C ommunications in $\mathbf{M}_{\text {athematical }} \boldsymbol{A}_{\text {nalysis }}$

Degenerate Abstract Parabolic Equations and Applications

Veli.B. Shakhmurov*
Department of Mechanical Engineering
Okan University
Akfirat, Tuzla 34959 Istanbul, Turkey
Aida Sahmurova ${ }^{\dagger}$
Department of Environomental Engineering
Okan University
Akfirat, Tuzla 34959 Istanbul, Turkey

(Communicated by Marco Squassina)

Abstract

Linear and nonlinear degenerate abstract parabolic equations with variable coefficients are studied. Here the equations and boundary conditions are degenerated on all boundary and contain some parameters. The linear problem is considered on the moving domain. The separability properties of elliptic and parabolic problems and Strichartz type estimates in mixed $L_{\mathbf{p}}$ spaces are obtained. Moreover, the existence and uniqueness of optimal regular solution of mixed problem for nonlinear parabolic equation is established. Note that, these problems arise in fluid mechanics and environmental engineering.

AMS Subject Classification: 35xx, 47Fxx, 47Hxx, 35Pxx;
Keywords: differential-operator equations, degenerate PDE, semigroups of operators, nonlinear problems, separabile differential operators, positive operators in Banach spaces.

1 Introduction

In this work, the boundary value problems (BVPs) for parameter dependent degenerate differential-operator equations (DOEs) are considered. Namely, equations and boundary conditions contain small parameters. These problems have numerous applications in PDE,

[^0]pseudo DE, mechanics and environmental engineering. The BVP for DOEs have been studied extensively by many researchers (see e.g. [1-23] and the references therein). A comprehensive introduction to the DOEs and historical references may be found in [1-6]. The maximal regularity properties for DOEs have been studied e.g. in [2, 8-9,16-22, 25]. DOEs in Banach space valued function class are investigated e.g. in $[2,4,9,15,20-23,24,29]$. Nonlinear DOEs studied e.g. in [1,16, 20, 21]. The Fredholm property of BVP for elliptic equations are studied e.g. in [1, 10, 24].

The main objective of the present paper is to discuses the initial and BVP for the following nonlinear degenerate parabolic equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\sum_{k=1}^{n} a_{k}\left(x_{k}\right) \frac{\partial^{[2]} u}{\partial x_{k}^{2}}+B\left(\left(t, x, u, D^{[1]} u\right)\right) u=F\left(t, x, u, D^{[1]} u\right) \tag{0.1}
\end{equation*}
$$

where a_{k} are complex valued functions, B and F are nonlinear operators in a Banach space E and

$$
\begin{aligned}
D^{[1]} u & =\left(\frac{\partial^{[1]} u}{\partial x_{1}}, \frac{\partial^{[1]} u}{\partial x_{2}}, \ldots, \frac{\partial^{[1]} u}{\partial x_{n}}\right), x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in G=\prod_{k=1}^{n}\left(0, b_{k}\right) \\
D_{k}^{[i]} u & =u_{k}^{(i)}=\frac{\partial^{[i]} u}{\partial x_{k}^{i}}=\left[x_{k}^{\alpha_{1 k}}\left(b_{k}-x_{k}\right)^{\alpha_{2 k}} \frac{\partial}{\partial x_{k}}\right]^{i} u(x), 0 \leq \alpha_{1 k}, \alpha_{2 k}<1 .
\end{aligned}
$$

First, we consider the BVP for the degenerate elliptic DOE with small parameters

$$
\begin{equation*}
\sum_{k=1}^{n} \varepsilon_{k} a_{k}\left(x_{k}\right) \frac{\partial^{[2]} u}{\partial x_{k}^{2}}+A(x) u+\lambda u+\sum_{k=1}^{n} \varepsilon_{k}^{\frac{1}{2}} A_{k}(x) \frac{\partial^{[1]} u}{\partial x_{k}}=f(x) \tag{0.2}
\end{equation*}
$$

where a_{k} are complex-valued functions, ε_{k} are small parameters, $A(x)$ and $A_{k}(x)$ are linear operators, λ is a complex parameter.

Namely we prove that, for $f \in L_{\mathbf{p}}(G ; E),|\arg \lambda| \leq \varphi, 0<\varphi \leq \pi$ and sufficiently large $|\lambda|$, problem (0.2) has a unique solution $u \in W_{\mathbf{p}}^{[2]}(G ; E(A), E)$ and the following coercive uniform estimate holds

$$
\sum_{k=1}^{n} \sum_{i=0}^{2}|\lambda|^{1-\frac{k}{2}} \varepsilon_{k}^{\frac{i}{2}}\left\|\frac{\partial^{[i]} u}{\partial x_{k}^{i}}\right\|_{L_{\mathbf{p}}(G ; E)}+\|A u\|_{L_{\mathbf{p}}(G ; E)} \leq C\|f\|_{L_{\mathbf{p}}(G ; E)}
$$

Especially, it is shown that the corresponding differential operator is positive and also is a generator of an analytic semigroup. Then by using this result, we prove the well-posedeness of initial and BVP and uniform $L_{\mathbf{p}}-$ Strichartz type estimate for the following degenerate abstract parabolic equation with parameters

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\sum_{k=1}^{n} \varepsilon_{k} a_{k}\left(x_{k}\right) \frac{\partial^{[2]} u}{\partial x_{k}^{2}}+A(x) u=f(x, t), t \in(0, T), x \in G \tag{0.3}
\end{equation*}
$$

Finally, via maximal regularity properties of (0.3) and contraction mapping argument we derive the existence and uniqueness of solution of the problem (0.1).

Note that, the equation and boundary conditions are degenerated on all edges of boundary G. Moreover, it happened with the different rate at different boundary edges, in general.

In application, the system of degenerate nonlinear parabolic equations is presented. Particularly, we consider the system that serves as a model of systems used to describe photochemical generation and atmospheric dispersion of ozone and other pollutants. The model of the process is given by initial and BVP for the atmospheric reaction-advectiondiffusion system having the form

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial t}=\sum_{k=1}^{3}\left[a_{k i}\left(x_{k}\right) \frac{\partial^{[2]} u_{i}}{\partial x_{k}^{2}}+b_{k i}(x) \frac{\partial^{[1]}}{\partial x_{k}}\left(u_{i} \omega_{k}\right)\right]+\sum_{k=1}^{3} d_{k} u_{k}+f_{i}(u)+g_{i}, \tag{0.4}
\end{equation*}
$$

where

$$
\begin{aligned}
x \in G_{3} & =\left\{x=\left(x_{1}, x_{2}, x_{3}\right), 0<x_{k}<b_{k},\right\}, \\
u_{i}=u_{i}(x, t), i, k & =1,2,3, u=u(x, t)=\left(u_{1}, u_{2}, u_{3}\right), t \in(0, T)
\end{aligned}
$$

and the state variables u_{i} represent concentration densities of the chemical species involved in the photochemical reaction. The relevant chemistry of the chemical species involved in the photochemical reaction and appears in the nonlinear functions $f_{i}(u)$, with the terms g_{i}, representing elevated point sources, $a_{k i}(x), b_{k i}(x)$ are real-valued functions. The advection terms $\omega=\omega(x)=\left(\omega_{1}(x), \omega_{2}(x), \omega_{3}(x)\right)$, describe transport from the velocity vector field of atmospheric currents or wind. In this direction the work [25] and references there can be mentioned. The existence and uniqueness of solution of the problem (0.4) is established by the theoretic-operator method, i.e., this problem reduced to degenerate differential-operator equation.

Modern analysis methods, particularly abstract harmonic analysis, the operator theory, interpolation of Banach Spaces, semigroups of linear operators, microlocal analysis, embedding and trace theorems in vector-valued Sobolev-Lions spaces are the main tools implemented to carry out the analysis.

2 Notations, definitions and background

Let $\gamma=\gamma(x)$ be a positive measurable function on $\Omega \subset R^{n}$ and E be a Banach space. Let $L_{p, \gamma}(\Omega ; E)$ denote the space of strongly measurable E-valued functions defined on Ω with the norm

$$
\|f\|_{L_{p, \gamma}}=\|f\|_{L_{p, \gamma}(\Omega ; E)}=\left(\int\|f(x)\|_{E}^{p} \gamma(x) d x\right)^{\frac{1}{p}}, 1 \leq p<\infty .
$$

Let $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right) . L_{\mathbf{p}, \gamma}(G ; E), G=\prod_{k=1}^{n}\left(0, b_{k}\right)$ will denote the space of all E-valued \mathbf{p} summable functions with mixed norm, i.e., the space of all measurable functions f defined on G equipped with norm

$$
\|f\|_{L_{\mathrm{p}}(G ; E)}=\left(\left(\int_{0}^{b_{n}}\left(\ldots \int_{0}^{b_{2}}\left(\int_{0}^{b_{1}}\|f(x)\|_{E}^{p_{1}} d x_{1}\right)^{\frac{p_{2}}{p_{1}}} d x_{2}\right)^{\frac{p_{3}}{p_{2}}} \cdots\right)^{\frac{p_{n}}{p_{n-1}}} \gamma(x) d x_{n}\right)^{\frac{1}{p_{n}}} .
$$

For $\gamma(x) \equiv 1$ we will denote these spaces by $L_{p}(\Omega ; E)$ and $L_{\mathbf{p}}(G ; E)$, respectively (see e.g. [26] for $E=\mathbb{C}$).

The Banach space E is called an $U M D$-space if the Hilbert operator

$$
(H f)(x)=\lim _{\varepsilon \rightarrow 0} \int_{|x-y|>\varepsilon} \frac{f(y)}{x-y} d y
$$

is bounded in $L_{p}(R, E), p \in(1, \infty)$ (see. e.g. [27]). $U M D$ spaces include e.g. L_{p}, l_{p} spaces and Lorentz spaces $L_{p q}, p, q \in(1, \infty)$.

