).
=y(1+6y), Y,=+y)1+6y)7" (4.15)
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Let a function p(t) € C*(R) satisfy the following.

0<p®<1,
)1 @x<-1)
p(’)‘{ 0 (t>0)
p (4.16)
, 4%
1 =—()<0,
P () 7 (»<
N )
lo'®)|2 € CT(R),
and a functions ¥, (t > 7) of € R be defined by
Yo(t>1)=1-p((t-1)/0) 4.17)
for constants o € (0,px/4) and T € R. We note that y,(t > 1) satisfies
0 (t<t—0)
Yo(t>1) =
L Gz 4.18)
d
Yot>1) = —Ys(t>71)>0.
dt
We define for a cluster decomposition a with 2 < |a| < N
kq
galxa) = | |W2lzal® > padva (x> 1-6a), (4.19)
k=1
where o > 0 is fixed as
0 <o < min {(1 —y_l)pj,()/— 1)6;}(< 0y). (4.20)
2<j<N
Then ¢,(x,) satisfies for x € Sg,
1 for XET (p| |,9| \),
Pa(xs) = A “.21)
0 for x¢ Ta(y p|a|,79|a|).

We set for x € Sy, and |a| =k (k=2,3,...,N)

¥ (x) =<,oa(xa>(1— >, %kl(xa“)]...[l -, soaz(xaz)} (4.22)

lag—1]=k—1 laz|=2

By 3) and 5) of Lemma 4.1 and (4.21), the sums on the RHS remain only in the case a < a;
for j=k-1,....,2and x € Sy,.

Ya) = )| 1= D Pu G ) || 1= D P |- (4.23)

lag-11=k-1 laz|=2
a<dp-1 a<ap
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Thus W, (x) is a function of the variable x, only.
Wa(x) =Wu(x,) when x=(x4,x%)€Sgy,. (4.24)

We also note that the supports of ¢,; in each sum on the RHS of (4.22) are disjoint mutually
in Sg, by 3) and 5) of Lemma 4.1. By (4.6) and (4.9) of Lemma 4.1, and the definition
(4.19)-(4.22) of ¥,(x,), we therefore have

D W)= ) Wax)=1 on Sy

2<|al<N 2<|al<N
We have constructed a partition of unity on Sg,.

Proposition 4.2. Let real numbers 1/4 > 6, > p; > 6; > py > Oy > 40 > 0 satisfy ;-1 >
0;+pj for j=2,3,...,N. Assume that (4.14) hold and let ¥ ,(x,) be defined by (4.19)-
(4.23). Then we have

Z P (x) = Z Y, (x)=1 on Se,. (4.25)

2<|al<N 2<|al<N

Y.(x,) is a C™ function of x, and satisfies 0 < Y,(x,) < 1. Further for 1 <k <k, and
x€ supp¥,NSo,

3 -
leail® > Zorall, 1l 2 WX, (@lag = G+ 08 +0) 7 (1= = Oy =), (4.26)

and

sup |V Wu(xg)| < o0. 4.27)

xeX
2<|a|l<N

Let W, (x) = W (x,) be extended to X \ {0} as follows. For (1 +0x)¢ < x> < (1 +0y)¢!
(£=0,£1,%2,...), define
W, (x) = W, ((1+0y)"7%x). (4.28)

This function satisfies

O S \Pa(x) S 17

(4.29)
P, (x) = Pa(x,) for x = (xgx%) € X\ {0},

Let 4 € C(X) be a real-valued nonnegative function such that

f Ay)dy =1 (4.30)
X
and set
Dy(x) = (Yo D(x) = fx Yo(y)A(x—y)dy. (4.31)
Then
0< (I)a(X) < 1,
D, (x) € CT(X), 4.32)

Z D, (x) = 1.

2<lal<N
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Further by (4.29) we have for x € X
Da(x) = fX Ya(a, y)A(xa = ya, X = y)dy
= fX Ya(a)A(xa = Ya, x* = y“)dy
= fX Ya(a) y Axa = Ya, X = y)dy'dyq

= f Wa(ya) f A(Xg = Ya,=y)dy“dy,
Xy Xa

:L\Pa()’a)/l(xa_yaa_ya)dy
=®,(x,,0).

(4.33)

Thus ®,(x) depends only on x, and we can write ®,(x) = ®,(x,). Summarizing we have
proved the following theorem. We recall that S = {x|x € X, x> > 1}.

Theorem 4.3. Let O ,(x) € C*(X) for 2 <|a| < N be the function defined by (4.31). Then ®,
satisfies the following conditions.

0< q)a(X) < 1,
@ (x) € C7(X),

Z D, (x) = 1 (4.34)

2<|al<N
Dy(x) = Do(xa)  (x = (xg,xY) € X).

Further for any integer L > 1 we can take the support of the function A € C3(X) so small
that for 1 < k < k, we have on supp ®, N (1 + On)"L2S

lzakl® > prale?/2, - 1xal® = wiglf /2. (4.35)
In particular taking p; > 0; such that p;/6; > 210 we have by (4.1)

lxijl > plPIx/4 (VG Jj) £ a). (4.36)

lal

5 Classical scattering

We consider the behavior of the classical trajectory when the initial condition (y,7) satisfies
A >0 and H(y,n7) = A. In this case if y can be taken such that V(y) < A, then the corre-
sponding 7 satisfies |> > 0. In considering the N-particle case, it is further necessary to
consider the condition |1,| > d > 0 for d > 0 and a cluster decomposition a with 2 < |a| < N.
The investigation of classical trajectories developed in this section will be important when
we consider the quantum mechanical case. As the case ¢ < 0 is treated similarly, we will
consider the case # > 0 only throughout the rest of the paper.

As we will use Hamilton’s canonical equation of motion in this section, we will assume
that Visj(x) =0 (x e R”) for all pairs (i, j) with 1 <i < j<N. So that our pair potential
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Vij(x) = Vl.l}(x) will be assumed to be continuously differentiable with respect to x € R” and
satisfy the condition (1.1).
Let p(t) € C*(R) be a function defined by (4.16). We define for r € R and € > 0

1, t<e,

¢(t<8)=,0((f—28)/3):{ 0 t>2e

5.1
t € (—o0,e]U[2¢g,00), SR

’ — d :0’
¢(t<s)—d—t¢(f<3){ <0, t€lg,2e].

Letting 0 < d; < d» < oo, we define y,(&,) € CSO(XQ) by (3.47), i.e.

0 <xaé) <1,
&) = 1, 0<di <éul £do, (5.2)
XalSad =\ 0, |l <di/2or || > 2.

As in Theorem 4.3, let ®,(¢) € C*(X’) be the partition of unity defined from the function
Y, (&) in (4.23).
Z Dy(£) =1 forée X' (5.3)

2<|al<N

Let (i, j) £ asuch that C;,C, € a (€ #m), i € Cy, j € Cyy, and let z4 (1 < k < k,) connect two
centers of mass of those clusters C, and C,,. By (4.35)-(4.36) there exists a suitable choice
of constants

1/4291>pj>9j>p1\/>01\]>40'>0, Qj_126j+pj (j=2,3,...,N) 5.4
such that for A(€) in (4.30) with sufficiently small support one has on supp (y2®,)(&)

\Zakl> > pallél* 12, 1&i12 > pralél?/16. (5.5)

Here {4 and &;; are the variables conjugate to z, and x;;, respectively.
We now introduce a localizing function pi(z, x,&,) in the extended phase space (0, o) X
XX (X' \{0P for|a| = 2,&>0, (t,x,&) € (0,00) x X X (X" \ {0})

PEt X, E0) = ¢/t — Ea* < Ea(éa)* PulE), (5.6)

where &, = (£,,0) € X\ {0} =R\ {0} and |x/1—&,| = |x/t—(£4,0)|. We note that pZ(t,x,&,) =
PE(t,x,€) = (|x/t—Eal* < e a(Ea)* Pu(€) for all (x,€) € XX (X’ \{0}) by the property Da(&,) =
Dy(8).

We will use an extended micro-localizing pseudodifferential operator P%(¢) = pi(t,x,D,)
with symbol pi(t,x,&,) = pi(¢,x, ).

PSOS() = Pt 2. D) ()
— —v(lal-1)/2 ixqe€a € 7 a
=R [ £, 5

=0 [ o flee,
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where f € H = L*(X), and Fof (&g, x*) = f(£4,x%) and F £(&) = f(€) = f(£4,£°) are partial

and full Fourier transform, respectively.

Fof Ear X) = f(Eqyx®) = (2m)~ =12 f e ek (x4, X)d X,
RY(al-1)

” ) (5.8)
F ) = fEnt®) = Qn) "2 fR e

Let (x(7),£(1)) be a solution of Hamilton equation with initial condition (y,n).

x(t,s)=y +f 0:H(x(t,5),E(T,8))dTr =y +f &(t, s)dr,
s y 5.9

! t
&, s)=n —f 0 H(x(t,s),&(T,8))dT =1 —f 0, V(x(r,s))dr.

N

We calculate the following quantity.

d
E(pi(l, x(1),£1)) = (0ipg +{H, pehH(t, x(1),£(1))

9, (1, x(1),£(0) + Oxpy (1, x(1),£(D)) - £(1)
—0epa(t, x(1),£()) - 0V (x(1)),

where {F,G}(x,&) = (0¢F - 0,G — 0, F - 0:G)(x,&) is a Poisson bracket. We set

“Z(t, xvé‘:) = t(atPZ(t, X,é‘:) + apo(t’ X,é:) ‘f)
= =2/ (Ix/t = £al* < e){|x/t — ol — (X" Y [ty a(€a)* Pu(&).

Then calculating directly we have

(5.10)

1
(01pg +{H, pah(t, x(1),£(D) = ;Mﬁ(t, x(1),£(1)) = Og P31, x(1),£(1)) - BV (x(1).

Here we take 6|, > 6y > 0 and o > 0 in (5.4) and (4.20) so small that

NI—

\/E>2\/§d2w|;| G5

=2 \/§d2(0|a| + 60N +0')%(1 =0 —On —CT)_%'

_1 _1
Then by (4.35) we have [£%] < ‘”|a|2 |€ql < 2d2a)|a|2 for & € supp yu(€.)* @4 (&), and |x4|/t <
V2e for x € supp ¢ (Ix/t —£,* < ). Hence |x/1—&,[* — (x* - &)/t > £ |(x*- £ /1] > & -
_1
2 Vstzwlalz > 0 for (x,&) € supp ui(t, x,€) so that we have
u(t,x,€) 20 (5.12)
for all £ > 0 and (x,&) € X X (X" \ {0}). We set

q5(t,x,6)
= U (t,x,€)?

