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Abstract

Let X be a real locally uniformly convex reflexive Banach space with locally uni-
formly convex dual space X∗. Let T : X→ X∗ be demicontinuous, quasimonotone and
α-expansive, and C : X→ X∗ be compact such that either (i) 〈T x+Cx, x〉 ≥ −d‖x‖ for
all x ∈ X or (ii) 〈T x+Cx, x〉 ≥ −d‖x‖2 for all x ∈ X and some suitable positive con-
stants α and d. New surjectivity results are given for the operator T +C. The results
are new even for C = {0}, which gives a partial positive answer for Nirenberg’s prob-
lem for demicontinuous, quasimonotone and α-expansive mapping. Existence result
on the surjectivity of quasimonotone perturbations of multivalued maximal monotone
operator is included. The theory is applied to prove existence of generalized solution
in H1

0(Ω) of nonlinear elliptic equation of the type

 −
N∑

i=1

∂
∂xi

ai(x,u(x),∇u(x)))+Gλ(x,u(x)) = f (x) in Ω

u(x) = 0 x ∈ ∂Ω,

where f ∈ L2(Ω), Ω is a nonempty, bounded and open subset of RN with smooth
boundary, λ > 0, Gλ(x,u) = −div(β(∇u(x)))+λu(x)+a0(x,u(x),∇u(x))+g(x,u(x)), β :
RN → RN , ai :Ω×R×RN → R (i = 0,1,2, ...,N) and g :Ω×R×RN → R satisfy certain
conditions.
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1 Introduction

In what follows, X denotes a real locally uniformly convex Banach space with locally uni-
formly convex dual space X∗. If X is a real Hilbert space, it is denoted by H. A mapping
T : X→ X∗ is called α-expansive if there exists α > 0 such that

‖T x−Ty‖ ≥ α‖x− y‖ for all x ∈ X and y ∈ X.

It is called expansive if α = 1. An operator C : X→ X∗ is called compact if it is continuous
and maps every bounded subset B of X into relatively compact subset of X∗. Nirenberg
[34] stated a problem as to whether a continuous expansive mapping from a real Hilbert
space H into itself whose range contains an open set is surjective or not. It is not hard to
observe that every continuous expansive mapping is injective and R(T ) is a closed subset
of H. The problem can be solved positively if one can show that R(T ) is an open subset of
H. Moreover, it is well-known that R(T ) is open if H is finite dimensional space as a result
of invariance of domain theorem. For the solvability of the problem for T = I − B with B
compact or contraction or k-set contraction, the reader is referred to Nussbaum [35]. The
reader is referred to the results of Browder [13] and Minty [31] for a positive answer if T is
strongly monotone, i.e., there exists c > 0 such that

〈T x−Ty, x− y〉 ≥ c‖x− y‖2 for all x ∈ H and y ∈ H .

Chang and Li [19] gave a positive answer for the problem if H is replaced by a Banach
space X with an additional assumption that T is Fréchet differentiable at each x ∈ X, i.e., for
each x ∈ X, the Frećhet derivative of T at x, T ′(x) exists and

limsup
x→x0

‖T ′(x)−T ′(x0)‖ < 1.

A counterexample was given by Morel and Steinlein [32] demonstrating that the prob-
lem is not solvable if T : `1(N)→ `1(N) is continuous expansive. Even in a Hilbert space
H = `2(N), Szczepanski [36, 37] gave a partial negative answer for the problem. Further-
more, Kartsatos [25] proved that any continuous expansive mapping T : H→H is surjective
provided that, there exists α ∈ (0,1) such that

〈T x−Ty, x− y〉 ≥ −α‖x− y‖2 for all x ∈ H and y ∈ H (1.1)

instead of using the condition
◦

R(T ) , ∅. Recently, Xiang [38] gave surjectivity result for an
h− expansive mapping with h > 0 and such that there exists c ∈ (0,

√
2

2 h) satisfying

〈T x−Ty, x− y〉 ≥ −c‖x− y‖2 for all x ∈ H and y ∈ H (1.2)

instead of using the condition
◦

R(T ) , ∅. It is worth mentioning that the result of Karstatos
[25] is more general than that of Xiang [38] if h = 1. The author believes that the result
of Kartsatos [25] should have been cited by Xiang [38]. Existence results for single con-
tinuous quasimonotone expansive operator defined from a real separable Hilbert space into
itself can be found in the paper by Berkovits [7]. For results on Nirenberg-type problems in
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Banach lattices, the reader is referred to the paper by A. Duma and I. Duma [20].

In this paper, we give surjectivity results for the operator T +C, where T : X → X∗ is
demicontinuous, quasimonotone and α-expansive and C : X → X∗ is a compact operator
provided that T +C is weakly coercive satisfying one of the following conditions.

(i) α > 0 and there exists d ≥ 0 such that

〈T x+Cx, x〉 ≥ −d‖x‖ for all x ∈ X;

It is not difficult to see that any monotone operator A : X ⊇ D(A)→ X∗ with 0 ∈ D(A)
satisfies (i). Indeed, we see that

〈Ax, x〉 = 〈Ax−A(0), x〉+ 〈A(0), x〉 ≥ −‖A(0)‖‖x‖

for all x ∈ D(A). Furthermore, Browder and Hess [14] used (i) as a sufficient con-
dition for regularity and surjectivity of maximal monotone perturbations of regular
generalized pseudomonotone operators. For definitions, properties and existence re-
sults involving pseudomonotone, generalized pseudomonotone and regular general-
ized pseudomonotone operators, the reader is referred to the paper of Browder and
Hess [14]. One can observe that (i) implies

〈T x+Cx, x〉 ≥ −d‖x‖ ≥ −d
(‖x‖2

2
+

1
2

)
≥ −d‖x‖2−d for all x ∈ X,

which implies that (i) is some what stronger than condition (ii) below. However, (ii)
does not give an ontoness result if α > 0 and d > 0 are arbitrary as in (i). The shift
operator S : `2(N)→ `2(N) given by

S (x1, x2, ..., ) = (0, x1, x2, ...)

fails to be surjective eventhough it is continuous α−expansive mapping with α = 1
and satisfies

〈S x, x〉 ≥ −‖x‖2 for all x = (xi) ∈ `2(N).

The advantage of condition (i) is that, it provides surjectivity result for compact per-
turbations of any demicontinuous, quasimonotone and α-expansive mapping without
any restriction on the positive constant α. In addition, there are a number differential
operators which satisfies condition (ii) below (cf. Theorem 3.1 of this paper). There-
fore, the paper addresses, all relevant cases (i), (ii) and (iii).