Let \mathbb{C} be the set of the complex numbers and

$$
S_{\varphi}=\{\lambda ; \lambda \in \mathbb{C},|\arg \lambda| \leq \varphi\} \cup\{0\}, 0 \leq \varphi<\pi .
$$

A linear operator A is said to be φ-positive in a Banach space E with bound $M>0$ if $D(A)$ is dense on E and $\left\|(A+\lambda I)^{-1}\right\|_{B(E)} \leq M(1+|\lambda|)^{-1}$ for any $\lambda \in S_{\varphi}, 0 \leq \varphi<\pi$, where I is the identity operator in $E, B(E)$ is the space of bounded linear operators in E. Sometimes $A+\lambda I$ will be written as $A+\lambda$ and denoted by A_{λ}. It is known [28, $\left.\S 1.15 .1\right]$ that the positive operator A has well-defined fractional powers A^{θ}. Let $E\left(A^{\theta}\right)$ denote the space $D\left(A^{\theta}\right)$ with norm

$$
\|u\|_{E\left(A^{\theta}\right)}=\left(\|u\|^{p}+\left\|A^{\theta} u\right\|^{p}\right)^{\frac{1}{p}}, 1 \leq p<\infty, 0<\theta<\infty .
$$

Let E_{1} and E_{2} be two Banach spaces continuously embedding in a locally convex space. By $\left(E_{1}, E_{2}\right)_{\theta, p}, 0<\theta<1,1 \leq p \leq \infty$ we will denote the interpolation spaces obtained from $\left\{E_{1}, E_{2}\right\}$ by the K-method [28, §1.3.2].

Weight function γ satisfies A_{p} condition (i.e. $\gamma \in A_{p}, 1<p<\infty$) if there is a constant C such that

$$
\left(\frac{1}{|Q|} \int_{Q} \gamma(x) d x\right)\left(\frac{1}{|Q|} \int_{Q} \gamma^{-\frac{1}{p-1}}(x) d x\right)^{p-1} \leq C
$$

for all cubes $Q \subset R^{n}$.
Let $S\left(R^{n} ; E\right)$ denote the Schwartz class, i.e., the space of all E-valued rapidly decreasing smooth functions on R^{n}. Let F denote the Fourier transformation. A function $\Psi \in C\left(R^{n} ; B(E)\right)$ is called Fourier multiplier in $L_{p, \gamma}\left(R^{n} ; E\right)$ if the map

$$
u \rightarrow \Phi u=F^{-1} \Psi(\xi) F u, u \in S\left(R^{n} ; E\right)
$$

is well defined and extends to a bounded linear operator in $L_{p, \gamma}\left(R^{n} ; E\right)$. The set of all multipliers in $L_{p, \gamma}\left(R^{n} ; E\right)$ will denoted by $M_{p, \gamma}(E)$.

Let $W_{h}=\left\{\Psi_{h} \in M_{p, \gamma}(E), h \in Q \subset \mathbb{C}\right\}$ be a collection of multipliers in $M_{p, \gamma}(E)$. We say W_{h} is a uniform collection of multipliers if there exists a positive constant M independent of h such that

$$
\left\|F^{-1} \Psi_{h} F u\right\|_{L_{p, \gamma}\left(R^{n} ; E\right)} \leq M\|u\|_{L_{p, \gamma}\left(R^{n} ; E\right)}
$$

for all $h \in Q$ and $u \in S\left(R^{n} ; E\right)$.
Let \mathbb{N} denote the set of natural numbers and $\left\{r_{j}\right\}$ is an arbitrary sequence of independent symmetric $\{-1,1\}$-valued random variables on $[0,1]$. A set $K \subset B\left(E_{1}, E_{2}\right)$ is called
R-bounded (see e.g. [10]) if there is a positive constant C such that for all $T_{1}, T_{2}, \ldots, T_{m} \in K$ and $u_{1}, u_{2}, \ldots, u_{m} \in E_{1}, m \in \mathbb{N}$

$$
\int_{0}^{1}\left\|\sum_{j=1}^{m} r_{j}(y) T_{j} u_{j}\right\|_{E_{2}} d y \leq C \int_{0}^{1}\left\|\sum_{j=1}^{m} r_{j}(y) u_{j}\right\|_{E_{1}} d y .
$$

The smallest C for which the above estimate holds is called a R-bound of the collection K and denoted by $R(K)$.

A set $W_{h} \subset L\left(E_{1}, E_{2}\right)$ is called uniform R-bounded with respect to $h \in Q$ if there is a constant C independent of h such that for all $T_{1}(h), T_{2}(h), \ldots, T_{m}(h) \in W_{h}$ and $u_{1}, u_{2}, \ldots, u_{m} \in$ $E_{1}, m \in \mathbb{N}$

$$
\int_{0}^{1}\left\|\sum_{j=1}^{m} r_{j}(y) T_{j}(h) u_{j}\right\|_{E_{2}} d y \leq C \int_{0}^{1}\left\|\sum_{j=1}^{m} r_{j}(y) u_{j}\right\|_{E_{1}} d y
$$

Definition 1. A Banach space E is said to be a space satisfying multiplier condition, if for any $\Psi \in C^{(1)}(R ; L(E))$ the R-boundedness of the set

$$
\left\{\xi^{j} \Psi^{(j)}(\xi): \xi \in \mathbb{R} \backslash\{0\}, j=0,1\right\}
$$

implies $\Psi \in M_{p, \gamma}(E)$.
A φ-positive operator A is said to be R-positive in a Banach space E if the set $L_{A}=$ $\left\{\xi(A+\xi I)^{-1}: \xi \in S_{\varphi}\right\}, 0 \leq \varphi<\pi$ is R-bounded. Note that, in Hilbert spaces all norm bounded sets are R-bounded. Therefore, all positive operators in Hilbert spaces are R-positive. If A is a generator of contraction semigroup on $L_{q}, 1 \leq q \leq \infty$, or A has a bounded imaginary powers with $\left\|A^{i t}\right\|_{B(E)} \leq C e^{\nu t \mid t}, v<\frac{\pi}{2}$ in $E \in U M D$, then A is R-positive (e.g. see [10]).

An operator $A(t)$ is said to be uniformly φ-positive if $D(A(t))$ is independent of t and dense in E and $\left\|(A(t)+\lambda)^{-1}\right\| \leq \frac{M}{1+|\lambda|}$ for all $\lambda \in S(\varphi), 0 \leq \varphi<\pi$, where M is independent of t.
$\sigma_{\infty}(E)$ will denote the space of all compact operators in E.
Let E_{0} and E be two Banach spaces and E_{0} is continuously and densely embeds into E. Let us consider the Sobolev-Lions type space $W_{p, \gamma}^{m}\left(a, b ; E_{0}, E\right)$, consisting of all functions $u \in L_{p, \gamma}\left(a, b ; E_{0}\right)$ that have generalized derivatives $u^{(m)} \in L_{p, \gamma}(a, b ; E)$ with the norm

$$
\|u\|_{W_{p, \gamma}^{m}}=\|u\|_{W_{p, \gamma}^{m}\left(a, b ; E_{0}, E\right)}=\|u\|_{L_{p, \gamma}\left(a, b ; E_{0}\right)}+\left\|u^{(m)}\right\|_{L_{p, \gamma}(a, b ; E)}<\infty .
$$

Let $\gamma=\gamma(x)$ be a positive measurable function on $(0,1)$ and

$$
\begin{gathered}
W_{p, \gamma}^{[m]}=W_{p, \gamma}^{[m]}\left(0,1 ; E_{0}, E\right)=\left\{u: u \in L_{p}\left(0,1 ; E_{0}\right),\right. \\
\left.u^{[m]} \in L_{p}(0,1 ; E),\|u\|_{W_{p, \gamma}^{[m]}}=\|u\|_{L_{p}\left(0,1 ; E_{0}\right)}+\left\|u^{[m]}\right\|_{L_{p}(0,1 ; E)}<\infty\right\},
\end{gathered}
$$

where

$$
u^{[i]}=\left(\gamma(x) \frac{d}{d x}\right)^{i} u(x) .
$$

Now, let we define E-valued Sobolev-Lions type spaces with mixed $L_{\mathbf{p}}$ and $L_{\mathbf{p}, \gamma}$ norms. Let

$$
\alpha_{k}(x)=x_{k}^{\alpha_{1 k}}\left(b_{k}-x_{k}\right)^{\alpha_{2 k}}, \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)
$$

Consider E-valued weighted space defined by

$$
\begin{gathered}
W_{\mathbf{p}, \alpha}^{[m]}(G, E(A), E)=\left\{u ; u \in L_{\mathbf{p}}\left(G ; E_{0}\right), \frac{\partial^{[m]} u}{\partial x_{k}^{m}} \in L_{\mathbf{p}}(G ; E),\right. \\
\left.\|u\|_{W_{\mathbf{p}, \alpha}^{[m]}}=\|u\|_{L_{\mathbf{p}}\left(G ; E_{0}\right)}+\sum_{k=1}^{n}\left\|\frac{\partial^{[m]} u}{\partial x_{k}^{m}}\right\|_{L_{\mathbf{p}}(G ; E)}<\infty\right\} .
\end{gathered}
$$

Let ε_{k} be small parameters and $\varepsilon=\left(\varepsilon_{1,}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)$. We denote by $W_{\mathbf{p}, \gamma}^{m}\left(\Omega ; E_{0}, E\right)$ the space of all functions $u \in L_{\mathbf{p}, \gamma}\left(\Omega ; E_{0}\right)$ possessing generalized derivatives $\frac{\partial^{m} u}{\partial x_{k}^{m}} \in L_{\mathbf{p}, \gamma}(\Omega ; E)$ with the parameterized norm

$$
\|u\|_{W_{\mathbf{p}, \gamma, \varepsilon}^{m}\left(\Omega ; E_{0}, E\right)}=\|u\|_{L_{\mathbf{p}, \gamma}\left(\Omega ; E_{0}\right)}+\sum_{k=1}^{n} \varepsilon_{k}\left\|\frac{\partial^{m} u}{\partial x_{k}^{m}}\right\|_{L_{\mathbf{p}, \gamma}(\Omega ; E)}<\infty
$$

In a similar way as in [18, Theorems $2.3,2.4]$ we have the following result:
Theorem \mathbf{A}_{1}. Assume the following conditions be satisfied:
(1) $\gamma=\gamma(x)$ is a weight function defined on domain $\Omega \subset R^{n}$ satisfying A_{p} condition;
(2) E is a Banach space satisfying the multiplier condition with respect to $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and γ;
(3) A is a R-positive operator in E and $0<\varepsilon_{k}<T<\infty, p_{k} \in(1, \infty) ; \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$;
(4) there exists a bounded linear extension operator from $W_{\mathbf{p}, \gamma}^{m}(\Omega ; E(A), E)$ to $W_{\mathbf{p}, \gamma}^{m}\left(R^{n} ; E(A), E\right)$.