= (=2 (Ix/t = £* < )2 (x/t = &> = (X - € /D) 2 €D Da(ER)
e C¥(Xx X'\ {0})).

(5.13)
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Then |
0Pt % €) + 0:p(1,%,€) - & = — 44, X, ) (5.14)

and
(@up5(t, %, D) + il Ho, pE(t, x, DY) ()
= ny 2[0Sk + Optnx ) £ SAPEXOFOdE (55,
= @my2 f | gt £ - St v 0| e
The second term in the integrand satisfies
|a§a§Axp§(t, X,E)| < Copt™>71 (5.16)

forall 1> 1, (x,£) € XX X’. We define Q%(¢) as the pseudodifferential operator with symbol
q5(2,y,).

050 () = 2m) ™" f f O GE (1,3, 8) F(0)dydE. (5.17)

Then similarly to the proof of Lemma 4.2 in [26] or Lemma 4.1 in [30] with using Calderén-
Vaillancourt theorem [2], one obtains a proposition which will play an important role in
proving the existence of wave operators and the related limits.

Proposition 5.1. There exist norm continuous bounded operators Q5(t) and Ri(t) for t > 1
and sufficiently small € > 0 such that the following holds for some constant C. > Q.

1
9, Pg(1) +i[Ho, P (D] = ;QZ(I)*Qi(t) +R;(D),
Q51" Q50 20, IRl < Cot 2.

(5.18)

Proof. By a direct calculation we obtain from (5.17)

Q:(O* Q5D f(x) = (2m) ™" f f G (1, X, E)g5(t,y, ) F()dydé. (5.19)

‘We note
45(1..€) = 451, %, €) + (= x) - Vg1, X.£,Y), (5.20)
where
_ 1
Vigi(t, x,&,y) :f Viqi(t,x +6(y — x),£)d6. (5.21)
0
By integration by parts

00 Q5 () = (27" f f SOV GE (1, 2 F)dydE
(5.22)

+ Qo f f FOVEDT (1,36 ) f )Y,
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From (4.16), (5.1) and the definition (5.13) of ¢5(t, x,&) we obtain
1070507 DV 1 (t, x,€,9)| < Capyt™ 71 (5.23)

forall £ > 1, (x,&,y) € R~ and all multi-indices a,B,y. From this, (5.15), (5.16), (5.22)
and Calderén-Vaillancourt theorem follows (5.18). O

Returning to classical context, we prepare a lemma.

Lemma 5.2. Let (x,&) € supp ¢(|x/t —E4* < &)xa(&)*Du(&). Let (i, j) £ a such that C¢,C,, €
a(+m),icCyjeCy and let 74 (1 <k < k,) connect those two clusters Cy¢ and C,.
Taking € > 0 sufficiently small, we set

Ka =274 Q7 pap'2dy > V2> 0. (5.24)
Then we have
|Zakl/t = 7K|a|, |]Cl'j|/l‘ > 5K|a|. (5.25)
Further we have
x|/t < Kig)- (5.26)

Proof. It follows from (x,&) € supp (¢(1x/1 — &4* < £)xa(é4)*u(€)) that |x/1 = &,| = (1xa/1 -
&>+ (x4 /)2 < V2e. Thus we have [x%|/t < V2e < ki), which is (5.26), and |z /t = Larl <
Ixa/t — &4 < V2e. Using (4.35), we then have |zul/1 > 1l — V2& > 27 pa)21é4] - V2e.
As support condition implies |€,] > 27d;, we obtain |zul/t > 27127 o) 2d) — V2e >
(23 - Dk|q. From these and (4.1) follows |x;;|/t > (23 - 3)K|q, which gives (5.25). O

We note that both conditions (5.11) and (5.24) are simultaneously satisfied if we take
Pla| > Bq > 0 >0 and & > 0 so small that

Pl 22" > 2 d3d oy (5.27)

In the rest of the paper we always assume that the constants p; > 6; > o > 0 and & > 0 are
taken to satisfy this condition (5.27) for given d, > d; > 0 in each context.
Fort>s>1

ot x(1),£(1) = pi(s,y,m)

td .

_ f £ i a0, £ 5
t 1 2

= f —qo (1, x(1),&(7))

t
dr— f 0¢ Pl (1, x(1),£(1)) - 0, V(x(1))dT.
VT s

Here
Oepg(t, x,€) - 0,V (x)

= =20 (Ix/t = &if* < ea(€)* Pa(éa)(Xa/t — £4) - 0, V(%)

+20(1x/1 = £al” < ©)0¢, (Ya(éa)* Pa(£a)) - O, V() (5.29)
= =20/ (Ix/t = &u* < EXa(€)* Pa(€0)(Xa/t = £q) - O, Lu(Xa, X)

+20(1x/t = &4* < £)0¢,(Xa(€a)* Pula)) - O, Ta(Xa, X°).



Long range N-body Schrédinger operators 33

AS 1y(xq, X*) = Xii jyza Vij(xij), we have from (5.29) and Lemma 5.2 that for all 7 > 1, (x,6) €
X X (X"\{0}) and a sufficiently small € > 0

105 (1, x,6) - 0, V(x)| < Cr '™, (5.30)
where C > 0 is a constant. By (5.28) and (5.30), we have
t 1 2
0< f qu(r,x(r),g(r)) dr<2+C65 s <2405 <0 (5.31)
S T

for all # > s > 1. This and (5.28) imply that

1> pi(t,x(1),£(1)) > p(s,x(5),£(s)) = C6™'s™° (5.32)

for > s> 1. Therefore if (y,77) € Xx (X’ \{0}) and s > 1 satisfy 2M = pZ(s,y,n) >2C5 570 >
0, then for all £ > s > 1

Pt x(t,s,y,m),&(t,5,y,m) = M > 0. (5.33)

Summarizing we have proved the following.

Theorem 5.3. Let|a| >2, 1/4>pjy > 64 >0,0>0,>0,and 0 < d; <d, < oo satisfy (5.27).
Assume that (y,n) € X x (X’ \{0}) satisfies |y/s—na> <&, d\ <|nu <d» and n € supp D,. Let
t> s> 1 satisfy Cols0< 1/2 for the constant C in (5.30). Then

1 > pi(t, x(t, s,y,m), (1, 8,y,m)) = 1/2> 0. (5.34)

In particular (x(1),&(t)) € supp pi(t,-,-). Namely |x(t)/t—§a(t)|2 <2¢,d1/2<|€,() <2dy and
&(t) e supp @,. Hence letting (i, j) £ a and z4 (1 <k <k,) such that C¢,Cy€a (£ #m), i€ Cy,
J € Cp, and zy connects C¢ and Cp,, we have by Lemma 5.2, |x;j(t)] > Skjqit, |2ak (D] = TKqt,
and |x4(t)| < Kigt.

The theorem implies that if the initial condition (y,7) at ¢ = s of the Hamilton’s equa-
tion satisfies y/s ~ 14, 74| > 0 and [n;;|/|n°| is sufficiently large for any pair (i, j) £ a, then
henceforth the trajectory (x(t),£(¢)) satisfies the same property forever ¢ > s.

6 Some asymptotics

We use the notation introduced at the beginning of section 3 and recall Theorem 3.2 as the
following lemma.

Lemma 6.1. Let Assumptions 1.1 and 1.2 hold. Let f € H.(H). Then there exist a sequence
tm — © (as m — o) and a sequence M} of multi-indices whose components all tend to co
as m — oo such that for all cluster decompositions a with 2 < |a| < N, for all ¢ € C(X,),
R>0,and (i,j) £ a

ﬂpﬂ e_ilme - 0 (6 1)
trzn M” .

X i<y Pgme ™ £l = 0 (6.2)

(e (xXa /1) = @D ) Pyme™ ™ £l = 0 (6.3)

as m — oo. Here ys is the characteristic function of a set S.
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We can decompose the asymptotic behavior of e~ f when f € H.(H) as follows.

Theorem 6.2. Let Assumptions 1.1 and 1.2 be satisfied. Let f = Eg(B) € H.(H) with
B e R\ T and let the sequence t,, be defined in Theorem 3.2 for this f. Then for @, in
Theorem 4.3 with sufficiently small constants p; > 6; > o > 0, we have

e 7= D) @utx/tn) ) Pigge™ =0 (= o). ©®

2<|al<N d<a

Further there exist constants 0 < dy < dy < oo such that for the function y, defined by (3.47)
and for a sufficiently small g, > 0 satisfying (5.27):

Pl 22" e, 2 2 3 d P (6.5)
we have for P:(t) defined by (5.6)-(5.7) with the above ®, and .,

ety S B0 (o 9

2<lal<N

Proof. By (3.3) and Theorem 3.4, there exist constants 0 < d, < dp < oo such that

e f~ N Xa(D)Pye i f 6.7)

2<|d|<N

as t,, — oo, where yy is the function defined by (3.47) with d; = d i (j=1,2). Applying
partition {®,}2<|4<ny of unity in Theorem 4.3 to (6.7), we get

e N Bu/tn) Y xaD)Pme M f 6.8)

2<]al<N 2<|d|<N

as t,, — oo. Theorem 3.2 tells that we can freely exchange any factor ¢(x4/1t,,) for ¢(D4) on
the left of P4,,e~H f in (6.8) and we have 2d, > [x4/tm| > d1/2 > 0 and |x/t| ~ |xa/t| on
d

each state y4(Dy)P? e ™ H f asymptotically as m — co. Thus |x| > 27'd,1,, asymptotically
d

on Xd(Dd)P‘If,IZ,,e‘”mH f. Therefore taking the constants p; > 6; > o > 0 in @, such that

pjll;> 219 a5 in Theorem 4.3 so that |x; | > p1/2|x|/4 holds on supp @, (x/t,)xa(xa/t) for

any pair (i, j) £ a, we have on supp @,(x/ tm) that |xij| > ct,, for any (i, j) £ a with some
constant ¢ > 0. Hence by Theorem 3.2 only the terms with d < a remain in the second sum
on the RHS of (6.8) and we arrive at a formula equivalent with (6.8).