(ii) α ≥ 1 and there exists d ∈ (0,1) such that

〈T x+Cx, x〉 ≥ −d‖x‖2 for all x ∈ X;

(iii) α > 0 and there exists d ∈ (0,α) such that

〈T x+Cx, x〉 ≥ −d‖x‖2 for all x ∈ X.
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We observe that (i) is stronger than (ii) provided that α ≥ 1 and d ∈ (0,1), and (i) is stronger
than (iii) if α > 0 and d ∈ (0,α). In a real Hilbert space H, for C = {0}, it can be easily seen
that condition (ii) is weaker than condition (1.1), which was used by Kartsatos [25], and
(iii) is weaker than (1.2), used by Xiang [38]. We like to mention here that the restrictions
on the expansive constant α and d > 0 in conditions (i), (ii) and (iii) are essential.

In Theorem 2.1, we have used condition (i) to give surjectivity result for the operator
T +C, where T : X → X∗ is demicontinuous, quasimonotone and α-expansive with α > 0
arbitrary, and C : X→ X∗ is compact such that T +C is weakly coercive, i.e., ‖T x+Cx‖→∞
as ‖x‖ → ∞. It is not hard to see that weak coercivity condition is satisfied if C = {0}
and T is α-expansive. In particular, it is shown that the above inner product condition is
sufficient for surjectivity of a demicontinuous, quasimonotone and α-expansive mapping
with arbitrary α > 0. To the best of the author’s knowledge, this result is new even for
C = {0}. Theorem 2.3 provides surjectivity result for weakly coercive operator T +C along
with conditions (ii) and (iii). Theorem 2.1 and Theorem 2.3 provide new surjectivity results
for compact perturbations of expansive mapping with suitable positive constants α and d.
Finally, a surjectivity result is given for operators of the type λI+N+A+C, where N : H→
H is Lipschitz quasimonotone, A : H ⊇ D(A)→ 2H is maximal monotone and C : H → H
is compact under suitable inner product and norm conditions. In particular, existence of
solution uλ in D(A) of an eigenvalue problem of the type

λu+Nu+Au+Cu 3 0,u ∈ D(A),

is given with positive constant λ satisfying suitable condition. As a result, Theorem 2.5 is
applied to prove existence of generalized solution for nonlinear elliptic differential equation
in appropriate real Hilbert spaces.

In what follows, the following definitions are useful.

Definition 1.1. An operator T : X ⊃ D(T )→ 2X∗ is said to be

(i) “monotone” if

〈u∗− v∗, x− y〉 ≥ 0 for every (x,y) ∈ D(T )×D(T ), u∗ ∈ T x and v∗ ∈ Ty.

(ii) “maximal monotone” if R(T + λJ) = X∗ for every λ > 0, where J : X → 2X∗ is the
normalized duality mapping given by

Jx = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖2 = ‖x‖2}.

This is equivalent to saying that T is maximal monotone if and only if T is monotone
and 〈u∗−u∗0, x− x0〉 ≥ 0 for every (x,u∗) ∈G(T ) imply x0 ∈ D(T ) and u∗0 ∈ T x0.

(iii) “coercive” if either D(T ) is bounded or there exists a function ψ : [0,∞)→ (−∞,∞)
such that ψ(t)→∞ as t→∞ and

〈y∗, x〉 ≥ ψ(‖x‖)‖x‖ for all x ∈ D(T ) and y∗ ∈ T x.
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(iv) “ weakly coercive” if either D(T ) is bounded or |T x| → ∞ as ‖x‖ →∞, where

|T x| = inf{‖v∗‖ : x ∈ D(T ),v∗ ∈ T x}.

Browder and Hess [14] introduced the following definitions of multivalued pseudomono-
tone and generalized pseudomonotone operators. The original definition of single valued
pseudomonotone operators is due to Brézis [10].

Definition 1.2. An operator T : X ⊃ D(T )→ 2X∗ is said to be

(a) “pseudomonotone” if the following conditions are satisfied.

(i) For every x ∈ D(T ), T x is nonempty, closed, convex and bounded subset of X∗.

(ii) T is finitely continuous, i.e., T is “weakly upper semicontinuous” on each finite-
dimensional subspace F of X, i.e., for every x0 ∈ D(T )∩ F and every weak
neighborhood V of T x0 in X∗, there exists a neighborhood U of x0 in F such
that TU ⊂ V.

(iii) For every sequence {xn} ⊂ D(T ) and every sequence {y∗n} with y∗n ∈ T xn such that
xn ⇀ x0 ∈ D(T ) and

limsup
n→∞

〈y∗n, xn− x0〉 ≤ 0,

we have that for every x ∈ D(T ), there exists y∗(x) ∈ T x0 such that

〈y∗(x), x0− x〉 ≤ liminf
n→∞

〈y∗n, xn− x〉.

In particular, replacing x0 in place of x in the above inequality, pseudomono-
tonicity of T implies

liminf
n→∞

〈y∗n, xn− x0〉 ≥ 0.

(b) “generalized pseudomonotone” if for every sequence {xn} ⊂D(T ) and every sequence
{y∗n} with y∗n ∈ T xn such that xn ⇀ x0 ∈ D(T ), y∗n ⇀ y∗0 in X∗ and

limsup
n→∞

〈y∗n, xn− x0〉 ≤ 0,

we have y∗0 ∈ T x0 and 〈y∗n, xn〉 → 〈y∗0, x0〉 as n→∞.

(c) “quasimonotone” if (i) and (ii) of (a) hold and for any sequence {xn} in D(T ) such
that xn ⇀ x0 in X as n→∞ and every sequence {w∗n} with w∗n ∈ S xn, we have

limsup
n→∞

〈w∗n, xn− x0〉 ≥ 0.

(d) “of type (S +)” if (i) and (ii) of (a) hold and for any sequence {xn} in D(T ) such that
xn ⇀ x0 in X as n→∞ and every w∗n ∈ S xn with

limsup
n→∞

〈w∗n, xn− x0〉 ≤ 0,

we have xn→ x0 ∈ D(T ) and there exists a subsequence denoted again by {w∗n} such
that w∗n ⇀ w∗0 ∈ T x0 as n→∞.
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Since X and X∗ are locally uniformly convex, it is well-known that J is single valued,
bounded, bicontinuous, coercive, maximal monotone and of type (S +). Furthermore, it is
well-known that the class of quasimonotone operators includes the class of pseudomono-
tone operators. For basic and further properties of monotone, pseudomonotone and gener-
alized pseudomonotone operators, the reader is referred to the books due to Barbu [4, 5],
Zeidler [39] and the references therein.

The following basic Lemma is due to Browder and Hess [14, Proposition 15, p. 289].

Lemma 1.3. Let K be a compact convex subset of X and T : K→ 2X∗ an operator such that
for every x ∈ K, T x is a nonempty, closed, convex and bounded subset of X∗. Assume that
T is upper semicontinuous with X∗ being given its weak topology. Let f ∗ ∈ X∗. Then there
exist elements x0 ∈ K and y∗0 ∈ T x0 such that〈

y∗0− f ∗, x− x0
〉
≤ 0 for all x ∈ K.