Then, the embedding

$$
D^{\beta} W_{\mathbf{p}, \gamma}^{m}(\Omega ; E(A), E) \subset L_{\mathbf{p}, \gamma}\left(\Omega ; E\left(A^{1-\frac{|\beta|}{m}-\mu}\right)\right)
$$

is continuous and for $0 \leq \mu \leq 1-\frac{|\beta|}{m}, 0<h \leq h_{0}<\infty$ the following uniform estimate holds

$$
\prod_{k=1}^{n} \varepsilon_{k}^{\frac{\beta_{k}}{m}}\left\|D^{\alpha} u\right\|_{L_{\mathbf{p}, \gamma}\left(\Omega ; E\left(A^{1-\chi-\mu}\right)\right)} \leq h^{\mu}\|u\|_{W_{\mathbf{p}, \gamma, \varepsilon}^{m}(\Omega ; E(A), E)}+h^{-(1-\mu)}\|u\|_{L_{\mathbf{p}, \gamma}(\Omega ; E)}
$$

for $u \in W_{\mathbf{p}, \gamma}^{m}(\Omega ; E(A), E)$.
By reasoning as in [18, Theorems 2.3] and [15, Theorem 3.7] we obtain
Theorem \mathbf{A}_{2}. Let all conditions of Theorem A_{1} hold, Ω be a bounded domain and $A^{-1} \in \sigma_{\infty}(E)$. Then, for $0<\mu<1-\frac{j}{m}$ the embedding

$$
D^{j} W_{\mathbf{p}, \gamma}^{m}(\Omega ; E(A), E) \subset L_{\mathbf{p}, \gamma}\left(\Omega ; E\left(A^{1-\frac{|B|}{m}-\mu}\right)\right)
$$

is compact.
Consider the BVP for the degenerate ordinary DOE with parameter

$$
\begin{equation*}
L u=\varepsilon a(x) u^{[2]}(x)+(A(x)+\lambda) u(x)=f \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
L_{1} u=\sum_{i=0}^{m_{1}} \varepsilon^{\sigma_{i}} \delta_{i} u^{[i]}(0)=0, L_{2} u=\sum_{i=0}^{m_{2}} \varepsilon^{\sigma_{i}} \beta_{i} u^{[i]}(1)=0, x \in(0,1), \tag{1.2}
\end{equation*}
$$

where $u^{[i]}=\left[x^{\gamma_{1}}(1-x)^{\gamma_{2}} \frac{d}{d x}\right]^{i} u(x), 0 \leq \gamma_{k}<1, \sigma_{i}=\frac{i}{2}+\frac{1}{2 p\left(1-\gamma_{0}\right)}, \gamma_{0}=\min \left\{\gamma_{1}, \gamma_{2}\right\}, m_{k} \in\{0,1\}$, δ_{i}, β_{i} are complex numbers; $A(x)$ is a linear operator in a Banach space E for $x \in(0,1), \varepsilon$ is a small positive and λ is a complex parameter.

We suppose $\delta_{m_{1}} \neq 0, \beta_{m_{1}} \neq 0$ and

$$
\int_{0}^{x} z^{-\gamma_{1}}(1-z)^{-\gamma_{2}} d z<\infty
$$

Consider the operator B_{ε} generated by problem (1.1) - (1.2) for $\lambda=0$, i.e.,

$$
\begin{gathered}
D\left(B_{\varepsilon}\right)=W_{p, \gamma}^{[2]}\left(0,1 ; E(A), E, L_{k}\right)= \\
\left\{u: u \in W_{p, \gamma}^{[2]}(0,1 ; E(A), E), L_{k} u=0, k=1,2\right\}, \\
B_{\varepsilon} u=-\varepsilon a(x) u^{[2]}+A(x) u .
\end{gathered}
$$

Condition 1.1. Assume the following conditions are satisfied:
(1) E is a Banach space satisfying the multiplier condition with respect to p and the weight function $\gamma(x)=x^{\gamma_{1}}(1-x)^{\gamma_{2}}, 0 \leq \gamma_{k}<1-\frac{1}{p}, 1<p<\infty, a \in C([0,1])$ and $a(x)<0$ for $x \in(0,1)$;
(2) A is a R positive operator in E and $A(x) A^{-1}\left(x_{0}\right) \in C([0,1] ; B(E))$ for $x, x_{0} \in(0,1)$.

By reasoning as in [18, Theorem 5.1] and by using the method used in [17, Theorem 1] we get the following:

Theorem A ${ }_{3}$. Let the Condition 1.1 hold. Then, problem (1.1) has a unique solution $u \in$ $W_{p, \gamma}^{[2]}(0,1 ; E(A), E)$ for $f \in L_{p}(0,1 ; E)$ and $|\arg \lambda| \leq \varphi$ with sufficiently large $|\lambda|$. Moreover, the following uniform coercive estimate holds

$$
\sum_{i=0}^{2}|\lambda|^{1-\frac{i}{2}} \varepsilon^{\frac{i}{2}}\left\|u^{[i]}\right\|_{L_{p}(0,1 ; E)}+\|A u\|_{L_{p}(0,1 ; E)} \leq C\|f\|_{L_{p}(0,1 ; E)} .
$$

In a similar way as in [21, Theorem 3.1] we obtain
Theorem \mathbf{A}_{4}. Suppose the Condition 1.1 is satisfied. Then, the operator B_{ε} is uniformly R-positive in $L_{p}(0,1 ; E)$.

2. Degenerate elliptic equations with parameters

Consider the BVP for the following degenerate partial DOE with parameters

$$
\begin{gather*}
\sum_{k=1}^{n} \varepsilon_{k} a_{k}\left(x_{k}\right) \frac{\partial^{[2]} u}{\partial x_{k}^{2}}+A(x) u+\lambda u+\sum_{k=1}^{n} \varepsilon_{k}^{\frac{1}{2}} A_{k}(x) \frac{\partial^{[1]} u}{\partial x_{k}}=f(x), \tag{2.1}\\
L_{k 1} u=\sum_{i=0}^{m_{k 1}} \varepsilon_{k}^{\sigma_{i k}} \delta_{k i} u_{x_{k}}^{[i]}\left(G_{k 0}\right)=0, L_{k 2} u=\sum_{i=0}^{m_{k 2}} \varepsilon_{k}^{\sigma_{i k}} \beta_{k i} u_{k}^{[i]}\left(G_{k b}\right)=0,
\end{gather*}
$$

for $x^{(k)} \in G_{k}$, where $A(x)$ and $A_{k}(x)$ are linear operators, $u=u(x), \varepsilon_{k}$ are small parameters, $\delta_{k i}, \beta_{k i}$ are complex numbers, λ is a complex parameter, $m_{k j} \in\{0,1\}$ and

$$
\begin{gathered}
\frac{\partial^{[i]} u}{\partial x_{k}^{i}}=\left[x_{k}^{\alpha_{1 k}}\left(b_{k}-x_{k}\right)^{\alpha_{2 k}} \frac{\partial}{\partial x_{k}}\right]^{i} u(x), 0 \leq \alpha_{1 k}, \alpha_{2 k}<1, \\
\sigma_{i k}=\frac{i}{2}+\frac{1}{2 p_{k}\left(1-\alpha_{0 k}\right)}, \alpha_{0 k}=\min \left\{\alpha_{1 k}, \alpha_{2 k}\right\},
\end{gathered}
$$

a_{k} are complex-valued functions and

$$
\begin{gathered}
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in G=\prod_{k=1}^{n}\left(0, b_{k}\right), \\
G_{k 0}=\left(x_{1}, x_{2}, \ldots, x_{k-1}, 0, x_{k+1}, \ldots, x_{n}\right), p_{k} \in(1, \infty), \\
G_{k b}=\left(x_{1}, x_{2}, \ldots, x_{k-1}, b_{k}, x_{k+1}, \ldots, x_{n}\right), \\
x^{(k)}=\left(x_{1}, x_{2}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}\right) \in G_{k}=\prod_{j \neq k}\left(0, b_{j}\right) .
\end{gathered}
$$

Let

$$
\alpha=\alpha(x)=\prod_{k=1}^{n} x_{k}^{\alpha_{1 k}}\left(b_{k}-x_{k}\right)^{\alpha_{2 k}} .
$$