I SN Oy e/t Di) Py . 6.9)

2<l|a|<N d<a

We note that this tells we can freely add or remove terms with d £ a in (6.9). Again using
Theorem 3.4 we obtain from (6.9)

et~ N (/) Y P e g, (6.10)

2<lal<N d<a

which is (6.4).
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We will use the conventional notation x% = (xfi,xd) (d <a), Dy, = Dy, sz = DY. We
set d| = d; /4 and d, = 2d,. Noting that the factor y (D) gives 2d) < d;/2 < |Dy| < 2d, =
do and using (4.35), (6.3) and the factor ®,(x/¢) in (6.9), we have asymptotically IDZI2 <
e J12 4124 /1 = 161 < i fxa/ 1P ~ | IDal < [ ID4l* < d3wf. Hence d3 > Dyl >
IDaf* = |Dal* = D4 2 4d} — d3wi,!. Taking pig > 6 > o > 0 so small that wi| < 3d}d;?,
we thus have dj > |Da|* 2 d and |xj/t* ~ ID4P < /1 < djwr| < 27%, < &, by (6.5)
asymptotically on each state P‘I{lde‘”[" fin (6.9) as t = 1, —> oo with My = M}}. Let x, be

defined by (3.47) for the constants d> > d; > 0. We then get from (6.9)

le™™ f = 3" $(1x/t=Dal’ < £a)xa(Dal*@ulDa) Y By ™™ 1 - 0 (6.11)

2<|al<N d<a

as 1 =ty — co with My = M}/, where ¢(t < &) is defined by (5.1). Namely we have for the
function pia (t,x,60) = ¢(|x/t_§a|2 < 8a))(a(§a)2q)a(§a) in (5.6)

le™™f = Y, Pi@xD) Y P e A= 0 =ty ). (6.12)

2<|al<N d<a

By what stated after (6.9), we can recover the terms with d £ a. Using (3.3), we finally
arrive at for g, > 0 satisfying (5.27) or (6.5)

le™™Hf— " PE(ty)e ™l >0 (m — ). (6.13)
2<lal<N
This completes the proof of the theorem. O

7 Time-independent modifier

In this section, we assume Assumption 1.1 on long-range pair potentials. Under this as-
sumption, we will construct a time-independent modifier J, which treats the intercluster
long-range pair potentials IX(x) = 2ij)ta ViLj(x,- 1), which is an extension of J introduced in
[16], [17] for two-body quantum scattering.

Let a C* function yo(x) of x € R” satisfy 0 < yo(x) < 1 and

_J T (x=2),
To define J, (2 <|a| < N), we will introduce a time-dependent potential /, gp(t, x)forpe(0,1).
1L (6,2) = I Crax) | | xoloxijwo(Clog(na /(o). (7.2)
(ij)ta

Then I (1, x) satisfies
10312, (1, )] < Cop® 1y~ max ((xij)™) (7.3)
@ipga -

for any multiindex «, and real numbers £,m > 0, 0 < 6y < § with 6 + £ +m < |a| + 6, where
C, > 0 is a constant independent of ¢, x and p.
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Then we can apply the arguments in section 2 of [17] to get a solution ¢,(x,&) of the
eikonal equation:

1 1
EIszoa(x,f)lz + 15 (xg,x%) = §|f|2 (7.4)

in some conic region in phase space.
Namely let H,,(t, x,£) be the Hamiltonian corresponding to the time-dependent poten-
tial I, (1, x).

1
Hyp(t,x,€) = §|§|2 +10(1,x). (7.5)

The corresponding classical orbit (¢, p)(t, 5,y,&) = (q(t, 5,,&), p(t, 5,9,€)) e Xx X' = R"N"D x
RY™-D is determined by the equation

qt,s)=y+ f VeHqp(1,q(7,5), p(7,5))dT =y + f p(T, 8)dr,
s s (7.6)

f
p(t,s) =&~ f ViHap(7,4(7, ), (7, ))dT = § = f Vil (7,q(T, ).

We remark that when all long-range pair potentials vanish: VL 0, one has the unique
solution g(t, s,y,&) = y+(t—s)¢, p(t,s,y,&) = £. Letting 69,01 > 0 be fixed as 0 < dp + 01 <0,
we have the following estimates for (g, p)(¢, s,y,£), which are proved by solving the equation
(7.6) by iteration as in Proposition 2.1 of [24].

Proposition 7.1. There are constants Cp >0 (€ =0,1,2,---) such that for all (y,£) e Xx X’
and +t > x5 > 0, the solutions q, p of (7.6) exist and satisfy for all multi-index a:

|P(s.1,y.6) = &l +|p(t, 5,y,€) — €] < Cop™(s) ™", (1.7)
103 1Vyq(s,1,,€) = T1| < Claip™(s) ™", (7.8)
101V, p(5,1,9, )| < Clap®(s) ™77, (7.9)
Veq(t,5,y.6) = (t = )I| < Cop®(s) ™!t - sl, (7.10)
Vep(t,s,9,6) =11 < Cop™(s)™"", (7.11)
Vyq(t,5,y,6) = 1| < Cop® sy~ 71— sl, (7.12)
Vyp(t,5,9,6)| < Cop® sy 70", (7.13)
10¢ 142, 5,y,6) =y = (t = $)p(t, 5,3 ]|

< Clygp® min((r)' =01, £ — s|(s) ™). (7.14)

Further for any a,f satisfying |a +B| > 2, there is a constant Cog > 0 such that

1030 q(t,5,,6)] < Capp™lt = sKs)™", (7.15)
03 0ep(t.5.3.6) < Capp™ ()™ (7.16)

For the constant Cy > 0 in this proposition, we take p > 0 so small that Cop® < 1/2 holds.
Then the mapping T,(y) = x+y —q(s,t,y,&) : X — X becomes a contraction. Therefore
there is a unique fixed point y € X = R"¥~D for every x € X such that T(y) = y, hence
x =q(s,t,y,£). Thus we obtain the following. (See Proposition 2.2 of [24].)
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Proposition 7.2. Take p > 0 so small that Cop® < 1/2 for the constant Cy > 0 in Proposition

7.1. Then for +t > +s > 0 one can construct a diffeomorphism of X = R"™ D for ¢ e X' =
RYWN-1)

X y(sataxaf)
such that
q(s,t,y(s,t,x,8),&) = x. (7.17)

The mapping y(s,t,x,&) is C* in (x,&) € XX X’ and its derivatives Bﬁﬁgy are Clin (t,s,x,€).
Using this diffeomorphism we define for & € X’

n(t, s, x,8) = p(s,1,y(s,1,x,8),6). (7.18)

Then n(t, s, x,&) is a C* mapping from X X X’ into X', and satisfies

p(t, s, x,n(t,s,x,&) =& (7.19)
They satisfy the relation
v(s,t,x,&) = q(t, s, x,n(t, s, x,£)) (7.20)
and the estimates for any a,f3
0%OLIY y(5,1,%,8) = 11| < Capp™ ()™, (7.21)
0%OFIV n(t, 5, %, 11 < Capp™ ()70, (7.22)
10218, 5,%,6) = €] < Cap™ ()™, (7.23)
10F [ (8,1,%,€) = x = (1 = EN| < Cop®™ min((t)' =11 = s((5) ™). (7.24)
Further for any la+ ] > 2
02n(1,5.x.6) < Capp™(s) ™", (7.25)
|a;§a?y(s, 1,%,E)| < Capp®(t— s)(s)™°". (7.26)

Here the constants Cy,Cop > 0 are independent of t, s, x,&

The following illustration would be helpful to understand the meaning of the diffeomor-
phisms y(s,t,x,&) and n(t, 5, x,€). Let U, (t, s) be the map that assigns the point (g, p)(z, 5, x,17)
to the initial data (x,n). Then

time s time ¢
X Uap(t,s) y(s,t,x,&)
{ H [ J.
n(t, s, x,£) &

We now define ¢,(t, x,&) for (x,&) € X X (X" \{0}) by

¢a(t’ X,é:) = Ma(t’ X, n(t907x7§)),
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where

Tt
ug(t, x,m) = x-n+ f (Hap —x-ViHgp)(T,q(7,0,x,1m), p(7,0, x,17))dT.
0

Then it is shown by a standard calculation that ¢,(¢, x, &) satisfies the Hamilton-Jacobi equa-
tion

_Lepip
{a,¢a(t, 5.8) = 516 + 15,1, Veda(t,3,), (7.27)
¢a(0’x’€) = X'f,
and the relation
Via(t, x,E) = n(t,0,x,8), (7.28)
Veda(t,x,8) = y(0,1,x,£).
Then we can show the existence of the limit for (x,£) € X x (X’ \ {0})
$a(x.8) = lim (@a(t, x.€) ~ $a(1.0.£)). (7.29)

and show that the limit ¢ (x,&) defines a C*-function of (x,£) € X x (X" \ {0}). We remark
that when all long-range pair potentials vanish: Vls = 0, one has the solution ¢,(¢, x,&) =

x- &+ 1€ of (7.27). Hence ¢ (x,€) = x-£.
Letfor1 <i<j<N

cos(Xij,&ij) 1= T

|xijléij17

where &;; is the momentum variable conjugate to x;;. We set for Ry >0, d > 0, 6 € (0,1),
and2<l|a|<N

[ (Ro.d,0) = {(x,&) | |xijl = Ro,|ijl = d, = cos(xj,&ij) = 6,((i)) £ a)}. (7.30)
We can now prove the following theorem in the same way as in [17].

Theorem 7.3. Let Assumption 1.1 be satisfied and let 2 < |a| < N. Then there exists a C*
Sfunction ¢7(x,€) that satisfies the following properties: For any 0 <0 < 1, d > 0 there exists
a constant Ry > 1 such that for any (x,£) € I';(Ro,d, 0)

1 1
5|Vx¢$<x,§)|2 + I (g, 1) = 5|§|2 (7.31)
and
1025 (B2E (x,€) — x- )| < Cap gnﬁx<<xij>‘-é—'“'), (1.32)
ij)fa

where Cop > 0 is a constant independent of (x,&) € T'; (R, d, 0).