For every f ∗ ∈ X∗, −T is upper semicontinuous. Thus, Lemma 1.3 implies that there
exist x∗0 ∈ K and v∗0 ∈ −T x0 (i.e., v∗0 = −w∗0 for some w∗0 ∈ T x0) such that〈

−w∗0− (− f ∗), x− x0
〉
≤ 0 for all x ∈ K,

i.e.,
〈
w∗0− f ∗, x− x0

〉
≥ 0 for all x ∈ K.

The following lemma can be found in Browder [12, Proposition 7.2, p. 81].

Lemma 1.4. Let X be a reflexive Banach space, A be a nonempty bounded subset of X and
x0 ∈ Aw, where Aw is the weak closure of A in X. Then there exists a sequence {xn} in A such
that xn ⇀ x0 in X as n→∞.

Brézis, Crandall and Pazy [9] gave the following important result for maximal mono-
tone operators from a reflexive Banach space X into its dual space X∗.

Lemma 1.5. Let B be a maximal monotone set in X∗ × X. If (u∗n,un) ∈ B for all positive
integer n such that un ⇀ u and u∗n ⇀ u∗ as n→∞ and either

limsup
n,m→∞

〈
u∗n−u∗m,un−um

〉
≤ 0

or
limsup

n→∞

〈
u∗n−u∗,un−u

〉
≤ 0,

then (u∗,u) ∈ B and 〈u∗n,un〉 → 〈u∗,u〉 as n→∞.

2 Main Results

This section addresses the main contributions of the work. Theorem 2.1 gives a new surjec-
tivity result for compact perturbations of demicontinuous, quasimonotone and α-expansive
mappings. For C = {0}, this result provides a partial positive answer for Nirenberg’s prob-
lem [34]. The importance of Theorem 2.1 over the results of Kartsatos [25] and Xiang [38]
is that, it gives an ontoness result for any demicontinuous, quasimonotone and α-expansive
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mapping with arbitrary α > 0 while the result of Kartsatos is for α = 1 and d ∈ (0,1) satisfy-
ing (1.1) and result of Xiang [38] is for α > 0 and c ∈ (0,

√
2

2 α) satisfying (1.2). Furthermore,
the results due to Kartsatos [25] and Xiang [38] are for single continuous expansive map-
ping defined from a real Hilbert space H into itself. However, the results in this paper are
for compact perturbations of demicontinuous, quasimonotone and α-expansive mapping
defined from a real reflexive Banach space into its dual space X∗.

Theorem 2.1. Let T : X→ X∗ be a demicontinuous, quasimonotone and α-expansive map-
ping with α > 0 and C : X → X∗ be a compact operator. Assume, further, that T +C is
weakly coercive and there exists d ≥ 0 such that

〈T x+Cx, x〉 ≥ −d‖x‖ for all x ∈ X.

Then T +C is surjective.

Proof. Let ε > 0 and Λ be the collection of all finite dimensional subspaces of X. For each
F ∈Λ, let jF : F→ X be the inclusion mapping and j∗F : X∗→ F be the dual projection onto
F. For each fixed ε > 0 and each y∗ ∈ X∗, we see that

〈T x+Cx+εJx− y∗, x〉 ≥ ‖x‖2
(
ε−

d+ ‖y∗‖
‖x‖

)
for all x ∈ X\{0}. As a result, there exists Rε = R(ε) > 0 such that

〈T x+Cx+εJx− y∗, x〉 > 0 (2.1)

for all x ∈ ∂BRε(0). Let Kε = BRε(0) and Kε
F = Kε∩F. Since Kε is bounded, Kε

F is a compact
subset of F. The continuity of T implies that j∗F(T +C+εI) jF : F→ F is continuous. Since
j∗Fy∗ ∈ F for any y∗ ∈ X∗, using Lemma 1.3, there exists xF ∈ Kε

F such that

〈 j∗F(T xF +CxF +εJxF − y∗), x− xF〉 ≥ 0

for all x ∈ Kε
F , which is equivalent to say that

〈T xF +CxF +εJxF − y∗, x− xF〉 ≥ 0

for all x ∈ Kε
F . Since Kε is closed, convex and bounded, the family {xF}F∈Λ is uniformly

bounded and Kε is weakly compact subset of X. For each F ∈ Λ, we define

VF :=
⋃

F′∈Λ, F⊂F′
{xF′},

where xF′ ∈ Kε
F′ satisfies

〈T xF′ +CxF′ +εJxF′ − y∗, x− xF′〉 ≥ 0 for all x ∈ Kε
KF′
.

We observe that, for every F, VF
w

is a weakly closed subset of the weakly compact
subset Kε and the family {VF

w
} satisfies the finite intersection property. Therefore, we have

V :=
⋂
F∈Λ

VF
w
, ∅.
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Let xε0 ∈ V ⊆ Kε and x ∈ Kε. Choose a finite dimensional subspace F0 containing x and xε0.
By using Lemma 1.4, we choose a sequence {xεn} in VF0 such that xεn ⇀ xε0 as n→∞. By
the definition of VF0 , for each n, we choose Fn such that F0 ⊆ Fn and xεn ∈ Kε

Fn
for all n.

Moreover, using the definition of xεn, we have

〈T xεn+Cxεn+εJxεn,y− xεn〉 ≥ 〈y
∗,y− xεn〉 (2.2)

for all y ∈ Kε
F0

and n. Since xε0 ∈ Kε
F0

, it follows that

〈T xεn+Cxεn+εJxεn, x
ε
0− xεn〉 ≥ 〈y

∗, xε0− xεn〉

for all n. Since C is compact (i.e., quasimonotone) and T is quasimonotone, it follows that

liminf
n→∞

〈T xεn, x
ε
n− xε0〉 ≥ 0 and liminf

n→∞
〈Cxεn, x

ε
n− xε0〉 ≥ 0.

Consequently, we obtain that

ε limsup
n→∞

〈Jxεn, x
ε
n− xε0〉 ≤ limsup

n→∞

(
−〈T xεn+Cxεn− y∗, xεn− xε0〉

)
= − liminf

n→∞
〈T xεn+Cxεn− y∗, xεn− xε0〉

≤ − liminf
n→∞

〈T xεn− y∗, xεn− xε0〉− liminf
n→∞

〈Cxεn, x
ε
n− xε0〉

≤ 0

Since J is of type (S +), we conclude that xεn→ xε0 as n→∞. Since J and C are continuous,
and T is demicontinuous, we get Jxεn→ Jxε0, Cxεn→Cxε0 and T xεn ⇀ T xε0 as n→∞. Letting
n→∞ in (2.2), we arrive at

〈T xε0+Cxε0+εJxε0,y− xε0〉 ≥ 〈y
∗,y− xε0〉

for all y ∈ Kε
F0
. Since x ∈ Kε

F0
, we conclude that

〈T xε0+Cxε0+εJxε0, x− xε0〉 ≥ 〈y
∗, x− xε0〉.