Remark 2.0. Under the substitutions

$$
\tau_{k}=\int_{0}^{x_{k}} x_{k}^{-\alpha_{k}}\left(b_{k}-x_{k}\right)^{-\alpha_{k}} d x_{k}, k=1,2, \ldots, n
$$

the spaces $L_{p}(G ; E)$ and $W_{p, \alpha}^{[2]}(G ; E(A), E)$ are mapped isomorphically onto the weighted spaces $L_{p, \tilde{\alpha}}(\tilde{G} ; E)$ and $W_{p, \tilde{\alpha}}^{2}(\tilde{G} ; E(A), E)$, respectively, where

$$
\tilde{G}=\prod_{k=1}^{n}\left(0, \tilde{b}_{k}\right), \tilde{b}_{k}=\int_{0}^{b_{k}} x_{k}^{-\alpha_{1 k}}\left(b_{k}-x_{k}\right)^{-\alpha_{2 k}} d x_{k}, \tilde{\alpha}(\tau)=\alpha\left(x_{1}\left(\tau_{1}\right), x_{2}\left(\tau_{2}\right), \ldots, x_{n}\left(\tau_{n}\right)\right)
$$

Consider the principal part of (2.1), i.e., consider the problem

$$
\begin{gather*}
\sum_{k=1}^{n} \varepsilon_{k} a_{k}\left(x_{k}\right) \frac{\partial^{[2]} u}{\partial x_{k}^{2}}+A(x) u+\lambda u=f(x), \tag{2.2}\\
\sum_{i=0}^{m_{k 1}} \varepsilon_{k}^{\sigma_{i k}} \delta_{k i} u_{x_{k}}^{[i]}\left(G_{k 0}\right)=0, \sum_{i=0}^{m_{k 2}} \varepsilon_{k}^{\sigma_{i k}} \beta_{k i} u_{k}^{[i]}\left(G_{k b}\right)=0 .
\end{gather*}
$$

Condition 2.1 Assume;
(1) E is the Banach space satisfying the multiplier condition with respect to p and the weight function $\gamma(x)=\prod_{k=1}^{n} x_{k}^{\alpha_{1 k}}\left(b_{k}-x_{k}\right)^{\alpha_{2 k}}$, where $0 \leq \alpha_{1 k}, \alpha_{2 k}<1-\frac{1}{p_{k}}, p_{k} \in(1, \infty), \delta_{k m_{k 1}} \neq 0$, $\beta_{k m_{k 2}} \neq 0$;
(2) $A(x)$ is a uniformly R-positive operator in $E, A(x) A^{-1}(\bar{x}) \in C(\bar{G} ; L(E)), x \in G$;
(3) $a_{k}\left(x_{k}\right) \in C^{(m)}\left(\left[0, b_{k}\right]\right)$ and $a_{k}\left(x_{k}\right)<0$ for $x_{k} \in\left[0, b_{k}\right]$.

First, we prove the separability properties of the problem (2.2):
Theorem 2.1. Let the Conditions 2.1 hold. Then, problem (2.2) has a unique solution $u \in W_{\mathbf{p}, \alpha}^{[2]}(G ; E(A), E)$ for $f \in L_{\mathbf{p}}(G ; E),|\arg \lambda| \leq \varphi$ with sufficiently large $|\lambda|$ and the following coercive uniform estimate holds

$$
\begin{equation*}
\sum_{k=1}^{n} \sum_{i=0}^{2}|\lambda|^{1-\frac{i}{2}} \varepsilon_{k}^{\frac{i}{2}}\left\|\frac{\partial^{[i]} u}{\partial x_{k}^{i}}\right\|_{L_{\mathbf{p}}(G ; E)}+\|A u\|_{L_{\mathbf{p}}(G ; E)} \leq C\|f\|_{L_{\mathbf{p}}(G ; E)} . \tag{2.3}
\end{equation*}
$$

Proof. Consider the BVP

$$
\begin{gather*}
(L+\lambda) u=a_{1}\left(x_{1}\right) \varepsilon_{1} D_{x_{1}}^{[2]} u\left(x_{1}\right)+\left(A\left(x_{1}\right)+\lambda\right) u\left(x_{1}\right)=f\left(x_{1}\right), \tag{2.4}\\
L_{1 j} u=0, j=1,2, x_{1} \in\left(0, b_{1}\right),
\end{gather*}
$$

where $L_{1 j}$ are boundary conditions of type (2.2) on $\left(0, b_{1}\right)$. By virtue of Theorem A_{3}, problem (2.4) has a unique solution $u \in W_{p_{1,,_{1}}}^{[2]}\left(0, b_{1} ; E(A), E\right)$ for $f \in L_{p_{1}}\left(0, b_{1} ; E\right),|\arg \lambda| \leq \varphi$ with sufficiently large $|\lambda|$ and the coercive uniform estimate holds

$$
\sum_{j=0}^{2}|\lambda|^{1-\frac{j}{2}} \varepsilon_{1}^{\frac{j}{2}}\left\|u^{[j]}\right\|_{L_{p_{1}}\left(0, b_{1} ; E\right)}+\|A u\|_{L_{p_{1}}\left(0, b_{1} ; E\right)} \leq C\|f\|_{L_{p_{1}}\left(0, b_{1} ; E\right)}
$$

Now, let us consider the following BVP

$$
\begin{gather*}
\sum_{k=1}^{2} \varepsilon_{k} a_{k}\left(x_{k}\right) D_{k}^{[2]} u\left(x_{1}, x_{2}\right)+A\left(x_{1}, x_{2}\right) u\left(x_{1}, x_{2}\right)+\lambda u\left(x_{1}, x_{2}\right)=f\left(x_{1}, x_{2}\right), \tag{2.5}\\
L_{k 1} u=0, L_{k 2} u=0, k=1,2, x_{1}, x_{2} \in G_{2}=\left(0, b_{1}\right) \times\left(0, b_{2}\right) .
\end{gather*}
$$

Let $\mathbf{p}_{2}=\left(p_{1}, p_{2}\right)$ and $\alpha(2)=\left(\alpha_{1}, \alpha_{2}\right)$. Since $L_{p_{2}}\left(0, b_{2} ; L_{p_{1}}\left(0, b_{1}\right) ; E\right)=L_{\mathbf{p}_{2}}\left(G_{2} ; E\right)$, the BVP (2.5) can be expressed as

$$
a_{2} \varepsilon_{2} D_{2}^{[2]} u\left(x_{2}\right)+\left(B_{\varepsilon_{1}}\left(x_{2}\right)+\lambda\right) u\left(x_{2}\right)=f\left(x_{2}\right), L_{2 j} u=0, j=1,2,
$$

for $x_{1} \in\left(0, b_{1}\right)$, where $B_{\varepsilon_{1}}$ is a differential operator in $L_{p_{1}}\left(0, b_{1} ; E\right)$ for $x_{2} \in\left(0, b_{2}\right)$, generated by problem (2.4). By virtue of [1, Theorem 4.5.2], $L_{p_{1}}\left(0, b_{1} ; E\right) \in U M D$ for $p_{1} \in(1, \infty)$. Hence, by [22, Corollary 4.1], the space $L_{p_{1}}\left(0, b_{1} ; E\right)$ satisfies the multiplier condition. Moreover, the Theorem A_{4} implies the uniform R-positivity of operator $B_{\varepsilon_{1}}$. Hence, by Theorem A_{3}, problem (2.5) has a unique solution $u \in W_{\mathbf{p}_{2}, \alpha(2)}^{[2]}\left(G_{2} ; E(A) ; E\right)$ for $f \in L_{\mathbf{p}_{2}}\left(G_{2} ; E\right)$, $|\arg \lambda| \leq \varphi$ with sufficiently large $|\lambda|$ and (2.3) holds for $n=2$. By continuing this we obtain the assertion.

Theorem 2.2. Let the Conditions 2.1 hold and let $A_{k}(x) A^{-\left(\frac{1}{2}-v\right)}(x) \in C(\bar{G} ; L(E))$ for $0<v<\frac{1}{2}$. Then, problem (2.1) has a unique solution $u \in W_{\mathbf{p}, \alpha}^{[2]}(G ; E(A), E)$ for $f \in L_{\mathbf{p}}(G ; E)$, $|\arg \lambda| \leq \varphi$ with sufficiently large $|\lambda|$ and the coercive uniform estimate holds

$$
\begin{equation*}
\sum_{k=1}^{n} \sum_{i=0}^{2}|\lambda|^{1-\frac{i}{2}} \varepsilon_{k}^{\frac{i}{2}}\left\|\frac{\partial^{[i]} u}{\partial x_{k}^{i}}\right\|_{L_{\mathbf{p}}(G ; E)}+\|A u\|_{L_{\mathrm{p}}(G ; E)} \leq C\|f\|_{L_{\mathrm{p}}(G ; E)} . \tag{2.6}
\end{equation*}
$$

Proof. By assumption and by Theorem A_{1}, for all $h>0$ we have the following Ehrling-Nirenberg-Gagliardo type estimate

$$
\begin{equation*}
\left\|L_{1} u\right\|_{L_{\mathbf{p}}(G ; E)} \leq h^{\mu}\|u\|_{W_{\mathbf{p}, \alpha}^{[2]}(G ; E(A), E)}+h^{-(1-\mu)}\|u\|_{L_{\mathbf{p}}(G ; E)} . \tag{2.7}
\end{equation*}
$$

Let \mathbf{O}_{ε} denote the operator generated by the problem (2.2) and

$$
L_{1} u=\sum_{k=1}^{n} \varepsilon_{k}^{\frac{1}{2}} A_{k}(x) \frac{\partial^{[1]} u}{\partial x_{k}} .
$$

By using the estimate (2.7) we obtain that there is a $\delta \in(0,1)$ such that

$$
\left\|L_{1}\left(\mathbf{O}_{\varepsilon}+\lambda\right)^{-1}\right\|_{B(X)}<\delta
$$

Hence, from perturbation theory of linear operators we obtain the assertion.
Theorem 2.2. Let all conditions of Theorem 2.2 hold. Then, problem (2.1) is Fredholm in $L_{\mathbf{p}}(G ; E)$ for $\lambda=0$.