Proof. We consider ¢* only. ¢~ can be treated similarly. We first prove the existence of the
limit (7.29) for t —» +oc0 and (x,&) € X X (X" \ {0}). To do so, setting

R(t’ x’é‘:) = ¢(t7x7§) - ¢(l’,0,§),
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we show the existence of the limits
!
lim OTOR(t, x,8) = lim f OrOR(T,x,E)dT + 0T (x-£).
—00 —o Jo S

By Hamilton-Jacobi equation (7.27),

OiR(t,X,£) = 01(t, x,£) - 0,(1,0,)
= 1L (1 Vet x,6) — I (1, V(1,0,6))
= (Ve(1, x,6) = V(1,0,6)) - alt, x,£)
= (0(0,1,x,£) = ¥(0,£,0,8)) - a(t, x.£)
= VeR(t,x,6) - a(t, x,£),

where
1
a(t,x,£) = f (VLB )8, Ve(t,0,6) + 0VeR(1, x,€))dor,
0

VeR(t, x,&) = x-‘fol(ny)(O, t,ox,&)do.
By (7.21), we have for any «,8
1020V, R(t,%,£)] < Capi).
By (7.24) and (7.28), for |5| > 1 and ¢ € X" \ {0}
LV e9(1,0,6)] < Cpll.
From this, (7.34), and (7.36), we have for & € X’ \ {0}

105 a(t,x.6)| < Cap(ty™ ()1

(7.33)

(7.34)

(7.35)

(7.36)

(7.37)

(7.38)

Thus by (7.33), (7.36) and (7.38), there exists the limit for any «, and (x,&) € X X (X" \ {0})

lim agfagR(t, X&) = f N aga? (VeR(t,x.8)- a(t,x.£))dt + 37 (x-£).
t—00 0 € -

In particular, ¢*(x,&) = lim;o R(2, x,£) and n(0,0, x,£) = lim,—,c V,p(2, x,£) exist and are

C™ in (x,&) € X X (X' \ {0}).

Next we show (7.31). By the arguments above, the following limit exist:

V24" (€)= lim V,(r,x.£) = lim (1,0,.£)
= lim p(0,£,5(0,1,x.6).£).

Thus for a sufficiently large |x;;| (i.e. for |px;;| > 2 ((ij) £ a)) we have

271V, (P + 15 () = 271 1im p(0,1,3(0,1,%,). ) + L5, (0, 1),

(7.39)
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Setfor0<s<t<oo

[(5.9.6) =27 p(s, 1,3, 617 + I (5, 4(5,1,.)).
Then by (7.6) we have

ofi
a_i(s7y’§) = P(S’t’)’yf) : asp(se t9y’§) + (Vxlép)(s’ C](S, tay"f)) : asCI(Sy t’y’é:)

oIk,
+ 7(5’61(391’)’,5))

oIk,
- W(S’ C](S’ t’y’é‘:))'
On the other hand we have from (7.17), (7.18), (7.19) and (7.20)

q(s,1,5(0,1,x,8),8) = q(s,1,4(1,0, x,n(1,0, x,£)),£)
=q(s,0,x,7(,0,x,%)),

p(s,1,3(0,1,x,8),8) = p(s,1,4(1,0,x,1(1,0,x,8)),£)
= p(s,0,x,7(t,0,x,8)).

Now using Proposition 7.1, we have for cos(x;;,&;j) > 0 ((ij) £ a)
lqij(s,2,¥(0,2,x,8), 6| = lqi;(s,0,x,7(2,0, x,£))|
> |xij + 5pij(5,0,%,7(2,0,x,€))| = Cop™(s)! ="

= |x;j + 5pij(5,1,9(0,1,%,),E)| — Cop™(s)! =0
> c(|xijl+ sl€i 1) — Cop™(s)! =01 — Cop®(s)! ™01,

where ¢ > 0 is a constant independent of s,,x,&. By (x,€) € '/ (R,d,0), we have |£;;| > d,
and from the definition (7.2) of I7,(t, x)

I
supp a—tp(s,X) C{xl1 < log(s)lxijl/(s) < 2 ((i)) £ a)}.

Thus there is a constant S = S 5 > 1 independent of ¢ such that for any s € [S, ] and (x,&) €
[7(R.d,0)

of
530,050,620
S

For s € [0,5], taking R = Rg > 1 large enough, we have for [x;;| > R and cos(x;;,&;;) > 6

of
o 50,1660 =0,
S

Therefore we have shown that for (x,¢) e I} (R,d,6)

f:(s,¥(0,1,x,£),&) = constant for 0 < s < ¢ < o0,
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In particular we have

f1(0,¥(0,1,x,6),8) = fi(£,5(0,1,x,£),6),

which means

271p(0, £, 30,1, x,£), &) + I (0, x) = 27 &> + I (2,30, 1, x,£)).

Since I (t,y) — 0 uniformly in y € R” when ¢ — oo by (7.3), we have from this and (7.39)

L
ap
27NVt (P + TE(x) = 271 for  (x,&) €TEH(R,d,0),

if R > 1 is sufficiently large.
We finally prove the estimates (7.32). We first consider the derivatives with respect to

&
K@ (xH-x-9 = fo " aRa. s, (7.40)
where R(t, x,£) = ¢(t, x,&) — ¢(2,0,&) as above. Set

Y(t’ -x’é:) = Y(O,f, x’é‘:) - (-x+ tf)
for (x,&) e '} (R,d,0). Then by (7.24) we have for o € [0, 1]

Ve, 8(2,0,6) + 0V, R(2, x,8)|

= yij(0,2,0,&) + o (y;j(0,1, x,&) — v;(0,1,0,6))|

=t&ij+vij(£,0,8) + o (x;j +yij(t, x,€) — vi(2,0,6))| (7.41)

=loxij+ 1€+ (1 —0)yij(1,0,8) + oyij(t, x,6)|

> co(orbeijl +11€ij1) = c1p® min((e)' =1, )
for some constants cg,c; > 0 independent of x,&,0 and ¢ > 0. Thus there are constants
p€(0,1)and T = Ty9 > 0 such that for all > T and (x,¢) € T’} (R, d,0)

(Ve 8(1,0,6) + 0Ve, R(t, x,6))™" < Clolxyjl + 1)y~

Therefore a(t, x,&) defined by (7.34) satisfies by (7.36) and (7.37)

1
I(??a(t,x,fﬂ < Cﬁ Z f (O'|X,'j|+l|§ij|>_1_6d0'. (7.42)

(ipga0
Using (7.41), we see that (7.42) holds also for ¢ € [0,T] if we take p > 0 small enough.
Therefore for all (x,&) € '} (R,d,0) we have from (7.33), (7.36) and (7.40)

00 1
6" =50l Craa Y (i) [ [ byl g™ dora
@ipta

1 )
<Crpa Z Capléil™ f f (olxijl + 7)1 Pdrdo
(ij)ta 0 Jo

<Crga Z a0
(ita
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We next consider
Vi (x,6) ¢ = tlgglo (Vio(t,x,6) - &)
= tll)rglo(p(o’ E)’(O, 1, X,é‘:),f) - f)

L "o L
= EL“;fo (Vilgp) (7.4(7.£,(0,1,.8),)) d (7.43)

!
= lim (Voll) (1.q(7,0,x,7(1,0,x,))) dr
—00 0

= f (Vxlgp) (1,q(7,0,x,1(c0,0, x,8))) dr.
0
By (7.7) and (7.14) of Proposition 7.1

> |x;j +7pij(1,00,¥(0,00, X,8),8)| = Cop™ ()! =0
> c1(|xi1 + 7l 1) = Cop™ () 701 = Cop(ry! =1

for some constant ¢; > 0 and for all (x,&) € I'} (R, d, ). Thus taking p > 0 sufficiently small
and R = R4y, > 1 sufficiently large, we have for (x,&) € T'}(R,d,6)

lgij(7,0,x,17(c0,0,x,8))| > co(lx;;| + 7|&i 1)
for some constant ¢y > 0. Therefore we obtain
V¢ (x,6)—€<C ) f (il + 7léigy ™ ~dr < € max ()™
(ipga*? (ij)ta

For higher derivatives, the proof is similar. For example let us consider
009" (x,6) 1 = f Oe\(Vly,) (1,4(7, 0, x,7(00,0, x,€))}dT
0

= f (vaxlép) (T7 CI(T, 0’ x’ ]7(009 0’ 'x’ f))) qu : andT’
0

where we abbreviated g = ¢(t,0, x,7(0,0, x,£)) and 7 = (0,0, x,£). The RHS is bounded
by a constant times

[t vl e < camax iy

< 0 (ij)ta

(ij)ta

for (x,&) € T/ (R,d,0) by (7.10) and (7.23) of Propositions 7.1 and 7.2. Other estimates
are proved similarly by using (7.8), (7.21), (7.10), (7.15), (7.23), (7.25), (7.43) and the
following relations.

!
Vi (5,8 - ¢ = lim fo (Voll) (1.q(1.1,5(0,1,x,6),€)) dr,

q(.£,y(0,1,x,6),&) = q(7,0,x,1(2,0, x,£)).
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From this we can derive the following theorem in the same way as in Theorem 2.5 of

[17]. Let 0 < 6 < 1 and let y..(1) € C™([—1, 1]) satisfy

O0<y.(n)<1,
1 for6<7t<1,
‘”*m‘{o for —1<1<86/2,
) 0 for-6/2<7<1,
"b_(T)_{l for —1<7<-6.

We set for (x,&) € X X (X" \ {0})

xeé) = | | welcos(xii)
(ij)£a
and define QDa(X, f) = $a,0,d,Ry (X, é‘:) by

Pa(x,€)
={(@g(x.6) = x-Eg (x,6) + (¢, (x,6) = x- O (x,6)}

x | | xoéi/do(2x/Ro)+x-¢
(ipta

(7.44)

(7.45)

for d,Ry > 0. Note that @a04.r)(X.5a) = ¢apa R, (X.£a) When |x;;| > max(Ro,R)), |5ijl =
max(d,d’) for all (ij) £ a. We remark that when all long-range pair potentials vanish:

ViI} =0, one has @,(x,&) = x- £ since ¢, (x,&) = x-& as mentioned. We now have

Theorem 7.4. Let Assumption 1.1 be satisfied. Let 0 < 8 <1 and d > 0. Then there exists
a constant Ry > 1 such that the C* function ¢,(x,£) defined above satisfies the following

properties.

i)  For(x,&) €T} (Ry,d,0)UT,(Ry,d,0), ¢, is a solution of
1 2 L 1 2
SIVxa(X, O +I;(x) = SlI°.
2 2
i)  For any (x,&) € XX X" and multi-indices «,, ¢, satisfies
00,(a(x6) = x- O] < Copmax (!~

In particular, if a # 0,

|5g‘?3(90a(x’ §-x-4l< CaﬁRaéo (rir})e}{);((xi‘,)l_‘sl"“')

for any 80,01 > 0 with 69 + 61 = 6. Further

a(x,&) = x-&

when |x;j| < Ro/2 or |&;j| < d/2 for some (i)) £ a.