Since x ∈ Kε is arbitrary, it follows that

〈T xε0+Cxε0+εJxε0, x− xε0〉 ≥ 〈y
∗, x− xε0〉 for all x ∈ Kε. (2.3)

By definition of the subdifferential ∂IKε of the indicator function on Kε, it follows that

y∗− (T xε0+Cxε0+εJxε0) ∈ ∂IKε(xε0)

i.e., there exists u∗0 ∈ ∂IKε(xε0) such that

u∗0+T xε0+Cxε0+εJxε0 = y∗.

Since 0 ∈ Kε, using 0 in place of x in (2.3) , the definition of ∂IKε yields 〈u∗0, x
ε
0〉 ≥ 0, which

implies that
〈T xε0+Cxε0+εJxε0− y∗, xε0〉 ≤ 0.
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If xε0 ∈ ∂Kε, from (2.1), we obtain that

0 ≥ 〈T xε0+Cxε0+εJxε0− y∗, xε0〉 > 0,

i.e., 0< 0. However, this is absurd. Therefore, we conclude that xε0 ∈
◦

Kε. Since ∂IKε(x)= {0}

for all x ∈
◦

Kε, we conclude that u∗0 = 0. As a result, the equation

T xε0+Cxε0+εJxε0 = y∗ holds.

Thus, for each sequence {εn} such that εn ↓ 0+ as n→∞, setting yn := xεn
0 , we see that

Tyn+Cyn+εnJyn = y∗ for all n. (2.4)

Next we show that {yn} is bounded. Suppose not, i.e., there exists a subsequence, denoted
again by {yn}, such that ‖yn‖ →∞ as n→∞. The hypothesis of the theorem implies that

εn‖yn‖
2 = −〈Tyn+Cyn− y∗,yn〉

≤ (d+ ‖y∗‖)‖yn‖ for all n,

i.e., dividing this inequality by ‖yn‖ for all large n, we arrive at εn‖yn‖ ≤ d+‖y∗‖ for all large
n. As a result, we obtain

‖Tyn+Cyn‖ ≤ εn‖yn‖+ ‖y∗‖

≤ d+2‖y∗‖ for all large n

Since ‖Tyn+Cyn‖→∞whenever ‖yn‖→∞, we arrive at∞≤ d+2‖y∗‖, which is impossible.
Therefore, {yn} is bounded. Using the compactness of C, we assume that Cyn → y∗0 as
n→∞, which implies that Tyn → y∗ − y∗0 as n→∞. For all positive integers n and m, the
α-expansiveness of T implies

α‖yn− ym‖ ≤ ‖Tyn−Tym‖ → 0

as n,m→∞, i.e., ‖yn−ym‖→ 0 as n,m→∞, i.e., yn→ y0 ∈ X as n→∞. The demicontinuity
of T and continuity of C imply that Tyn ⇀ Ty0 and Cyn→ Cy0 as n→∞. Finally, letting
n→∞ in (2.4), we obtain that

Ty0+Cy0 = y∗.

Since y∗ ∈ X∗ is arbitrary, the surjectivity of T +C follows. The proof is complete. �

The following corollary is immediate consequence of Theorem 2.1.

Corollary 2.2. Let T : X→ X∗ be a demicontinuous, quasimonotone and α-expansive map-
ping with α > 0. Assume, further, that there exists d ≥ 0 such that

〈T x, x〉 ≥ −d‖x‖ for all x ∈ X.

Then T is surjective.

Proof. The proof follows by setting C = {0} in Theorem 2.1 because ‖T x‖→∞ as ‖x‖→∞
as a consequence of expansiveness of T. �
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The author would like to mention here that Corollary 2.2 gives a partial positive answer
for Nirenberg’s problem for arbitrary demicontinuous, quasimonotone and α-expansive
mapping under the given inner product condition in any reflexive Banach space X.

In Theorem 2.3 below, we give a new result for compact perturbations of demicontin-
uous, quasimonotone and α-expansive mapping T : X → X∗ under a more general inner
product condition, which is weaker than the condition used by Kartsatos [25] and Xiang
[38].

Theorem 2.3. Let T : X→ X∗ be a demicontinuous, quasimonotone and α-expansive map-
ping and C : X→ X∗ be a compact operator. Assume, further, that

(i) (a) α ≥ 1 and there exists d ∈ (0,1) or (b) α > 0 and there exists d ∈ (0,α) such that

〈T x+Cx, x〉 ≥ −d‖x‖2 for all x ∈ X; (2.5)

(ii) there exists µ ≥ 0 such that ‖T x+Cx‖ ≥ α‖x‖−µ for all x ∈ X.

Then T +C is surjective.

Proof. Suppose (i) (a) (i.e., α ≥ 1 and d ∈ (0,1)) and (ii) hold. Let ε > 0 and J̃x = ‖x‖Jx,
x ∈ X, where J : X→ X∗ is the normalized duality mapping. Then J̃ is continuous from X
into X∗. Indeed, if for any sequence {xn} in X such that xn → x0 as n→∞, it follows that
‖xn‖ → ‖x0‖ as n→∞. By the continuity of J, we obtain that

‖J̃xn− J̃x0‖ = ‖‖xn‖Jxn−‖x0‖Jx0‖

= ‖(‖xn‖− ‖x0‖)Jxn+ ‖x0‖(Jxn− Jx0)‖

≤ ‖xn‖|‖xn‖− ‖x0‖|+ ‖x0‖‖Jxn− Jx0‖ → 0 as n→∞.

Thus, the operator T +C+εJ̃ is demicontinuous from X into X∗. Furthermore, using J̃ and
(2.5), we see that

〈T x+Cx+εJ̃x, x〉 = 〈T x+Cx+ε‖x‖Jx, x〉

≥ ε‖x‖3−d‖x‖2

= ‖x‖3
(
ε−

d
‖x‖

)
for all x ∈ X\{0}.

Thus, there exists Rε = R(ε) > 0 such that

〈T x+Cx+εJ̃x, x〉 > 0

for all x ∈ ∂BRε(0). For each y∗ ∈ X∗, using the finite dimensional argument used in the
proof of Theorem 2.1, we conclude that there exists a sequence {xεn} in X such that xεn ⇀ xε0
as n→∞ and

〈T xεn+Cxεn+ε‖x
ε
n‖Jxεn, x

ε
0− xεn〉 ≥ 〈y

∗, xε0− xεn〉 for all n. (2.6)



64 Teffera M. Asfaw

Since T and C are quasimonotone and xεn ⇀ xε0 as n→∞, we see that

liminf
n→∞

〈T xεn+Cxεn, x
ε
n− xε0〉 ≥ liminf

n→∞
〈T xεn, x

ε
n− xε0〉+ liminf

n→∞
〈Cxεn, x

ε
n− xε0〉

≥ 0

As a result, using this inequality along with (2.6), we obtain that

limsup
n→∞

‖xεn‖〈Jxεn, x
ε
n− xε0〉 ≤ 0.