Proof. Theorem 2.2 implies that the operator $\mathbf{O}_{\varepsilon}+\lambda$ has a bounded inverse $\left(\mathbf{O}_{\varepsilon}+\lambda\right)^{-1}$ from $L_{\mathbf{p}}(G ; E)$ to $W_{\mathbf{p}, \alpha}^{[2]}(G ; E(A), E)$ for sufficiently large $|\lambda|$, that is the operator $\mathbf{O}_{\varepsilon}+\lambda$ is Fredholm from $W_{\mathbf{p}, \alpha}^{[2]}(G ; E(A), E)$ into $L_{\mathbf{p}}(G ; E)$. Then by Theorem A_{2}, Remark 2.0 and in view of perturbation theory of linear operators we obtain that the operator \mathbf{O}_{ε} is Fredholm from $W_{\mathbf{p}, \alpha}^{[2]}(G ; E(A), E)$ into $L_{\mathbf{p}}(G ; E)$.

Example 2.1. Now, let us consider a special case of (2.1). Let $E=\mathbb{C}, G_{2}=(0,1) \times(0,1)$ and $A=a(x, y)>0$, i.e., consider the problem

$$
\begin{align*}
& \varepsilon_{1} a_{1} \frac{\partial^{[2]} u}{\partial x^{2}}+\varepsilon_{2} a_{2} \frac{\partial^{[2]} u}{\partial y^{2}}+b_{1} \varepsilon_{1}^{\frac{1}{2}} \frac{\partial u}{\partial x}+b_{2} \varepsilon_{2}^{\frac{1}{2}} \frac{\partial u}{\partial y}+a u=f(x, y), \\
& \sum_{i=0}^{m_{11}} \varepsilon_{1}^{\sigma_{i}} \delta_{1 i} u_{x}^{[i]}(0, y)=0, \sum_{i=0}^{m_{12}} \varepsilon_{1}^{\sigma_{i}} \delta_{2 i} u_{x}^{[i]}(0, y)=0, x \in(0,1), \tag{2.8}\\
& \sum_{i=0}^{m_{21}} \varepsilon_{2}^{\sigma_{i}} \eta_{1 i} u_{y}^{[i]}(x, 1)=0, \sum_{i=0}^{m_{22}} \varepsilon_{2}^{\sigma_{i}} \eta_{2 i} u_{y}^{[i]}(x, 1)=0, y \in(0,1),
\end{align*}
$$

where ε_{1} and ε_{2} are positive small parameters, $\delta_{k i}, \eta_{k i}$ are complex numbers, $a_{1}=a_{1}(x)<0$, $a_{2}=a_{2}(y)<0, x, y \in[0,1], a_{k} \in C([0,1]), a \in C\left(\bar{G}_{2}\right), b_{k} \in L_{\infty}\left(G_{2}\right)$ and

$$
\frac{\partial^{[i]} u}{\partial x^{i}}=\left[x^{\alpha_{1}}(1-x)^{\alpha_{2}} \frac{\partial}{\partial x}\right]^{i} u(x, y), 0 \leq \alpha_{1}, \alpha_{2}<1-\frac{1}{p_{1}},
$$

$$
\begin{gathered}
\frac{\partial^{[i]} u}{\partial y^{i}}=\left[y^{\beta_{1}}(1-y)^{\beta_{2}} \frac{\partial}{\partial y}\right]^{i} u(x, y), 0 \leq \beta_{1}, \beta_{2}<1-\frac{1}{p_{2}} \\
\sigma_{i}=\frac{1}{2}\left(i+\frac{1}{p}\right), m_{k j} \in\{0,1\}, \mathbf{p}_{2}=\left(p_{1}, p_{2}\right)
\end{gathered}
$$

Result 2.1. Theorem 2.2 implies that for each $f \in L_{\mathbf{p}_{2}}\left(G_{2}\right)$ and sufficiently large a, problem (2.8) has a unique solution $u \in W_{\mathbf{p}_{2}}^{[2]}\left(G_{2}\right)$ satisfying the coercive estimate

$$
\varepsilon_{1}\left\|\frac{\partial^{[2]} u}{\partial x^{2}}\right\|_{L_{\mathbf{p}_{2}}\left(G_{2}\right)}+\varepsilon_{2}\left\|\frac{\partial^{[2]} u}{\partial y^{2}}\right\|_{L_{\mathbf{p}_{2}}\left(G_{2}\right)}+\|u\|_{L_{\mathbf{p}_{2}}\left(G_{2}\right)} \leq C\|f\|_{L_{\mathbf{p}_{2}}\left(G_{2}\right)}
$$

3 Abstract Cauchy problem for degenerate parabolic equation with parameter

Consider the initial and BVP for degenerate parabolic equation with parameter:

$$
\begin{gather*}
\frac{\partial u}{\partial t}+\sum_{k=1}^{n} \varepsilon_{k} a_{k}\left(x_{k}\right) \frac{\partial^{[2]} u}{\partial x_{k}^{2}}+A(x) u+d u=f(x, t), t \in(0, T), x \in G \tag{3.1}\\
\sum_{i=0}^{m_{k 1}} \varepsilon_{k}^{\sigma_{i k}} \delta_{k i} u_{x_{k}}^{[i]}\left(G_{k 0}, t\right)=0, \sum_{i=0}^{m_{k 2}} \varepsilon_{k}^{\sigma_{i k}} \beta_{k i} u_{k}^{[i]}\left(G_{k b}, t\right)=0 \\
u(x, 0)=0, t \in(0, T), x^{(k)} \in G_{k} \tag{3.2}
\end{gather*}
$$

where $u=u(x, t)$ is a solution, $\delta_{k i}, \beta_{k i}$ are complex numbers, ε_{k} are positive parameters, a_{k} are complex-valued functions on $G, A(x)$ is a linear operator in a Banach space E, domains $G, G_{k}, G_{k 0}, G_{k b}, \sigma_{i k}$ and $x^{(k)}$ are defined in the section 2 and

$$
\frac{\partial^{[i]} u}{\partial x_{k}^{i}}=\left[x^{\alpha_{1 k}}\left(b_{k}-x_{k}\right)^{\alpha_{2 k}} \frac{\partial}{\partial x_{k}}\right]^{i} u(x, t), d>0 .
$$

For $\overline{\mathbf{p}}=\left(p_{0}, \mathbf{p}\right), \mathbf{p}=\left(p_{1}, p_{2},,,, p_{n}\right), G_{T}=(0, T) \times G, L_{\tilde{\mathbf{p}}, \gamma}\left(G_{T} ; E\right)$ will denote the space of all E-valued weighted $\tilde{\mathbf{p}}$-summable functions with mixed norm.

Theorem 3.1. Suppose the Condition 2.1 hold for $\varphi>\frac{\pi}{2}$. Then, for $f \in L_{\mathbf{p}}\left(G_{T} ; E\right)$ and sufficientli large $d>0$ problem (3.1)-(3.2) has a unique solution belonging to $W_{\overline{\mathbf{p}}, \alpha}^{1,[2]}\left(G_{T} ; E(A), E\right)$ and the following coercive estimate holds

$$
\left\|\frac{\partial u}{\partial t}\right\|_{L_{\overline{\mathbf{p}}}\left(G_{T} ; E\right)}+\sum_{k=1}^{2} \varepsilon_{k}\left\|\frac{\partial^{[2]} u}{\partial x_{k}^{2}}\right\|_{L_{\overline{\mathbf{p}}}\left(G_{T} ; E\right)}+\|A u\|_{L_{\overline{\mathbf{p}}}\left(G_{T} ; E\right)} \leq C\|f\|_{L_{\overline{\mathbf{p}}}\left(G_{T} ; E\right)}
$$

Proof. The problem (3.1) can be expressed as the following abstract Cauchy problem

$$
\begin{equation*}
\frac{d u}{d t}+\left(\mathbf{O}_{\varepsilon}+d\right) u(t)=f(t), u(0)=0 \tag{3.3}
\end{equation*}
$$

From Theorems $\mathrm{A}_{4}, 2.1$ we get that \mathbf{O}_{ε} is R-positive in $X=L_{\mathbf{p}}(G ; E)$. By [28, §1.14], \mathbf{O}_{ε} is a generator of an analytic semigroup in X. Then by virtue of [22, Theorem 4.2], problem
(3.3) has a unique solution $u \in W_{p_{0}}^{1}\left(0, T ; D\left(\mathbf{O}_{\varepsilon}\right), X\right)$ for $f \in L_{p_{0}}(0, T ; X)$ and sufficiently large $d>0$. Moreover, the following uniform estimate holds

$$
\left\|\frac{d u}{d t}\right\|_{L_{p_{0}}(0, T ; X)}+\left\|\mathbf{O}_{\varepsilon} u\right\|_{L_{p_{0}}(0, T ; X)} \leq C\|f\|_{L_{p_{0}}(0, T ; X)}
$$

Since $L_{p_{0}}\left(G_{T} ; X\right)=L_{\overline{\mathbf{p}}}\left(G_{T} ; E\right)$, by Theorem 2.1 we have

$$
\left\|\left(\mathbf{O}_{\varepsilon}+d\right) u\right\|_{L_{p_{0}}((0, T) ; X)}=D\left(\mathbf{O}_{\varepsilon}\right) .
$$

Hence, the assertion follows from the above estimate.