(7.46)

(7.47)

(7.48)

(7.49)
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1i) Let
Ag(x, &) = e 9 (HO +1E(x) - 5|‘J«:|2) oiPaxE). (7.50)
Then
1 2 L a 1 2 1 .
Au(x, &) = Elvx%(x,g)l + 1 (xg, x") — 5|.;r| - Ele(pa(x,f) (7.51)
and
1070 Aa(x,£)|
= | Copmaxpza(ip)™' 07, (x,6) €T (Ro,d. ) UL, (Ro,d, 6), (7.52)
=\ Copmax(jyza((xi;)°719),  otherwise.

In the same way, we obtain the following theorem with setting x* = 0, £&* = 0 in the
above. We note that by this setting x = & = 0 we have x;; = zu, & = {u for some k with
1<k<k,for2<]al <N, hence

I (Ro,d.0) = {(x,&) | |zakl = Ro, k| = d, £ c08(zak, {ar) 2 6, (1 < k < ko)) (7.53)

We let X, = R"4=D and X’ be the conjugate momentum space R*14=1).

Theorem 7.5. Let Assumption 1.1 be satisfied. Let 0 < 8 < 1 and d > 0. Then there exists a
constant Ry > 1 such that the C* function ¢,(x,,&4) := 0a(x4,0,&,4,0) satisfies the following
properties.

i)  For(x4,&,) €T/ (Ry,d,0) U (Ro,d,0), ¢, is a solution of
1 2, gL 1.2
Elvx‘Pa(xa,faN +1,(x4,0) = Elfal . (7.54)
il)  Forany (x4,&,) € X, X X, and multi-indices a,f, ¢, satisfies
0,0, Pl 0) = ¥ £] < Copp max ((za)' ™™, (155)
In particular, if @ # 0,
05,9, (a(xas€a) = Xa-£a)l < CapRy™ max ((za)! ™71 (7.56)
for any 69,01 = 0 with 69+ 01 = 6. Further

®a(Xar€a) = Xa-&a (7.57)
when |Zqk| < Ro/2 or |{ak| < d/2 for some 1 < k < k,.
iii) Let

. 1 .
Aa(Xg,€q) = €085 (Ta 1 (X0, 0) = S I | 0k, (7.58)
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Then
1 2 L 1 2 1.
Au(xq,é0) = Elvxasoa(xa"faﬂ +Ia (x4,0)— §|‘fa| - EZAxa‘Pa(xaafa) (7.59)
and
10,0 AaxarE0)]
[ Copmaxiciar, (2™ 07N, (xasa) € T (Ro,d,O) UT 7 (Ro,d,6),  (7:60)
=\ Copmaxicisk, (zak) ™07, otherwise.
We now define a Fourier integral operator J, = J,9.4.r, by
Juf ) =@y DR [ et fg, e, .61
RV al—

for f e H = H,@H* = L2R"W-D) @ L2(R"N-1D) where f(&,,x7) is the partial Fourier
transform defined by (5.8). We note that this definition yields that H* and J, commute:
[H?,J,] = 0. We remark that when all long-range pair potentials vanish: Vﬁ. =0, one has
Ya(xa,&4) = x4 &4, hence J, = 1.

8 Existence of modified wave operators

In this section we will prove the following theorem.

Theorem 8.1. Let Assumptions 1.1 and 1.2 hold. Let a be a cluster decomposition with
2<l]al <N, and 0 < dj < dy <  be the constants in (3.47) in the definition of x,(&,). Let
Ju be the Fourier integral operator defined by (7.61). Let &, > 0 and constants p; > 6; >0
satisfy (5.27):

o = 2"d e, > 2 dad P wr ] (8.1)

|al »

and let Pg(1) = P dyds (1) be the pseudodifferential operator defined by (5.6)-(5.7). Let M >0
be an integer. Then for any f € H the following limits exist.

Quf = im Piye P O = lim Py PE O, 82
Waf = }Lff}o " PL(t)J e Py, f = }E& et ], PEa(p)e e p f

= lim " J,e™" P (Do) f, 8.3)
Gaf = lim "' Py (e 1, (8.4)
Kof = lim ¢tHa pea(py*o=itHa f — lim ¢itHa pea(p)g~itHa f. ©s)

In particular when the long-range part vanishes, i.e. when Vl.Lj = 0 for all pairs (i, j), the
limits (8.2)-(8.3) exist with J, replaced by the identity operator 1. Further we have the
existence of the following limits.

Qqf = lim " PG (ne™" . (8.6)
Waf = lim " PG (nye™"e P4, f. 8.7)

The wave operators W, (2 < |a| < N) satisfy the following properties.
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1) Let a and a’ be different cluster decompositions: a # a’. Then R(W,) and R(W,,) are
orthogonal.

RWy) L RWy). (8.8)

Similarly
R(Gy) L R(Gy). (8.9)

2) W, is an isometry on P‘/{/]ETH([d% / 2,d§ [2D)H and satisfies the intertwining property.

Eqg(B)W,=W,Eq,(B), BCR (Borelset). (8.10)

Proof. Proof is done by smooth operator technique as follows. Let A, = H% + T, + I%(x,,0).
Then we have by Theorem 7.5 and [V, P5%(£)] = 0

(Hody = JoHo) f(x) = () (el=D72 f a5t A (g E0)Faf (Ear XdEw,
Rv(\al—]) (81 1)
[H,, P ()] = [Ho, P5(6)] + [12(x4,0), Pi (9)].

This and Proposition 5.1 yield that

d . .
E(eltHaJ;PZa(t)Jae_”Haf)
— eilHa{l-(HaJ; _ JZHG)PZH([)JQ + JZi[FIa,qu(t)]]a

o . i (8.12)
+ T3P (O (Hodo — JoHy) + T30, P50 e~ e f
. 1 .
= "M T~ Qi (0 QG (0 Jae™ e f + OGN,
where O(t~17%) denotes an operator such that O~ =%)| < C+'°. Thus fort > s> 1
(" To PG (O Tae™ 1 £, f) = (T TGPy () Jae™ 1 £ )
t
d iTH, &, —itH,
=| | —(™aJ:Pe(r)J e f, f)dt
fsdTw SPE ()T £, f) .
! 1 . 2
> f I —= Qi (e f|| dr=CsTIfIP.
s IVT
This gives
t 1 . 2
f NG Ca(r)Jae T | dr < ME|IfI1P. (8.14)
S T
for some constant M > 0 independent of ¢ > s > 1. Similarly
d . . . .
d—t(e”H P (t)e ™ f) = "™ H, P5 (1)) + 0, P (1) ™ f
(8.15)

= 00 Qi e 4 06 f
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gives
t 1 . 2
f — Qe ™| dr < MIIfIP. (8.16)
NG
for some constant M; > 0 independent of # > s > 1. On the other hand, since
(HJy = JHo) f(x) = (Hydy = JoHy) + (IE (g, x7) = T2 (x4, 0) + I3 (x4, X)) (8.17)
and P}, satisfies ||P{,|x“||| < oo by Assumption 1.2, one has with using (1.14)
d Pu itH, *Pb‘a —itH
E( me  J P e f,8)
= (P {i(H, T — T H)P (1) + ToilH, Po (0] + 0, Pg (D)e ™™ £, 9)
= (P {—~i(HyJa = JoHa)* PG (1) (8.18)

— iTE (I (g x7) = I (x4, 0) + I3 (xg, X°)) PEC (1)
+J2(i[Ho, P5 (D1 + 8, P5 (D) + J2il Ly, P (D1} ™ f, g)
= (P4, 27 05 (0" Q5 () + O™ )} e f, ).

Integrating this on the interval [s, ] and applying (8.14) and (8.16) yield that for r > s > 1

|(P7W€ilHa JZPza (t)e_”Hf, g) _ (P?MeisHa JZPia(s)e—ist’ g)|

2 1/2 b 1/2

: f =gz is| ar f | o (e Pg gl d
= ~=%a — 0, (1) Jqe T

oIV oIV ué
+0G7O)If Nl

; 2 1/2
1 £, —itH -5

< — QX @e ™| dr|  Miligll+Csllflllgll.

s VT

Thus for ¢t > s — o0

|1P4, e e It Poe (t)e ™™ f — P4 e"SHa I Poe(s5)e™H £
2
1 .
e (T)e—tTHf

SMU; N

In the same way we have as t > s — oo

1/2
dr)+ Cs™|Ifll - 0,

e PG (1) Jae™" Pl f = € PG (5)Jae ™ Py £
2
i () Jae™ P, f

[

We have proved the existence of

1/2
dT]+ Cs™||f|l = 0.

Quf = lim Py ™Ma i pre (e f,
Wof = lim ™ pge(t) e M Pl f.

(8.19)

(8.20)

(8.21)

(8.22)
(8.23)
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Lemma 11.1 in the Appendix implies

[Ja, P51 (%) = Oty O)IIfI.
This yields that for f € H

Waf = lim e Pt e el f .
= lim " J, PG (™" PY, f. o

Using the identity (x, —tD,)e T« = ¢~#Tax, we can prove that for the constant p,(> 6, >
---> 6y > 0)in (8.1) there exists f,, € H such that

(xa(Da)* = Pi(0))e™™Ma Ps £, — 0 (1 — o), ;i% Ifo, = fII=0
2

so that we have in the limit p, | 0

W, = lim ¥ J "M P4y (D) f. (8.25)

—00

The existence of G, and K, is proved similarly. Lemma 5.2 proves 1). That W, is an
isometry on P4, Er,([d7/2,d3/2])H follows from (8.24)-(8.25) and Lemma 11.2. Let s € R
be fixed. Then for f € H

eisHWaf — tll}n;) ei(ert)HJaefi(SH)Ha PaMXa(Da)ZeiSHaf
= Wae"Me f.