If xε0 = 0, then we have

limsup
n→∞

‖xεn‖〈Jxεn, x
ε
n〉 = limsup

n→∞
‖xεn‖

3 ≤ 0,

xεn → 0 as n→∞. Assume xε0 , 0, i.e., there exists a subsequence, denoted again by {xεn},
such that ‖xεn‖ ≥ Q for all n and some Q > 0. Assume without loss of generality that ‖xεn‖ →
aε > 0 as n→∞. This implies that

limsup
n→∞

〈Jxεn, x
ε
n− xε0〉 = limsup

n→∞

1
‖xεn‖
〈‖xεn‖Jxεn, xn− x0〉

=
1
aε

limsup
n→∞

〈‖xεn‖Jxεn, x
ε
n− xε0〉

≤ 0

Since J is of type (S +), we conclude that xεn → xε0 as n→∞. Since T is demicontinuous
and, J̃ and C are continuous, it follows that T xεn ⇀ T xε0, J̃xεn → J̃xε0 and Cxεn → Cxε0 as
n→∞, respectively. In addition, we get 〈T xεn, x

ε
n〉 → 〈T xε0, x

ε
0〉, 〈J̃xεn, x

ε
n〉 → 〈J̃xε0, x

ε
0〉 and

〈Cxεn, x
ε
n〉 → 〈Cxε0, x

ε
0〉 as n→∞, i.e., it follows that

〈T xεn+Cxεn+ J̃xεn, x
ε
n〉 → 〈T xε0+Cxε0+ J̃xε0, x

ε
0〉 as n→∞.

Following the arguments used in the proof of Theorem 2.1, using Kε = Bε(0), for each
y∗ ∈ X∗ and ε > 0, we arrive at

T xε0+Cxε0+εJ̃xε0 = y∗.

Then for each εn ↓ 0+ as n→∞, there exists yn := xεn
0 in X such that

Tyn+Cyn+εn‖yn‖yn = y∗ for all n, where yn := xεn
0 . (2.7)

Next we show that {yn} is bounded. To this end, we assume, there exists a subsequence,
denoted again by {yn}, such that ‖yn‖→∞ as n→∞. Thus, using the inner product condition
in the hypothesis of the theorem together with (2.7), we arrive at

εn‖yn‖
3 = −〈Tyn+Cyn,yn〉+ 〈y∗,yn〉

≤ d‖yn‖
2+ ‖y∗‖‖yn‖ for all n.
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Dividing both sides of this inequality by ‖yn‖ for all large n yields

εn‖yn‖ ≤ d+
‖y∗‖
‖yn‖

,

i.e., limsupn→∞ εn‖yn‖ ≤ d < 1. Furthermore, condition (ii) together with (2.7) imply

−µ+α‖yn‖ ≤ ‖Tyn+Cyn‖

≤ εn‖yn‖
2+ ‖y∗‖ for all n.

Dividing this inequality by ‖yn‖ for all large n, we arrive at

1 ≤ α ≤ limsup
n→∞

(
εn‖yn‖+

‖y∗‖
‖yn‖

)
≤ d < 1,

which is impossible. Therefore, the sequence {yn} is bounded. Since C is compact, there
exists a subsequence, denoted again by {yn}, such that Cyn→ h∗0 as n→∞. As a result from
(2.7), we obtain that

Tyn→ y∗−h∗0 as n→∞.

Since T is α-expansive, it follows that

α‖yn− ym‖ ≤ ‖Tyn−Tym‖ → 0 as n,m→∞,

i.e., {yn} is a Cauchy sequence in X. This gives yn → y0 in X as n→∞. Since T is demi-
continuous and C is continuous, we conclude that Tyn ⇀ Ty0 and Cyn → Cy0 as n→∞.
Finally, letting n→∞ in (2.7), we arrive at

Ty0+Cy0 = y∗.

Since y∗ ∈ X∗ is arbitrary, we conclude that T +C is surjective. The proof of the theorem
using conditions (i) (b) and (ii) follows a similar argument. The details are omitted here. �

The following corollary is a consequence of Theorem 2.3.

Corollary 2.4. Let T : X → X∗ be a demicontinuous, quasimonotone and α-expansive
mapping such that (i) of Theorem 2.3 holds with positive constants α and d satisfying
〈T x, x〉 ≥ −d‖x‖2 for all x ∈ X. Then T is surjective.

Proof. We notice that condition (ii) of Theorem 2.3 is not required because of the expan-
siveness of T. Indeed, for some fixed u0 ∈ X, by the hypothesis that T is α-expansive, we
see that

‖T x‖ = ‖T x−Tu0+Tu0‖

≥ ‖T x−Tu0‖− ‖Tu0‖

≥ α‖x−u0‖− ‖Tu0‖

≥ α‖x‖− (α‖u0‖+ ‖Tu0‖)

= α‖x‖−µ, where µ = α‖u0‖+ ‖Tu0‖ for all x ∈ X,

(2.8)

i.e., condition (ii) of Theorem 2.3 is satisfied. Thus, the proof follows by setting C = 0 in
Theorem 2.3. �
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Corollary 2.4 gives a positive answer for Nirenberg’s problem under the given inner
product condition. The stronger inner product conditions used by Kartsatos [25] and Xiang
[38] are weakened for demicontinuous, quasimonotone and α-expansive mappings defined
from a reflexive Banach space X into its dual space X∗.

If X = H, a real Hilbert space, the following theorem gives surjectivity result for op-
erators of the type λI +N +A+C, where N : H→ H is Lipschitz quasimonotone, A : H ⊇
D(H)→ 2H is maximal monotone and C : H → H is compact, possibly multivalued and
λ > 0 is a positive constant. For f = 0, Theorem 2.5 gives solvability of an eigenvalue
problem

λu+Nu+Au+Cu 3 0 in D(A)

for an appropriate eigenvalue λ > 0.

Theorem 2.5. Let A : H ⊇ D(A)→ 2H be maximal monotone with 0 ∈ A(0), N : H→ H be
Lipschitiz quasimonotone with Lipschitz constant ` > 0. Let C : H → H be compact such
that there exists k > 0 satisfying ‖Cx‖ ≤ k‖x‖ for all x ∈ H. Assume, further, that there exists
d̃ > 0 such that

〈Nx+Cx, x〉 ≥ −d̃‖x‖2 for all x ∈ H. (2.9)

If 0 < τ∗ < d̃, where τ∗ =max{`+k, d̃+`
2 }, then for any λ ∈ (τ∗, d̃), the operator λI+N+A+C

is surjective.