4 Degenerate parabolic DOE on the moving domain

Consider the degenerate problem (3.1)-(3.2) on the moving domain $G(s)=\prod_{k=1}^{n}\left(0, b_{k}(s)\right)$:

$$
\begin{gather*}
\frac{\partial u}{\partial t}+\sum_{k=1}^{n} a_{k}\left(x_{k}\right) \frac{\partial^{[2]} u}{\partial x_{k}^{2}}+A(x) u+d u=f(x, t), \tag{4.1}\\
L_{k 1} u=\sum_{i=0}^{m_{k 1}} \varepsilon_{k}^{\sigma_{i k}} \delta_{k i} u_{x_{k}}^{[i]}\left(G_{k 0}(s), t\right)=0, L_{k 2} u=\sum_{i=0}^{m_{k 2}} \varepsilon_{k}^{\sigma_{i k}} \beta_{k i} u_{k}^{[i]}\left(G_{k b}(s), t\right)=0, \\
u(x, 0)=0, t \in(0, T), x \in G(s), \tag{4.2}
\end{gather*}
$$

where the end points $b_{k}(s)$ depend on a parameter $s, x_{k} \in\left(0, b_{k}(s)\right)$ and $b_{k}(s)$ are positive continues function, $G_{k 0}(s), G_{k b}(s)$ are domains defined in the section 2 , replacing $\left(0, b_{k}\right)$ by $\left(0, b_{k}(s)\right)$ and

$$
\begin{gathered}
\sigma_{i k}=\frac{i}{2}+\frac{1}{2 p\left(1-\alpha_{0 k}\right)}, \alpha_{0 k}=\min \left\{\alpha_{1 k}, \alpha_{2 k}\right\}, \\
\frac{\partial^{[i]} u}{\partial x_{k}^{i}}=\left[x^{\alpha_{1 k}}\left(b_{k}-x_{k}\right)^{\alpha_{2 k}} \frac{\partial}{\partial x_{k}}\right]^{i} u(x, t) .
\end{gathered}
$$

Let

$$
G_{T}=G_{T}(s)=(0, T) \times G(s) .
$$

Theorem 3.1 implies the following:
Proposition 4.1. Assume the Condition 2.1 hold for $\varphi>\frac{\pi}{2}$. Then, problem (4.1) - (4.2) has a unique solution $u \in W_{\tilde{\mathbf{p}}, \alpha}^{1,[2]}((G(s)) ; E(A), E)$ for $f \in L_{\mathbf{p}}\left(G_{T}(s) ; E\right)$ and sufficiently $d>0$. Moreover, the following coercive uniform estimate holds

$$
\begin{equation*}
\left\|\frac{\partial u}{\partial t}\right\|_{L_{\overline{\mathbf{p}}}\left(G_{T} ; E\right)}+\sum_{k=1}^{2} \varepsilon_{k}\left\|\frac{\partial^{[2]} u}{\partial x_{k}^{2}}\right\|_{L_{\overline{\mathbf{p}}}\left(G_{T} ; E\right)}+\|A u\|_{L_{\overline{\mathbf{p}}}\left(G_{T} ; E\right)} \leq C\|f\|_{L_{\overline{\mathbf{p}}}\left(G_{T} ; E\right)} . \tag{4.3}
\end{equation*}
$$

Proof. Under the substitution $\tau_{k}=x_{k} b_{k}(s)$ the problem (4.1) - (4.2) reduced to the following BVP in fixed domain G :

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\sum_{k=1}^{n} b_{k}^{-2}(s) \tilde{a}_{k}\left(\tau_{k}\right) \frac{\partial^{[2]} u}{\partial \tau_{k}^{2}}+\tilde{A}(\tau) u=\tilde{f}(\tau, t), t \in(0, T), \tau \in G . \tag{4.4}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{i=0}^{m_{k 1}} b_{k}^{\sigma_{i k}}(s) \delta_{k i} u_{x_{k}}^{[i]}\left(G_{k 0}, t\right)=0, \sum_{i=0}^{m_{k 2}} b_{k}^{\sigma_{i k}}(s) \beta_{k i} u_{k}^{[i]}\left(G_{k b}, t\right)=0, \\
u(x, 0)=0, t \in(0, T), x \in G=\prod_{k=1}^{n}\left(0, b_{k}\right), \tag{4.5}
\end{gather*}
$$

where

$$
\begin{gathered}
\tilde{a}_{k}(\tau)=a_{k}(x(\tau)), \tilde{A}(\tau)=A((x(\tau))), \tilde{f}(\tau)=f((x(\tau))), \\
x(\tau)=\left(x_{1}\left(\tau_{1}\right), x_{2}\left(\tau_{2}\right), \ldots, x_{n}\left(\tau_{n}\right)\right) .
\end{gathered}
$$

The problem (4.4) - (4.5) is a particular case of (3.1) - (3.2). So, by virtue of Theorem 3.1 we obtain the required assertion.

5 Nonlinear degenerate abstract parabolic problem

In this section, we consider initial and BVP for the following nonlinear degenerate parabolic equation

$$
\begin{gather*}
\frac{\partial u}{\partial t}+\sum_{k=1}^{n} a_{k}\left(x_{k}\right) \frac{\partial^{[2]} u}{\partial x_{k}^{2}}+B\left(\left(t, x, u, D^{[1]} u\right)\right) u=F\left(t, x, u, D^{[1]} u\right), \tag{5.1}\\
\sum_{i=0}^{m_{k 1}} \delta_{k i} u_{x_{k}}^{[i]}\left(G_{k 0}, t\right)=0, \sum_{i=0}^{m_{k 2}} \beta_{k i} u_{k}^{[i]}\left(G_{k b}, t\right)=0 \\
u(x, 0)=0, t \in(0, T), x \in G, x^{(k)} \in G_{k} \tag{5.2}
\end{gather*}
$$

where $u=u(x, t)$ is a solution, $\delta_{k i}, \beta_{k i}$ are complex numbers, a_{k} are complex-valued functions on $\left[0, b_{k}\right]$; domains $G, G_{k}, G_{k 0}, G_{k b}$ and $\sigma_{i k}, x^{(k)}$ are defined in the section 2 and

$$
D_{k}^{[i]} u=\frac{\partial^{[i]} u}{\partial x_{k}^{i}}=\left[x_{k}^{\alpha_{k}}\left(b_{k}-x_{k}\right)^{\alpha_{k}} \frac{\partial}{\partial x_{k}}\right]^{i} u(x, t), 0 \leq \alpha_{k}<1 .
$$

Let $G_{T}=(0, T) \times G$. Moreover, we let

$$
\begin{gathered}
G_{0}=\prod_{k=1}^{n}\left(0, b_{0 k}\right), G=\prod_{k=1}^{n}\left(0, b_{k}\right), b_{k} \in\left(0, b_{0 k}\right), \\
T \in\left(0, T_{0}\right), B_{k i}=\left(W^{2, p}\left(G_{k}, E(A), E\right), L^{p}\left(G_{k} ; E\right)\right)_{\eta_{i k}, p}, \\
\eta_{i k}=\frac{m_{k i}+\frac{1}{p\left(1-\alpha_{k}\right)}}{2}, B_{0}=\prod_{k=1}^{n} \prod_{i=0}^{1} B_{k i} .
\end{gathered}
$$

Remark 5.1. By virtue of [28, § 1.8.] and the Remark 2.0, operators $\left.u \rightarrow \frac{\left.\partial^{[i]}\right]_{u}}{\partial x_{k}^{i}}\right|_{x_{k=0}}$ are continuous from $W_{p, \alpha}^{[2]}(G ; E(A), E)$ onto $B_{k i}$ and there are the constants C_{1} and C_{0} such that for $w \in W_{p, \alpha}^{[2]}(G ; E(A), E), W=\left\{w_{k i}\right\}, w_{k i}=\frac{\partial^{[i]} w}{\partial x_{k}^{i}}, i=0,1, k=1,2, \ldots, n$

$$
\left\|\frac{\partial^{[i]} w}{\partial x_{k}^{i}}\right\|_{B_{k i}, \infty}=\sup _{x \in G}\left\|\frac{\partial^{[i]} w}{\partial x_{k}^{i}}\right\|_{B_{k i}} \leq C_{1}\|w\|_{W_{p, \alpha}^{[2,(G ; E(A), E)}},
$$

$$
\|W\|_{0, \infty}=\sup _{x \in G} \sum_{k, i}\left\|w_{k i}\right\|_{B_{k i}} \leq C_{0}\|w\|_{W_{p, \alpha}^{(2)}(G ; E(A), E)} .
$$

Condition 5.1. Suppose the following hold:
(1) E is an UMD space and $0 \leq \alpha_{1}, \alpha_{2}<1-\frac{1}{p}, p \in(1, \infty)$;
(2) a_{k} are continuous functions on $\left[0, b_{k}\right], a_{k}\left(x_{k}\right)<0$, for all $x \in\left[0, b_{k}\right], \delta_{k m_{k 1}} \neq 0, \beta_{k m_{k 2}} \neq$ $0, k=1,2, \ldots, n$;
(3) there exist $\Phi_{k i} \in B_{k i}$ such that the operator $B(t, x, \Phi)$ for $\Phi=\left\{\Phi_{k i}\right\} \in B_{0}$ is R-positive in E uniformly with respect to $x \in G_{0}$ and $t \in\left[0, T_{0}\right]$; moreover,

$$
B(t, x, \Phi) B^{-1}\left(t^{0}, x^{0}, \Phi\right) \in C(\bar{G} ; L(E)), t^{0} \in(0, T), x^{0} \in G ;
$$

(4) $A=B\left(t^{0}, x^{0}, \Phi\right): G_{T} \times B_{0} \rightarrow L(E(A), E)$ is continuous. Moreover, for each positive r there is a positive constant $L(r)$ such that
$\|[B(t, x, U)-B(t, x, \bar{U})] v\|_{E} \leq L(r)\|U-\bar{U}\|_{B_{0}}\|A v\|_{E}$
for $t \in(0, T), x \in G, U, \bar{U} \in B_{0}, \bar{U}=\left\{\bar{u}_{k i}\right\}, \bar{u}_{k i} \in B_{k i},\|U\|_{B_{0}},\|\bar{U}\|_{B_{0}} \leq r, v \in D(A)$;
(5) the function $F: G_{T} \times B_{0} \rightarrow E$ such that $F(., U)$ is measurable for each $U \in B_{0}$ and $F\left(t, x\right.$, .) is continuous for a.a. $t \in(0, T), x \in G$. Moreover, $\|F(t, x, U)-F(t, x, \bar{U})\|_{E} \leq$ $\Psi_{r}(x)\|U-\bar{U}\|_{B_{0}}$ for a.a. $t \in(0, T), x \in G, U, \bar{U} \in B_{0}$ and $\|U\|_{B_{0}},\|\bar{U}\|_{B_{0}} \leq r ; f()=.F(., 0) \in$ $L_{p}\left(G_{T} ; E\right)$.