This gives 2). U

9 Short-range case

In this section we assume that all long-range pair potentials vanish: Viﬁ.(x) = 0. Under this
assumption we will prove the asymptotic completeness of short-range wave operators.

Theorem 9.1. Let Assumptions 1.1 and 1.2 be satisfied with VlI; = 0 for any pair (i, j),
1 <i< j<N. Then the wave operators

Waf = lim e emitHapay ©.1)
exists for f € H and 2 < |a| < N, and the asymptotic completeness of wave operators holds.

D Rwa) = Ho. 9.2)

2<lal<N

Proof. By Theorem 8.1, for arbitrary constants 0 < d; < d» < oo and the functions y,(&,)
(2 <lal £ N) in (3.47), wave operators

W, f = lim ¢ e~"Hapay (D) f 9.3)

t—00
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exist for f € H and 2 <l|a| < N. As x,(&,) = 1 for |&,] € [d1,d;] we can extend the isometry
W, on Er,([d}/2,d3/2])P*H to the whole of P*H with retaining the isometry, which gives
the definition of wave operator W, in the theorem. The intertwining property (8.10) implies
R(W,) C H.(H). We have to show the reverse relation

H.(H) C @ R(W,,). 9.4)

2<|al<N

We prove this by mathematical induction on |a|. Our induction hypothesis is that (9.4)
holds with H replaced by any H® with 2 < |a| < N. When |a| = N, P? = I so there occurs no
scattering: H.(H%) = {0}, and the result is trivial. Assuming (9.4) for 2 < |a| < N, we will
prove (9.4) for |a| = 1, i.e. for H. We recall relation (3.5).

He(H)= > En(BYH. 9.5)

BER\T

It thus suffices to show for given B€ R\ 7 and f = Eg(B) € H.(H)

fe & rw). 9.6)

2<|al<N

By Theorem 6.2, there exist constants 0 < d| < d» < oo such that for the sequence ¢, in
Theorem 3.2 and sufficiently small g, > 0

e—iIHf ~ Z PZu(t)e—itHf (97)

2<|al<N

asymptotically as t = t,, — co. On the other hand, Theorem 8.1 implies that the following
limit exists.

Quf = lim "™ P (e f - (f € H). 9.8)
Therefore using (9.1) we have as t — oo

Pza(t)e—itHf ~ e—itHa Qaf — e_itH“PaQafGB e—il‘Ha (I _ Pa)Qaf

. ‘ 9.9
~ e MW Quf + e ™Ha([ - PYQ, f )
Combining this with (9.7) gives as t = t,, = o
e~ N T WD f + (e e @™ (1= PY)Q ). (9.10)

2<|al<N

Our induction hypothesis (9.4) for 2 < |a| < N implies for any & € L*(X“) and a; < a there
exists some wy h € L%(X%) such that

o=itH" (] _ payp ~ Z e HEy patyg, = Z(e‘i”ﬁl ®@e M Py, h 9.11)

ayr<a ay<a
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ast— oo, where Hy =Ty +H", Ty =T, —T,. Applying this to (9.10), we obtain

Y {e—”HWaQaf +(e Mg Y (7 @ Py, )Qaf}

2<|al<N aj<a
= Z {e_itHWaQaf+ Z(e_itT“l ®e—itH"1 Pal)walQaf} 9.12)
2<|al<N a)<a
= 3 e WS + Y e P Quf .
2<|al<N aj<a
Thus
f= > {WaQaf+ > Walwalﬂaf} e (P RWa). 9.13)
2<|al<N aj<a 2<|al<N
This completes the proof. O

The proof above uses the existence of the limit €,, which makes it possible to decom-
pose the second term on the RHS of (9.9). The proof of the existence of Q, = lim;_,
e'™a J* Pee(f)e™™ f in the long-range case requires strong condition on the decay rate as
one needs to prove the existence of the limit without the eigenprojection P in €,. This
makes it necessary to analyze the internal motion of each cluster and assume the decay
rate 6 > V3 — 1 of long-range part of the pair potentials as in Dereziriski [3]. It is however
possible to eliminate the second term on the RHS of (9.9) by appealing to the concept of
scattering spaces before* taking any limit as # — oo in (9.7). This will make it possible
to deal with the long-range tail without worrying about the internal motion and prove the
asymptotic completeness for some long-range pair potentials with ¢ > 1/2 as will be done
in the next section.

10 Scattering spaces — Long-range case

We define scattering spaces following [28]. In the following we consider the case t — oo
only. The case t — —oo is treated similarly. As before we use the notation f(¢) ~ g(¢) as
t — oo to mean that || f(r) — g(r)|| — 0 as t — oo for H-valued functions f(¢) and g(¢) of ¢ > 1.

Definition 10.1. Let real numbers r,o,u and a cluster decomposition a satisty 0 < r <1,
o,u>0and2 <|a| < N.Let BER\T be aclosed set.

i) We define S;”(B) for0 < r < 1by

Sa"(B)={f € En(BYH |

e L 1—[ F(lxijl = o F (1x] < ut")e ™ f as t — oo}. (10.1)
(i, ))%a

4This is the original idea developed in the preprint [25] in 1984, in which it is attempted to prove the
asymptotic completeness without using the existence of particular limits except for wave operators and with
utilizing the asymptotic orthogonality of different scattering spaces.
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For r = 0 we define S 2"(3) by

S%7(B) ={f € En(BYH |
im limsuplle ™ £~ [] Flxyl 2 o0 F () <R p| =0). (102

&
T i (i.j)ta
ii) We define the localized scattering space S/ (B) of order r € (0, 1] for H as the closure of

Zﬂs;"“w) ={f € Ey(BYH | o> 0,Yu>0:

o>0u>0

. ) (10.3)
e f~ [ ] Flxil = on)F (x| < pt)e ™ fas t — oo},
@i.)ta
S 2(B) is defined as the closure of
D S¥(B)={f € En(BYH | 30 >0:
o>0
. ‘ (10.4)
lim lim sup”e—”H F= [ Flxyl = onF(x) < Re ™ f“ =0},
R—oeo 500 X,
@.pta
iii) We define the scattering space S/, of order r € [0, 1] for H as the closure of
Z S”(B). (10.5)

BeR\T"

We note that S, ”*(B), S%(B), S’ (B) ¢ Ey(B)H and S!, ¢ H.(H) define closed sub-
spaces.

Proposition 10.2. Let Assumptions 1.1 and 1.2 be satisfied. Let B€ R\ T and f € S;,”"*(B)
forO<r<1orfeS%(B)forr=0witho,u>0and?2<l|al <N. Then the following limit
relations hold:

1) Let(i,j) £ a. Then for 0 <r <1 we have when t — oo

F(lxijl < oOF(Ix] < ut")e ™ f — 0. (10.6)
For r =0 we have
lim limsup |F (il < o) F (x4 < Rye ™ f| = 0. (10.7)
—® 5o

i) For(Q<r <1 we have when t — oo
F(Ix% > utNe ™M f — 0. (10.8)

Forr=0 .
Jlim Timsupl|F(1x] > Rye™"" ]| = 0. (10.9)
—00 1—00
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iii) There exists a sequence t,, — oo as m — oo depending on f € Sy *(B) or f € S%(B)
such that
(@ (a/tw) = @(Da))e ™ f]| 50 as m— oo (10.10)

for any function ¢ € C8°(R"(|“|—1))_

Proof. i) and ii) are clear from the definition of S,”"(B) or S 2" (B). We prove iii). Since
f € Eg(BYH c H.(H), we have by (3.3) and f € S, ”*(B) (or f € SS‘T(B))

et f Zﬁﬁde—f’” f (10.11)
d<a

as t — oo. Theorem 3.2 and the restriction d < a in the sum of the RHS of (10.11) imply
(10.10). O

The following propositions are obvious by definition.

Proposition 10.3. Let2<|a|<N. If1>r>r>0,0>0">0andy’ >u>0and BER\T,
then $%7(B) c $9(B), $%°(B) c S, 7*(B) c S, * (B), S%B) c SI(B) c S’ (B), S%B) c
SI(B)cS!, and SO c S’ c ST,

Proposition 10.4. Let a and a’ be different cluster decompositions: a # a’. Then for any
0<rr <18, and SZ/, are orthogonal: S|, L SZ',

Now we will prove the asymptotic completeness for the long-range case in a series of
Theorems. In the following we always assume that the constants p; > 6; >0 >0and g, > 0
satisfy the condition (5.27) for the constants d, > d; > 0 determined by a given set BER\ 7.

Theorem 10.5. Let Assumptions 1.1 and 1.2 be satisfied. Let f = Ey(B)f € H.(H) with
B eR\T, and let dy > dy > 0 be the constants specified in Theorem 6.2 corresponding to
the set B. Let y, be defined by (3.47) for the constants dy > dy > 0. Let P;*(t) (2 < |a| < N)
be defined by (5.6)-(5.7) with this x ., and let G, be defined by (8.4) with this P:*(t). Then
we have

f= P Gur. (10.12)
2<|al<N
Further we have
H(H)= P s (10.13)
2<|al<N

Proof. The relation (10.12) follows from Theorem 6.2 and Theorem 8.1. From the defi-
nition (8.4) of G,, we see that G, f approximates an element of S }l(B) by taking &, > 0 in
(8.4) small, and the approximation is better when &, > is smaller. Hence from (10.12) and
the reverse inclusion S }(B) ¢ Ey(B)H, we have

Ex(BYH = P skB). (10.14)

2<lalsN
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This holds for arbitrary B € R\ 7. Hence we have (10.13) by

He(H)= > En(BYH (10.15)
BeR\T
and
Si= > SiB). (10.16)
BeR\T"
O

Theorem 10.6. Let Assumptions 1.1 and 1.2 be satisfied. Let BER\T and f = Eg(B)f €
SL(B). Let dy > dy > 0 be the constants specified in Theorem 6.2 corresponding to the set
B. Let y, be defined by (3.47) for the constants dy > d; > 0 and let the constants in @,
be chosen suitably as in the proof of Theorem 6.2. Let P:“(t) (2 < |a| < N) be defined by
(5.6)-(5.7) with this y, and ®,. Then for the sequence t,, — oo in Theorem 3.2 we have as
m— o0

”e—it,an_ @a(x/tm)e_”’”HfH -0, (10.17)
”e—it,,,Hf_PZa (l‘m)e_it’”Hf“ 0. (10.18)