Proof. For each ε > 0, let Aε be the Yosida approximant of A. It is well-known that Aε :
H→ H is bounded, continuous and monotone. Since 0 ∈ A(0), it follows that Aε(0) = 0 for
all ε > 0. For each λ ∈ (τ∗, d̃), the monotonicity of Aε implies that

〈λ(x− y)+Aεx−Aεy, x− y〉 ≥ λ‖x− y‖2

for all x, y in H, i.e.,
‖(λx+Aεx)− (λy+Aεy)‖ ≥ λ‖x− y‖

for all x ∈ H and y ∈ H, i.e., λI+Aε is continuous, monotone and λ-expansive. On the other
hand,

‖(λx+Aεx+Nx)− (λy+Aεy+Ny)‖ ≥ ‖(λx+Aεx)− (λy+Aεy)‖

− ‖Nx−Ny‖

≥ (λ− `)‖x− y‖

for all x ∈ H and y ∈ H. Since λ > `+ k, it follows that, for each ε > 0, the operator λI +
N+Aε is continuous, quasimonotone and α-expansive with α = λ−` > 0. The inner product
condition on N +C implies

〈λx+Nx+Aεx+Cx, x〉 ≥ λ‖x‖2− d̃‖x‖2

= −(d̃−λ)‖x‖2 for all x ∈ H.

We observe that d̃−λ > 0 because λ < d̃. Furthermore, we have

‖λx+Nx+Aεx+Cx‖ ≥ ‖λx+Aεx+Nx‖− ‖Cx‖

≥ (λ− `)‖x‖− ‖Cx‖

≥ (λ− (`+ k))‖x‖ for all x ∈ H.
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Since λ > d̃+`
2 , i.e., 0 < d̃−λ < λ− `, using λI+N +Aε in place of T , λ− ` in place of α and

d̃−λ in place of d and using conditions (i) (b) and (ii) of Theorem 2.3, we conclude that,
for each λ as in the hypothesis and ε > 0, the operator λI +Aε+N +C is surjective, i.e., for
each f ∈ H and εn ↓ 0+, there exists xn ∈ H such that

λxn+Nxn+Aεn xn+Cxn = f (2.10)

for all n. Using (2.10), we get that

(λ− (`+ k))‖xn‖ ≤ ‖λxn+Nxn+Aεn xn+Cxn‖ ≤ ‖ f ‖

for all n, which implies the boundedness of {xn}. Since N is Lipschitz mapping, we see that

‖Nxn‖ ≤ ‖Nxn−N0‖+ ‖N0‖ ≤ `‖xn‖+ ‖N0‖

for all n, which implies the boundedness of {Nxn}. Since C is compact, there exists a
subsequence, denoted again by {xn}, such that Cxn → y0 as n → ∞. Thus the sequence
{Aεn xn} is bounded. Let v∗n = Aεn xn for all n. Assume by passing into subsequences that
xn ⇀ x0 and v∗n ⇀ v∗0 as n→∞. Let Jεn be the Yosida resolvent of A. Using the properties
of the Yosida approximant and resolvent of A, it is well-known that Jεn xn ∈ D(A), Aεn xn ∈

A(Jεn xn) and Jεn xn = xn−εnAεn xn for all n. By (2.10), we have

limsup
n→∞

〈Aεn xn, xn− x0〉 ≤ limsup
n→∞

(
−〈λxn+Nxn+Cxn, xn− x0〉

)
= − liminf

n→∞
〈λxn+Nxn+Cxn, xn− x0〉

≤ − liminf
n→∞

〈λxn, xn− x0〉− liminf
n→∞

〈Nxn, xn− x0〉

− liminf
n→∞

〈Cxn, xn− x0〉.

Since N is quasimonotone and C is compact, we have

liminf
n→∞

〈Nxn, xn− x0〉 ≥ 0 andliminf
n→∞

〈Cxn, xn− x0〉 ≥ 0.

As a result, we get
limsup

n→∞
〈Aεn xn, xn− x0〉 ≤ 0.

Moreover, it follows that

limsup
n→∞

〈Aεn xn, Jεn xn− x0〉 = limsup
n→∞

〈Aεn xn, (Jεn xn− xn)+ (xn− x0)〉

≤ limsup
n→∞

(−εn‖Aεn xn‖
2)+ limsup

n→∞
〈Aεn xn, xn− x0〉

≤ 0.

Consequently, using the maximal monotonicity of A along with Lemma 1.5, we conclude
that x0 ∈ D(A) and v∗0 ∈ Ax0 and 〈Aεn xn, xn〉 → 〈v∗0, x0〉 as n→∞. Thus, using the quasi-
monotonicity of N and C, we obtain that

limsup
n→∞

〈xn, xn− x0〉 ≤ 0,
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which implies
limsup

n→∞
‖xn‖ ≤ ‖x0‖.

As a result, the uniform convexity of H implies xn → x0 as n → ∞, which again gives
Nxn→ Nx0 and Cxn→Cx0 as n→∞. Finally, letting n→∞ in (2.10), we conclude that

λx0+Nx0+Cx0+ v∗0 = f .

Thus, for every f ∈ H, the inclusion problem

λu+Nu+Cu+Au 3 f , u ∈ D(A)

is solvable, i.e., for each λ as in the hypothesis, R(λI+N+C+A)=H. The proof is complete.
�

For more references on surjectivity of perturbations of multivalued maximal mono-
tone operators under a certain type of coercivity assumptions, we advise the reader to refer
Browder and Hess [14], Brézis [10], Brézis and Nirenberg [11], Kenmochi [26, 27, 28],
Le [30], Guan, Kartsatos and Skrypnik [22], Guan and Kartsatos [23] and the references
therein. Recent results on topological degree and variational inequality theories for multi-
valued pseudomonotone perturbations of maximal monotone operators can be found in the
papers due to Asfaw and Kartsatos [1, 2, 3] and the references therein. Various examples
of single valued and/or multivalued operators of pseudomonotone type can be found in the
paper by Kenmochi [28], Carl, Le and Motreanu [16], Carl [17] and Carl and Motreanu
[18].

3 Application to elliptic equations

Let Ω be a nonempty, bounded and open subset of RN with smooth boundary. Let g :
Ω×R→ R be Carathèodory function, i.e., for each fixed u ∈ R, the function x 7−→ g(x,u) is
measurable and for almost every x ∈ Ω, the function u 7−→ g(x,u) is continuous. Assume,
further, that

(C1) there exists k1 > 0 such that

|g(x, s)| ≤ k1|s| for all s ∈ R and almost all x ∈Ω;

(C2) there exists τ ≥ 0 such that

g(x, s)s ≥ −τ|s|2 for all s ∈ R and almost all x ∈Ω.