The main result of this section is the following:
Theorem 5.1. Let the Condition 5.1 be satisfied. Then there is $T \in\left(0, T_{0}\right)$ and $b_{k} \in$ $\left(0, b_{0 k}\right)$ such that problem (5.1)-(5.2) has a unique solution belonging to $W_{p, \alpha}^{1,[2]}\left(G_{T} ; E(A), E\right)$.

Proof. Consider the following linear problem

$$
\begin{gather*}
\frac{\partial w}{\partial t}+\sum_{k=1}^{n} a_{k}\left(x_{k}\right) \frac{\partial^{[2]} w}{\partial x_{k}^{2}}+d u=f(x, t), x \in G, t \in(0, T), \\
\sum_{i=0}^{m_{k 1}} \delta_{k i} w_{x_{k}}^{[i]}\left(G_{k 0}, t\right)=0, \sum_{i=0}^{m_{k 2}} \beta_{k i} w_{k}^{[i]}\left(G_{k b}, t\right)=0, \tag{5.3}\\
w(x, 0)=0, t \in(0, T), x \in G, x^{(k)} \in G_{k}, d>0 .
\end{gather*}
$$

By Theorem 3.1and in view of Proposition 4.1 there is a unique solution $w \in W_{p, \alpha}^{1,[2]}\left(G_{T} ; E(A), E\right)$ of the problem (5.3) for $f \in L_{p}\left(G_{T} ; E\right)$ and sufficiently large $d>0$ and it satisfies the following coercive estimate

$$
\|w\|_{W_{p, \alpha}^{1,2]}\left(G_{T} ; E(A), E\right)} \leq C_{0}\|f\|_{L_{p}\left(G_{T} ; E\right)}
$$

uniformly with respect to $b \in\left(0, b_{0}\right]$, i.e., the constant C_{0} does not depends on $f \in L_{p}\left(G_{T} ; E\right)$ and $b \in\left(0 b_{0}\right]$ where

$$
A(x)=B(x, 0), f(x)=F(x, 0), x \in(0, b) .
$$

We want to solve the problem (5.1) - (5.2) locally by means of maximal regularity of the linear problem (5.3) via the contraction mapping theorem. For this purpose, let w be a solution of the linear BVP (5.3). Consider a ball

$$
B_{r}=\left\{v \in Y, v-w \in Y_{1},\|v-w\|_{Y} \leq r\right\} .
$$

For given $v \in B_{r}$, consider the following linearized problem

$$
\begin{gather*}
\frac{\partial u}{\partial t}+\sum_{k=1}^{n} a_{k}\left(x_{k}\right) \frac{\partial^{[2]} u}{\partial x_{k}^{2}}+A(x)=F(x, V)+[B(x, 0)-B(x, V)] v, \\
\sum_{i=0}^{m_{k 1}} \delta_{k i} w_{x_{k}}^{[i]}\left(G_{k 0}, t\right)=0, \sum_{i=0}^{m_{k 2}} \beta_{k i} w_{k}^{[i]}\left(G_{k b}, t\right)=0, \tag{5.4}\\
w(x, 0)=0, t \in(0, T), x \in G, x^{(k)} \in G_{k} .
\end{gather*}
$$

where $V=\left\{v_{k i}\right\}, v_{k i} \in B_{k i}$. Define a map Q on B_{r} by $Q v=u$, where u is solution of (5.4). We want to show that $Q\left(B_{r}\right) \subset B_{r}$ and that Q is a contraction operator provided T and b_{k} are sufficiently small, and r is chosen properly. In view of separability properties of the problem (5.3) we have

$$
\begin{gathered}
\|Q v-w\|_{Y}=\|u-w\|_{Y} \leq C_{0}\left\{\|F(x, V)-F(x, 0)\|_{X}+\right. \\
\left.\|[B(0, W)-B(x, V)] v\|_{X}\right\} .
\end{gathered}
$$

By assumption (4) we have

$$
\begin{gathered}
\|[B(0, W) v-B(x, V)] v\|_{X} \leq \sup _{x \in[0, b]}\left\{\|[B(0, W)-B(x, W)] v\|_{L\left(E_{0}, E\right)}\right. \\
\left.+\|B(x, W)-B(x, V)\|_{L\left(E_{0}, E\right)}\|v\|_{Y}\right\} \leq \\
{\left[\delta(b)+L(R)\|W-V\|_{\infty, E_{0}}\right]\left[\|v-w\|_{Y}+\|w\|_{Y}\right] \leq} \\
\left\{\delta(b)+L(R)\left[C_{1}\|v-w\|_{Y}+\|v-w\|_{Y}\right]\right. \\
\left.\left[\|v-w\|_{Y}+\|w\|_{Y}\right]\right\} \leq \delta(b)+L(R)\left[C_{1} r+r\right]\left[r+\|w\|_{Y}\right],
\end{gathered}
$$

where

$$
\delta(b)=\sup _{x \in[0, b]}\|[B(0, W)-B(x, W)]\|_{B\left(E_{0}, E\right)} .
$$

By assumption (5) we get

$$
\begin{gathered}
\|F(x, V)-F(x, 0,)\|_{E} \leq \delta(b)+ \\
\|F(x, V)-F(x, W)\|_{E}+\|F(x, W)-F(x, 0)\|_{E} \leq \\
\delta(b)+\mu_{R}\left[\|v-w\|_{Y}+\|w\|_{Y}\right] \\
\mu_{R} C_{1}\left[\|v-w\|_{Y}+\|w\|_{Y}\right] \leq \mu_{R}\left[C_{1} r+\|w\|_{Y}\right],
\end{gathered}
$$

where $R=C_{1} r+\|w\|_{Y}$ is a fixed number. In view of above estimates, by suitable choice of μ_{R}, L_{R} and for sufficiently small $T \in\left(0, T_{0}\right)$ and $b_{k} \in\left(0, b_{0 k}\right]$ we have

$$
\|Q v-w\|_{Y} \leq r
$$

i.e.

$$
Q\left(B_{r}\right) \subset B_{r} .
$$

Moreover, in a similar way we obtain

$$
\begin{gathered}
\|Q v-Q \bar{v}\|_{Y} \leq C_{0}\left\{\mu_{R} C_{1}+M_{a}+L(R)\left[\|v-w\|_{Y}+C_{1} r\right]+\right. \\
\left.L(R) C_{1}\left[r+\|w\|_{Y}\right]\|v-\bar{v}\|_{Y}\right\}+\delta(b) .
\end{gathered}
$$

By suitable choice of μ_{R}, L_{R} and for sufficiently small $T \in\left(0, T_{0}\right)$ and $b_{k} \in\left(0, b_{0 k}\right)$ we obtain $\|Q v-Q \bar{v}\|_{Y}<\eta\|v-\bar{v}\|_{Y}, \eta<1$, i.e. Q is a contraction operator. Eventually, the contraction mapping principle implies a unique fixed point of Q in B_{r} which is the unique strong solution $u \in W_{p, \alpha}^{1,[2]}\left(G_{T} ; E(A), E\right)$.

6 Cauchy problem for nonlinear system of degenerate parabolic equations

Consider the initial and BVP for the system of nonlinear parabolic equations of infinite order

$$
\begin{gather*}
\frac{\partial u_{m}}{\partial t}=\sum_{k=1}^{n} a_{k}(x) \frac{\partial^{[2]} u_{m}}{\partial x_{k}^{2}}+\sum_{j=1}^{N} d_{m j}(x) u_{j}(x, t) \\
+\sum_{k=1}^{n} \sum_{j=1}^{N} b_{k j}(x) \frac{\partial^{[1]} u_{j}}{\partial x_{k}}+F_{m}(x, t, u), \tag{6.1}\\
\sum_{i=0}^{m_{k 1}} \delta_{k i} D_{k}^{[i]} u_{m}\left(G_{k 0}, t\right)=0, \sum_{i=0}^{m_{k 2}} \beta_{k i} D_{k}^{[i]} u_{m}\left(G_{k b}, t\right)=0, \\
u_{m}(x, 0)=0, x \in G, t \in(0, T), m=1,2, \ldots, N, N \in \mathbb{N}, \tag{6.2}
\end{gather*}
$$

where $u=\left(u_{1}, u_{2}, \ldots, u_{N}\right), m_{k j} \in\{0,1\}, \delta_{k i}, \beta_{k i}$ are complex numbers, a_{k} are complex valued functions,

$$
\begin{gathered}
D_{k}^{[i]} u=\frac{\partial^{[i]} u}{\partial x_{k}^{i}}=\left[x_{k}^{\alpha_{k}}\left(b_{k}-x_{k}\right)^{\alpha_{k}} \frac{\partial}{\partial x_{k}}\right]^{i} u(x, t), 0 \leq \alpha_{k}<1, \\
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in G=\prod_{k=1}^{n}\left(0, b_{k}\right), m_{k j} \in\{0,1\}, \\
G_{k 0}=\left(x_{1}, x_{2}, \ldots, x_{k-1}, 0, x_{k+1}, \ldots, x_{n}\right), q \in(1, \infty), \\
G_{k b}=\left(x_{1}, x_{2}, \ldots, x_{k-1}, b_{k}, x_{k+1}, \ldots, x_{n}\right) ;
\end{gathered}
$$

and

$$
\theta_{k i}=\frac{m_{k i}+\frac{1}{p\left(1-\alpha_{k}\right)}}{2}, s_{k i}=s\left(1-\theta_{k i}\right), s>0, B_{k i}=l_{q}^{s_{k i}}, i=0,1,
$$

$$
B_{0}=\prod_{k, i} B_{k i}, \alpha_{k m_{k 1}} \neq 0, \beta_{k m_{k 2}} \neq 0, k=1,2, \ldots, n .
$$