In particular the following limits exist for f € S L(B) and we have
f= lim e, (x/t)e ™ f e S1(B), (10.19)

f=lim et pa(y, e f e S1(B). (10.20)
Proof. By Theorem 6.2-(6.4) and Theorem 3.4, we have for f = Eg(B)f € S;(B) asm— oo

”e—ithf_ Z D (x/t,,) ZXd(Dd)%g*e_anf” — 0. (10.21)

2<|a’|<N d<a’

If a £ @, there is a pair (i, j) £ @’ with (i, j) < a. By the definition of S} we have x| < x4 <
pt for any u > 0 while arguing similarly to the proof of Theorem 6.2, by the factor @, (x/t,,)
we obtain |x;;| > ct,, for any (i, j) £ a’ with some constant ¢ > 0. Thus the terms @, with
a £ a’ in the above sum must vanish asymptotically as t = #,, — co. On the other hand if
a’ £ a, there is a pair (7, j) £ a such that |x;;| < |x¥|. The condition f € S} gives |xij| > ot
for some o > 0. The factor @, yields that |x;;| < x| < “’|;}||xa'| < ‘”|:z'1||xd| by d <a’. Thus
the factor y4(Dg) gives |x;j| < 2w|;,1|d2tm for the constant d» > 0 in Theorem 3.4, and the
terms with a’ £ a in the sum of (10.21) vanish asymptotically as ¢ = 1, — oo if we take the
constants 6| > 0 and o > 0 in the definition of @, small enough. These with Theorem 3.4
yield

et f = @atxttm) 3 Pt ] 0 1022
d<a

Recovering the terms with d £ a similarly to the proof of Theorem 6.2 proves (10.17). From
(10.22) follows (10.18) in the same way as in the proof of Theorem 6.2. O
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Theorem 10.7. Let Assumptions 1.1 and 1.2 be satisfied. Let BER\T and f = Eg(B)f €
S 2(3). Let t,, and M™ be th sequences specified in Theorem 3.2 for f € H.(H). Then

f = lim ™" P4 P (t,)e M f. (10.23)

m-—o00

In particular we have
RW,) =S50 (10.24)

Proof. By (3.3) and f € S%(B) c H.(H) we have

M~ Py ey (10.25)

d<a

as t — oo. This, Theorem 3.2-(3.21) and f € H.(H) imply
Y S (10.26)
as m — oo, Using Theorem 10.6-(10.18), we obtain from this that

f= lim e P, Pl (ty)e ! . (10.27)

m

By the definition (8.3) of W, it is clear that R(W,) C S 2. Thus we have only to show
the reverse inclusion Sg CRW,). Let BER\T andlet f = Eg(B)f € SS(B). By Theorem
10.6-(10.18), (10.23), [ILP;(tm), P4mlll = O (£ — o0), Lemma 11.2 and Theorem 8.1-(8.2)
and (8.3) we have

f — nll_l’)lgo eil;nHPZ(tm)Jae_ithl/lP?WmeithaJZPZ(Im)e_ithf (10 28)
= WaQuf € RW,). |

The proof is complete. O

Let 7, (1 <la| £ N) be defined by

To=|_Jop(H). (10.29)

b<a

We note that 0 € 7, (1 <|a| < N), and 7, =7 when |a| = 1. Let ¢/,(1) € C(R) satisfy

124,220,

] ) (10.30)
¥,(A1) =1 in a neighborhood of each A € 7.

For any real numbers p >0 and y € R, set B,(y) = {x|x € R,|x—y| < p}. We write supp ¥, | T4
if and only if for any p > O there is ¥, satisfying (10.30) and a finite covering {Bpj(y.,-)}fz1
of supp ¢, such thatfor 1 < j<L,p>p;>0,y; € T4, T Csupp ¥, C UJL.lepj(yj), and
ZJL.leJ- < p. Since 7, is a closed countable subset of [b,0] for some b <0 by [11] and [37],
and non-threshold eigenvalues can accumulate only at thresholds by Theorem 1.5 of [37],
it is possible to take such covering of supp ¢, for any p > 0. We notice that

: a _ pag, _ 1: o
i YO =P'h = lim Ph (10.31)
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for h € H*. In fact since y,(H*) — P* = y,(H*)(I — P*) and H* has no singular continuous
spectrum by Theorem 1.5 of [37], we have only to consider the operator ,(H®) restricted
to the absolutely continuous subspace H5.(H) of H*. When supp ¥, | 7, the Lebesgue
measure of supp ¢, goes to zero by the above definition. Thus for & € HZ.(H*) we have
[ (H)h|| < ||Egae(supp ;bu)h||2 — 0 when supp ¥, | 7, uniformly with respect to the way
of letting supp ¥, | 7,. This proves (10.31).

Theorem 10.8. Let the assumptions of Theorem 1.3 be satisfied. Let B @R\ T . Then for
f = En(B)f €S L(B) the following limit exists and we have

f=lim " PP (rye M f, (10.32)

In particular we have
sl=59 (10.33)

Proof. Let t,, = oo and M)} — oo be the sequences in Theorem 3.2 for f € S }l(B) CH.(H).
Let ¢,(1) € C7(R) satisfy (10.30). We decompose

e f = Y (HYe ™ [+ (I~ ya(H)e ™ f. (10.34)

We will use the same convention as in Theorem 6.2: x% = (xz,xd) = (xg— xg,x%) = (x* -
x,x?) (d < a), Dg = Dy, DY = Dy, T§ = Tq—T,, Hj = T§+ H?. The functions ®4(x*)
(b < a) are defined as in section 4 for the variable x¢ € X* = R"™~l4D which form a partition
of unity such that %}, ., ®7(x*/1) = 1. Now applying Theorem 10.6-(10.17) or (10.22) and
Theorem 3.2, we have the following asymptotic relation for 7 = #,, and My = M)}’ when
(I = Ya(He ™ f ~ (1 =g (H)Do(xa/1) Y Py e f
d<a
= (oD ~YalHY) ) Py ™ 1.

d<a

(10.35)

Noting that (1 —y,(H"))P}, = 0 we obtain from this

(I =l H)e ™ f = Dy(xa/ DU = pra(HY) Y P4y 7 f
d<a
= (l)a(Xa/l‘)Z (I)Z(x“/t)(l— (//G(Ha)) Z p;llde—itHf (10.36)
b<a d<a

~ (Da(xa/t)z @Z(x“/t)Z(I— l}ba(HZ))Pﬂde—itHf.

b<a d<a

As ,(1) =1 in a neighborhood of each A € T, (I — wa(Hg))wad # 0 implies T4 > d%/Z >0
for some constant d; > 0. On the other hand Theorem 3.4 gives d% /2> T, for some d, >d; >
0. Thus d; > |Dy| > |D%| > d; > 0 asymptotically on each state (/- zpa(HZ))Pﬁ,Ide""H f(d<a)
as t = t,; — oo. Hence Theorem 3.2 gives da > |x§/ti| > dy, | X [ty| ~ |X5 /1] and x| > dy 1,
asymptotically. So if d < a satisfies d £ b(< a), we can find a pair (i, j) < d with (i, j) £ b so
that by the factor ®7(x“/1) and |x| > d,1,, we have |x;;| > ct for some constant ¢ > 0. Thus
x| > |x; I = ct, while the factor Pj{/[d bounds x? by Theorem 3.2-(3.20). Therefore the terms
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with d £ b vanish asymptotically as ¢ = t,, — oo in the second sum of the RHS of (10.36)
and we get

I =Ya(H e ™ f ~ Dy xaf1) ) @510 Y (=l HPY ™ f. (10,37

b<a d<b

The RHS behaves like ., e g, with g, € S;‘T’“' (b < a) for some o,u > 0 along the
sequence t = t,, — oo. Thus we have from (10.34)

le™f —wra(H)e™ ™ fIF = (7" f —wa(HYe ™™ f.(I = ha(H)e™ ™ )
N Z(e—isz _ wa(Ha)e—itHf’ e—itHgb) (10.38)

b<a

as t =t, — oo for some g, € S;)‘T” with b < a. Theorem 10.6-(10.17) implies

Ya(HYe ™ f ~ o (HYDo(x0/)e ™™ f = Dy(xa) OO a(H e ™ f (10.39)

as t = t,, — oo, where @, can have constants different from those for ®, in (10.36). This
means that there exist h € S ‘110—;1 and o > 0 such that y,(H*)e "™ f behaves like e~""" 1 for any
u >0 along t = t,, — oo, which and f € SJI(B) imply that the factor e=" f —y,(H*)e " f
in (10.38) behaves like e # ) with some h € S;W and o > 0 for any y > 0. Hence it is
asymptotically orthogonal to e g;, (b < a), and the RHS of (10.38) goes to 0 as ¢ = t,, — oo.
We then have for ¢t =t¢,, > o

e f <y (H e M f, (10.40)

Thus ) .
f= lim ety (He S, (10.41)

From this and Theorem 10.6-(10.18) follows that
f=lim emHy (HYYPE (t,,)e 1 £, (10.42)

In virtue of the factor P{(,,) this limit exists without taking the sequence t,, as seen by the

same argument as in the proof of Theorem 8.1 with using smooth operator technique.
f=lim ey (HYPE(1)e ™M f. (10.43)

Similarly by the same technique with using (1.14) and [H, P*] = [H — H,, P*] where H, =
H*+T,+ Ig(xa, 0) and recalling that we assume that P = P}, for some finite integer M > 0,
we can prove the existence of the following limit for f € H.

Qf = }EEO eitHPaPEa(l‘)e_itHf. (10‘44)

We let ¢ be a C’(R)-function such that 0 < ¢(2) < 1 and ¢(4) = 1 for A € supp ¥, Py, =
?’i 1 P? with P? being a finite dimensional eigenprojection onto the eigenspace spanned
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by eigenfunctions of H* with eigenvalue E;, and ¢,;(4) be a C’-function equal to 1 near

A=E; suchthatZ%lwaj:wa.Wesetforj: 1,....M

Q[f = gup]:l)il/l;an tll)rg eitH‘p(Ha)(',baj(Ha) _ P?)Pga (t)e_itHf,

Then we have for f = Eg(B)f € S;(B)

f-0f = lim lim e (yo(H') = PP (DS,

= lim lim ™ o(H) W (HY) - PP (e ™ f
Supp Yal T 12

M
Y.
j=1

Let U,(¢) be the fundamental solution of the equation

10U, (D + Hy(t)Uu(1) =0,  Uy(0) =1,

where H,(t) = H*+ T, + Ié(t, x) and

152 = I x) | | x0(100x3/(2at)
(i.)#a

with yo(x) (x € R”) being the function defined by (7.1). Then as ¢t — oo

M
e—itH(f_ Qf) — e—itHZij
j=1

~Ug,() lim lim Ua(l)*(p(Ha)(l//a(Ha) _Pa)PZa(t)e_itHf,

SUpp Ya |74 100

Set
Q;f= lim _lim U,(t)"o(H")(Yqj(H*) — PP (e "™ f.