(C 3) there exist a continuous monotone function β : RN → RN and C1 > 0 such that

|β(r)| ≤C1(1+ |r|) for all r ∈ RN .
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Let H = H1
0(Ω). Define the mapping C : H→ H by

〈Cu,φ〉 :=
∫
Ω

g(x,u(x))φ(x)dx, u ∈ H,φ ∈ H. (3.1)

Using the compact embedding of H1
0(Ω) into L2(Ω), it follows that C is a compact operator.

For examples of single valued as well as multivalued differential operators, the reader is
referred to the paper of Browder [15], Hu and Papageorgiou [24], Berkovits [6], Kobayash
and Otani [29], Fitzpatrick and Petryshyn [21] and the references therein.

Suppose that, for each i = 0,1,2, ...,N, the function ai : Ω×R×RN → R satisfies the
following conditions.

(A1) ai(x, s, ξ) satisfies the Carathéodory conditions, i.e., for each (x, ξ) ∈R×RN , the func-
tion x 7−→ ai(x, s, ξ) is measurable and for almost all x ∈ Ω, the function (s, ξ) 7−→
ai(x, s, ξ) is continuous. For each i = 0,1,2, ...,N, there exist constants ci > 0 such that

|ai(x,η,ξ)−ai(x,η′, ξ′)| ≤ ci(|η−η′|+ |ξ− ξ′|)

a.e. for x ∈ Ω, and for all (η,ξ) and (η′, ξ′) in R×RN , where |ξ− ξ′| denotes the norm
of ξ− ξ′ in RN .

(A2) The functions ai (i = 0,1,2,3, ., ., .,N) satisfy a monotonicity condition with respect
to ξ in the form

N∑
i=1

(ai(x, s, ξ)−ai(x, s, ξ′))(ξ− ξ′) > 0

for a.e. x ∈Ω, and all (s, ξ) ∈ R×RN .

(A3) There exist ν ≥ 0, µ ≥ 0 such that

N∑
i=1

ai(x, s, ξ)ξi ≥ −ν(|ξ|2+ |s|2) and a0(x, s, ξ)s ≥ −µ(|ξ|2+ |s|2)

for a.e. x ∈Ω and all (s, ξ) ∈ R×RN .

We consider a second-order elliptic differential operator of the form

Bu(x) = −
N∑

i=1

∂

∂xi
ai(x,u,∇u(x))+a0(x,u(x),∇u(x)), x ∈Ω, u ∈ H,

where ∇u =
(
∂u
∂x1
, ..., ∂u

∂xN

)
. The operator B generates an operator Ñ : H→ H given by

〈Ñu,ϕ〉 =
∫
Ω

( N∑
i=1

ai(x,u,∇u)
∂ϕ

∂xi
+a0(x,u(x),∇u(x))ϕ(x)

)
dx (3.2)
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for all u ∈ H and ϕ ∈ H. It is well known that under conditions (A1) and (A2) the operator
Ñ is pseudomonotone. For further details and more examples , the reader is referred to
the recent paper by Mustonen [33] and the paper and handbook of Kenmochi [27, 28].
We demonstrate the applicability of the theory for existence of weak solution of an elliptic
differential equation given by −

N∑
i=1

∂
∂xi

ai(x,u(x),∇u(x)))+Gλ(x,u(x)) = f (x) in Ω

u(x) = 0 x ∈ ∂Ω,
(3.3)

where f ∈ L2(Ω), Gλ(x,u) = −div(β(∇u(x)))+ λu(x)+ a0(x,u(x),∇u(x))+ g(x,u(x)) and β

satisfies condition (C3).

It is well-known that the divergence operator −div(β(∇u(x))) generates a continuous
maximal monotone operator A : H→ H given by

〈Au,ϕ〉 =
∫
Ω

β(∇u(x))∇ϕ(x)dx,u ∈ H,ϕ ∈ H. (3.4)

For further details and more examples, the reader is referred to Barbu [4, 5], Kenmoch
[27, 28], Browder [13, 12, 15], Zeidler [39] and the references therein. Existence of weak
solution for (3.3) is to mean finding u ∈ H such that∫

Ω

(Gλ(x,u(x))− f )ϕ(x)dx+
n∑

i=1

∫
Ω

ai(x,u(x),∇u(x))
∂

∂xi
ϕ(x)dx = 0 (3.5)

for all ϕ ∈ H.

The following theorem demonstrates the applicability of the results to nonlinear elliptic
boundary value problems of the type (3.3).

Theorem 3.1. Let Ω be a nonempty, bounded and open subset of RN with smooth bound-
ary. Let g : Ω×R→ R be Carathéodory function satisfying conditions (C1) and (C2). As-
sume, further, that (C3) holds and the functions ai :Ω×R×RN → R (i = 0,1,2,3, ...,N) are
Carathéodory functions satisfying conditions (A1) through (A3). Then for each f ∈ L2(Ω),
equation (3.3) admits a weak solution in H1

0(Ω).

Proof. We consider the Hilbert space H =H1
0(Ω), which is a closed subspace of the Sobolev

space H1(Ω), where H1(Ω) = {u ∈ L2(Ω) : ∂u
∂xi
∈ L2(Ω) for all i = 1,2, ...,N}, ∂u

∂xi
is the distri-

butional derivative of u. The norm of u ∈ H is given by

‖u‖ = ‖u‖L2(Ω)+

N∑
i=1

∥∥∥∥ ∂u
∂xi

∥∥∥∥
L2(Ω)

.

Let C, Ñ and A be as defined in (3.1), (3.2) and (3.4), respectively. It is well-known that
A : H→ H is maximal monotone (cf. Barbu [4, 5]). The operator C : H→ H is compact(cf.
Fitzpatrick and Petryshyn [21]). Furthermore, in the recent paper of Mustonnen [33], it is
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shown that Ñ : H → H is bounded, continuous, nonmonotone and pseudomonotone, i.e.,
continuous quasimonotone. For all u ∈ H and ϕ ∈ H, using Hólder’s inequality, we see that

‖Cu‖ = sup
‖ϕ‖=1
|〈Cu,ϕ〉|

= sup
‖ϕ‖=1

∣∣∣∣∫
Ω

k1u(x)ϕ(x)dx
∣∣∣∣

≤ sup
‖ϕ‖=1

∫
Ω

|k1u(x)||ϕ(x)|dx

≤ sup
‖ϕ‖=1

(k1‖u‖L2(Ω)‖ϕ‖L2(Ω)