Supp | T 1—00 J

Then as t — oo
I(H" = E)NU(DQ;fll = 0
and
. . M M ~
M (f-0f) =N Qi ~ Uat) Y Q).
j=1 j=1

Let g = Zj”i ,Q,f and U,(t) be the fundamental solution of

i7'0,U,/(t) + (Ej+ Ty + I5(t,x)) Uy j(t) =0, U,j(0) = 1.

(10.45)

(10.406)

(10.47)

(10.48)

(10.49)

(10.50)

(10.51)

(10.52)

(10.53)

Lemma 10.9. For g = Zﬁwz 1 Q if there exists a constant C > 0 such that for any j=1,....M

and t > 1
I(H - Ej)U4(t)gll < Ct.

(10.54)
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Proof. By E; <0 and V“ > 0, we have
DU (D)gl* < C(HGUa(1)g, Ua()g)
S C((H = EpUa(1)g, Ua()g) + CUE; = V) Ua(1)g, Ua(1)g)
< Cll(H* = EpUa)gllligll.
Setting
fO = I(H* - E)Udt)gll,

we obtain

d
fo=—(H"~E VU0, Ua(Dg) = GUE(2, x),(H = Ej)*1U4(Dg, Ua(D)g).

The commutator equals
2Re[(H“ -E j)( Z Va vg(z, xij)-D* + 0(:‘2‘5))] )
(i,j)ta
Thus
If' (1) < Cr ' 0YI(H - EHUD)glIDY UL ()gll + Ct > |(H* — E ) Uy(Dgll.

We have from (10.55)
IOl < Cr10 F()F + Cr20 £(n)?.

This and (10.51) give N
f@ = —ft f'(@dr.
Since f(#) is uniformly bounded, this and (10.60) yield
lf<cre.
Inserting this into (10.60) and integrating by (10.61) we get
O] < Cro0+D) 4 o 1700+,
Repeating this procedure we finally arrive at the estimate

lfOl < ™.

By Lemma 10.9
d - o - .
|5 @ity vao)| = 16007 = V03 1 <
Thus the following limit exists.
hj= lim _ lim U, ;(t)* Ua()Q;f

Supp a7 4 1

= lim lim U“j(t)*(p(Ha)(Waj(Ha) — PYPo(p)e M f,
Supp Y |74 100 J

(10.55)

(10.56)

(10.57)

(10.58)

(10.59)

(10.60)

(10.61)

(10.62)

(10.63)

(10.64)

O

(10.65)

(10.66)
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Since |[x{xa>r)/1jll = 0 (R — o0) and [x{jxa>r), Uaj(t)*] =0, we have as R — oo

lim _ lim |0 (H) o j(HY) = PHPG (e f]] = 0. (10.67)
SUpp Yl T4 1

On the other hand, since y{x|<g)¢(H) is a compact operator we have for any R > 0

I 1ae1<r1 P CH) W j(HY) = PP (1) fll = 0 (10.68)
as supp ¥, | T4. Thus when supp ¥, | 74
lim |lp(H)(aj(H*) = PP (0™ Il = 0. (10.69)
In particular we have when supp ¥, | 74
If = @11l = [[lim " p(H)Wwa(H*) = PP (D™ ]| — 0. (10.70)
Namely
f=0f=lim "™ papa(p)e=itH f. (10.71)
O

It is now obvious that the following theorem follows from Theorems 10.5, 10.7 and
10.8.

Theorem 10.10. Let the assumptions of Theorem 1.3 be satisfied. Let a be a cluster de-
composition with 2 < |a| < N. Similarly to the proof of Theorem 9.1, we extend the domain
of the wave operator W,, in Theorem 8.1 to the whole of P*H, which we will denote by the
same notation W,. Then we have

RW,)=82=5]. (10.72)
In particular we have the asymptotic completeness.
H(H)= P RWa). (10.73)
2<|al<N

11 Appendix

We prove some lemmata.
Lemma 11.1. Let a(x,&), p(x,&) € C*(X X X’) satisfy for any multiindices a,f3

sup |0%0a(x,&)] < o,
(x,£)eXxX’

1.1
sup Ic‘)gfﬁﬁp(x,fﬂ < o0,
(x,&)eXxX’ :
Set for f € S(X)
g, (. D) £(x) = (2)"ND f f O £) F(y)dyde,
XX (11.2)

P D) = D ([ ) e

Then we have
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D
g, (5, D), D) f(x) = (27D f f SO (6 F(ydyde,  (11.3)
XXX’
where
$(68) = (2D f f T, p(y + Vea(g, 1. E),Edyd,
1 (11.4)
Vegaléx) = fo Va1 + 0 7))o,
2)
P D), (x, D)) = 2"V f f N () F()dyde,  (11.5)
XxX’
where
H(x,€) = (2D f f I (e 0+ V a6, £yl )y,
1 (11.6)
Vipax.,y) = fo Vgaly + 00— ). E)d6.
3)

[, (5, D), p(x, D) = 2y f f OO (5 ) fO)dyat, (11.7)

where

U, E) = $(6.) — r(x.8)
— 2™ f f (€ + PO+ Vegalé +7.5,8).6)

= (6,0 + Vipa(x, &, x +y))alx +y,6)}dydn
= a(x,&) (P(Vepa(x,),) = p(x, V. pu(%,£))

+ > @m f f e (s

lyl=1

1
X {Dz{a(x,é’ +17) f 03 p(0y + Veu (€ +17, x,€),€)d6)
0
1
=Dl [ G+ Va3 )t 43, .
0
Proof. 1) A direct calculation of oscillatory integrals yields

4 (5 DI D) = D [[ e iz, (119
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where
sCo ) = (2m)" D f f G EI~E) g ¢ )by, ) (11.10)

The following relation and a change of variable y’ =y — Vz¢,(&, x,1) give 1).

Pa(X,€) = a(X,1) = (£ =1) - Vepa(&, x, 7). (1L.11)

2) Similarly we have

P D.Jag (5. D) = @y [ e ey, (1112)
XXX’
where
r(x,n) = (zﬂ)—V(N—l) ffei(%(y,n)—%(X,T])+(x—y)§)p(x’ Ealy,n)dydé. (11.13)

Noting
©a(y,1m) —@a(x,n) + (x = y)& = (x = Y)E = Vipa(x,1,)), (11.14)

we make a change of variable

=&-=Vpa(x,1,y) (11.15)

in (11.13). Then we get

p(x,Dy)ay, (x,Dy) f(x)

_ -v(N-1) i(pa(x,6)—2€)
= (2m) ffe (11.16)

X f f M p(x,m+ V xpa(x,E,9))aly, E)dydn f (2)dzdé.

The proof of 2) is complete.
3) By 1) and 2) we have

M(x’é:) = S(X,f) - r(x,f)
= oD [[[ e ppo egae rnno.Oddn )

_ 2y f f ¢ p(xy + Vapa( o x + y)alx-+ y.E)dydn.

Taylor expanding the integrand of the first term with respect to y around y = 0 and that
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of the second term with respect to  around 7 = 0, we obtain

PO+ Vepaé+1,x,6),8)
- Z y_'agp(Vgtpa(g-‘ +1,x,€),)
o

lal<L "

’)/ 1
+LZ;)—! fo (1-0)"7"'0] p(By + Vewa(€ +1,x,6),€)d0,

=t (11.18)

P+ Vipa(x,&,x+y))

= 3 Lo p(e.Vaga(xé.x+))
04

lal<L ~°
n (! L1y
+LZ? (1-9) 6,]p(x,017+waa(X,§,x+y))d9-
RS

Substituting these with L = 1 to (11.17), integrating by parts and some calculation yield the
following as desired (see [32] for details).

u(x,€) = a(x.8) (P(Vepa(x,€),€) = px, Vapu(x.6)))
+ > @m ™D

lyl=1

, 1 (11.19)
X f f e ”{Dg{a(x,f +1) j(; 33 POy + Vega(€ +1,x,6),£)d0)
1
=Y [t + Va5 a5, .
i
The following lemma follows from Theorem 7.5.
Lemma 11.2. Let J, be defined by (7.61).
Jaf (x) = )~ ei=D/2 f e Palatd) f(&, xM)dé,. (11.20)
R(lal-1)

Then PE(1)(JJo—1), (JJa—DPA(Y), Po(t)(J.J, —1) and (JJ;, — D PE(Y) satisfy the following
estimates.

IPE()(Jsda = DIl < C()7°, (11.21)
(5T = DPE(0)I < C() 7, (11.22)
1P Jady = DIl < C(t)~°, (11.23)
I(Jad; = DPSO < C(H™°. (11.24)
Proof. We note
Jof(3) = cq fR R £, Oy, (11.25)

Jg(x)=c,4 Lz . ei(x"f"_‘p”(y”’f"))g(ya,Xa)dyadfa, (11.26)
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where ¢, = (27)™14=D_Then we have
FalJoda= DTy 80 x)

i)z -1 (11.27)
=Cq ) e 'a(|detVZaV§a§0a (€ar2asna)l = Dgma)dnadza,
R vi|al—

where V¢, go;l(ga,za, 1a) is the inverse map of y, = 2, = V¢, 04(€4,Y4a,14)- On the other hand
Theorem 7.5-ii) gives

02,0, 0, (1det V., Ve, ¢, (€ 2ar 1) = DI < Cagy max ((zae)™* 7. (11.28)

This and the factor Pi(¥) give ||P5(t)(J,J,— DI < C (t)™°. Other estimates are proved simi-
larly. O

The following lemma is obvious, and the proof is left to the reader.
Lemma 11.3.
[ ACES AGH B (11.29)
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