≤ sup
‖ϕ‖=1

k1‖u‖‖ϕ‖ = k1‖u‖,

i.e., ‖Cu‖ ≤ k1‖u‖ for all u ∈ H. Next we show that the inner product condition in Theorem
2.5 is satisfied. To this end, by conditions (A3) and (C2), we obtain that

〈Ñu+Cu,u〉 =
N∑

i=1

∫
Ω

ai(x,u(x),∇u(x))
∂u(x)
∂xi

dx+
∫
Ω

a0(x,u(x),∇u(x))u(x)dx

+

∫
Ω

g(x,u(x))u(x)dx

≥ −(ν+µ)
∫
Ω

(|u|2+ |∇u|2)dx−τ
∫
Ω

|u|2dx

≥ −(ν+τ+µ)
∫
Ω

(|u|2+ |∇u|2)dx

≥ −d̃‖u‖2 for all u ∈ H,

where d̃ = ν+ µ+ τ, i.e., 〈Ñu+Cu,u〉 ≥ −d̃‖u‖2 for all u ∈ H. Finally, we show that Ñ is
Lipschitz continuous. To this end, for all u ∈ H, v ∈ H and ϕ ∈ H, we get the estimate

|〈Ñu− Ñv,ϕ〉| ≤
∫
Ω

N∑
i=1

|ai(x,u(x),∇u(x))−ai(x,v(x),∇v(x))|
∣∣∣∣∂ϕ(x)
∂xi

∣∣∣∣dx

+

∫
Ω

|a0(x,u(x),∇u(x))−a0(x,v(x),∇v(x))||ϕ(x)|dx

≤

N∑
i=1

ci

∫
Ω

[
|u(x)− v(x)|+ |∇u(x)−∇v(x)|

]∣∣∣∣∂ϕ(x)
∂xi

∣∣∣∣dx

+

∫
Ω

[
|u(x)− v(x)|+ |∇u(x)−∇v(x)|

]
|ϕ(x)|dx

=

N∑
i=1

ci

(∫
Ω

|u(x)− v(x)|
∣∣∣∣∂ϕ(x)
∂xi

∣∣∣∣dx+
∫
Ω

|∇u(x)−∇v(x)|
∣∣∣∣∂ϕ(x)
∂xi

dx
)

+

∫
Ω

|u(x)− v(x)||ϕ(x)|dx+
∫
Ω

|∇u(x)−∇v(x)||ϕ(x)|dx.



72 Teffera M. Asfaw

Next employing Hólder’s and Minkowski’s inequalities, and the definition of ‖u− v‖ and
‖ϕ‖ in H, we obtain

N∑
i=1

ci

∫
Ω

|(∇u)(x)− (∇v)(x)|
∣∣∣∣ ∂ϕ
∂xi

∣∣∣∣dx =
N∑

i=1

ci

∫
Ω

( N∑
j=1

∣∣∣∣ ∂u
∂x j
−
∂v
∂x j

∣∣∣∣2) 1
2 ∣∣∣∣ ∂ϕ
∂xi

∣∣∣∣dx

≤

N∑
i=1

ci

∫
Ω

N∑
j=1

∣∣∣∣ ∂u
∂x j
−
∂v
∂x j

∣∣∣∣∣∣∣∣ ∂ϕ
∂xi

∣∣∣∣dx

≤

N∑
i=1

[
ci

(∫
Ω

( N∑
j=1

∣∣∣∣ ∂u
∂x j
−
∂v
∂x j

∣∣∣∣)2

dx
) 1

2

×

(∫
Ω

∣∣∣∣ ∂ϕ
∂xi

∣∣∣∣2dx
) 1

2
]

=

N∑
i=1

ci

∥∥∥∥∥∥ N∑
j=1

∣∣∣∣ ∂u
∂x j
−
∂v
∂x j

∣∣∣∣∥∥∥∥∥∥
L2(Ω)

∥∥∥∥∥∥ ∂ϕ∂xi

∥∥∥∥∥∥
L2(Ω)

≤

N∑
i=1

ci

N∑
j=1

∥∥∥∥ ∂u
∂x j
−
∂v
∂x j

∥∥∥∥
L2(Ω)

∥∥∥∥ ∂ϕ
∂xi

∥∥∥∥
L2(Ω)

≤

( N∑
i=1

ci

)
‖u− v‖‖ϕ‖

for all u ∈ H, v ∈ H and ϕ ∈ H. Similarly, by analogous argument, we obtain

N∑
i=1

ci

∫
Ω

|u(x)− v(x)|
∣∣∣∣ ∂ϕ
∂xi

∣∣∣∣dx ≤
( N∑

i=1

ci

)
‖u− v‖‖ϕ‖

and ∫
Ω

(
|u(x)− v(x)|+ |∇u(x)−∇v(x)|

)
|ϕ(x)|dx ≤ 2‖u− v‖‖ϕ‖

for all u ∈ H, v ∈ H and ϕ ∈ H. Consequently, combining these estimates, we arrive at

|〈Ñu− Ñv,ϕ〉| ≤ 2
(
1+

N∑
i=1

ci

)
‖u− v‖‖ϕ‖

for all u ∈ H, v ∈ H and ϕ in H, which implies

‖Ñu− Ñv‖ = sup
‖ϕ‖=1
|〈Ñu− Ñv,ϕ〉| ≤ `‖u− v‖

for all u ∈ H and v ∈ H, where ` = 2
(
1+

N∑
i=1

ci

)
. This shows that Ñ is Lipschiz continuous

and pseudomonotone. For all such d̃ > 0 and k > 0 such that
N∑

i=1
ci <

d̃−k−2
2 , d̃ satisfies the

hypothesis of Theorem 2.5. Thus, for all λ ∈ (τ∗, d̃), (3.5) is solvable in H1
0(Ω), where

τ∗ =max{`+ k, d̃+`
2 }. The proof is complete. �



New Developments on Nirenberg’s Problem for Compact Perturbations 73

We like to mention here that the conclusions of Theorem 2.1 through Theorem 2.5 hold
if the compact operator C is multivalued. The argument of the proof follows similarly and
the details are omitted. Examples on multivalued compact operators and applications on
elliptic as well as parabolic equations can be found, for example, in the paper by Hu and
Papageorgiou [24], Berkovits and Tienari [8], Mustonen [33], and the references therein.
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alité, Ann. Inst. Fourier (Grenoble) 18 (1968), 115–176.
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[37] J. Szczepański, On a problem of Nirenberg concerning expanding maps in Hilbert
space, Proc. Amer. Math. Soc. 116 (1992), 1041–1044.

[38] T. Xiang, Notes on expansive mappings and a partial answer to Nirenberg’s problem,
Electron. J. Differential Equations No. 02 (2013), 1-16.

[39] E. Zeidler, Nonlinear Functional Analysis and Its Applications, II/B, Springer-Verlag,
New York, 1990.