Let A be the operator in $l_{q}(N)$ defined by

$$
D(A)=l_{q}(N), A=\left[d_{m j}(x)\right], d_{m j}(x)=g_{m}(x) 2^{s j}, m, j=1,2, \ldots, N,
$$

where

$$
\begin{gathered}
l_{q}(N)=\left\{u=\left\{u_{j}\right\}, j=1,2, \ldots N,\|u\|_{l_{q}(N)}=\left(\sum_{j=1}^{N}\left|u_{j}\right|^{q}\right)^{\frac{1}{q}}<\infty\right\}, \\
l_{q}(A)=\left\{u \in l_{q}(N),\|u\|_{l_{q}(A)}=\|A u\|_{l_{q}(N)}=\left(\sum_{j=1}^{N}\left|2^{s j} u_{j}\right|^{q}\right)^{\frac{1}{q}}<\infty\right\}, \\
x \in G, 1<q<\infty, N=1,2, \ldots, \infty .
\end{gathered}
$$

Let $b_{k j}(x)=M_{k j}(x) 2^{\sigma j}$ and

$$
B=B\left(L_{p}\left(G ; l_{q}(N)\right)\right) .
$$

From Theorem 5.1 we obtain the following result
Theorem 6.1. Let the following condition hold:
(1) a_{k} are continuous functions on \bar{G} and $a_{k}(x)<0$;
(2) $s \geq \frac{2 n p(2-q)}{q(p-1)}, 0<\sigma<s_{0}, s_{0}=\frac{s(p-1)}{2 p}$, and

$$
0 \leq \alpha_{k}<1-\frac{1}{p}, p, q \in(1, \infty) ;
$$

(3) $g_{j} \in C(\bar{G}), N_{k j} \in C(\bar{G}) ; d_{i i}(x)>0$ and eigenvalues of the matrix $\left[d_{m i}(x)\right]$ are positive for all $x \in \bar{G}, m, i=1,2, \ldots, N$; there is a positive constant C such that

$$
\sum_{k=1}^{n} \sum_{j=1}^{N} M_{k j}^{q_{1}}(x) \leq C \sum_{j=1}^{N} g_{j}^{q_{1}}(x)<\infty, x \in G, \frac{1}{q}+\frac{1}{q_{1}}=1
$$

(4) the function $F(., v)=\left(F_{1}(., v), \ldots, F_{N}(., v)\right)$ is measurable for each $v \in B_{0 p}$ and the function $F(x,$.$) for a.a. x \in G$ is continuous and $f()=.F(., 0) \in L_{p}\left(G ; l_{q}\right)$; for each $R>0$ there is a function $\Psi_{R} \in L_{\infty}(G)$ such that

$$
\|F(x, U)-F(x, \bar{U})\|_{l_{q}} \leq \Psi_{R}(x)\|U-\bar{U}\|_{l_{q}(A)}
$$

a.a. $x \in G$ and

$$
U, \bar{U} \in B_{0 p},\|U\|_{B_{0 p}} \leq R,\|U\|_{B_{0 p}} \leq R, U=\left\{u_{k j}\right\}, \bar{U}=\left\{\bar{u}_{k j}\right\}, u_{k j}, \bar{u}_{k j} \in B_{0 p} .
$$

Then there is $T \in\left(0, T_{0}\right)$ and $b_{k} \in\left(0, b_{0 k}\right)$ such that problem (6.1) - (6.2) has a unique solution $u=\left\{u_{m}(x)\right\}_{1}^{N}$ that belongs to space $W_{p}^{1,2}\left(G_{T}, l_{q}(A), l_{q}\right)$.

Proof. By virtue of [26], the $l_{q}(N)$ is a UMD space. It is easy to see that the operator A is R-positive in $l_{q}(N)$. Then by using the conditions (1)-(3) we get that the condition (5) of Theorem 5.1 is hold. So in view of the Theorem 5.1 we obtain the assertion.

Acknowledgments

The author thanks the referees for their careful reading of the manuscript and insightful comments.

References

[1] H. Amann, Linear and quasi-linear equations,1, Birkhauser, Basel (1995).
[2] S. Yakubov and Ya. Yakubov, Differential-Operator Equations. Ordinary and Partial Differential Equations., Chapman and Hall/CRC, Boca Raton, (2000).
[3] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Taylor \mathcal{E} Francis, Dekker, New-York, (1999).
[4] S. G. Krein, Linear differential equations in Banach space., American Mathematical Society, Providence, (1971).
[5] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Birkhauser, Basel, (1995).
[6] J-L. Lions, E. Magenes, Non homogenous boundary value problems, Mir, Moscow, (1971).
[7] J. A. Goldstein, Semigroups of linear operators and applications, Oxford University Press, Oxford (1985).
[8] R. Agarwal, D. O' Regan and V. B. Shakhmurov, Separable anisotropic differential operators in weighted abstract spaces and applications, J. Math. Anal. Appl. 338 (2008), pp 970-983.
[9] Ashyralyev A., Claudio Cuevas and Piskarev S., "On well-posedness of difference schemes for abstract elliptic problems in spaces", Numer. Func. Anal.Opt., v. 29, 1-2 Jan. (2008), pp 43-65.
[10] R. Denk, M. Hieber and, J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc. 166 (2003), n. 788.
[11] A. Favini, V. B. Shakhmurov and Ya. Yakubov, Regular boundary value problems for complete second order elliptic differential-operator equations in UMD Banach spaces, Semigroup Form, 79(1), (2009).
[12] C. Dore and S. Yakubov, Semigroup estimates and non coercive boundary value problems, Semigroup Forum 60 (2000), pp 93-121.
[13] P. E. Sobolevskii, Coerciveness inequalities for abstract parabolic equations, Doklady Akademii Nauk SSSR, 57(1), (1964), pp 27-40.
[14] J. Prüss, Maximal regularity for evolution equations in L_{p}-spaces, Lectures given at the summer School, Positivity and semigroups, Monopoli, Halle, (2002).
[15] V. B. Shakhmurov, Embedding theorems and maximal regular differential operator equations in Banach-valued function spaces, Journal of Inequal. Appl., 4 (2005), pp 605-620.
[16] V. B. Shakhmurov, Linear and nonlinear abstract equations with parameters, Nonlinear Anal-Theor., 73 (2010), pp 2383-2397.
[17] V. B. Shakhmurov, Regular degenerate separable differential operators and applications, Potential Anal., v.35, no. 3 (2011), pp 201-212.
[18] V. B. Shakhmurov, Degenerate differential operators with parameters,Abst. Appl. Anal., 2006 (2007), pp 1-27.
[19] V. B. Shakhmurov, Coercive boundary value problems for regular degenerate differential-operator equations, J. Math. Anal. Appl., 292(2), (2004), pp 605-620.
[20] V. B. Shakhmurov, Nonlinear abstract boundary value problems in vector-valued function spaces and applications, Nonlinear Anal-Theor., 67(3) (2006), pp 745-762.
[21] V. B., Shakhmurov, A. Shahmurova, Nonlinear abstract boundary value problems atmospheric dispersion of pollutants, Nonlinear Anal. Real, 11(2) (2010), pp 932-951.
[22] L. Weis, Operator-valued Fourier multiplier theorems and maximal L_{p} regularity, Math. Ann. 319, (2001), pp 735-758.
[23] P. Guidotti, Optimal regularity for a class of singular abstract parabolic equations, J. Differ. Equations, 232, (2007), pp 468-486.
[24] S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math., 15 (1962), pp 119-147.
[25] W. E. Fitzgibbon, M Langlais and J.J. Morgan, A degenerate reaction-diffusion system modeling atmospheric dispersion of pollutants, J. Math. Anal. Appll. 307(2005), pp 415-432.
[26] O. V. Besov, V. P. Ilin and S. M. Nikolskii, Integral representations of functions and embedding theorems, Nauka, Moscow, (1975).
[27] D. L. Burkholder, A geometrical conditions that implies the existence certain singular integral of Banach space-valued functions, Proc. conf. Harmonic analysis in honor of Antoni Zygmund, Chicago, 1981,Wads Worth, Belmont, (1983), pp 270-286.
[28] H. Triebel, Interpolation theory, Function spaces, Differential operators., NorthHolland, Amsterdam, (1978).
[29] T. J. Xiao and J. Liang, Complete second order differential equations in Banach spaces with dynamic boundary conditions, J. Differential Equations 200 (2004), pp 105-136.

[^0]: *E-mail address: veli.sahmurov@okan.edu.tr
 ${ }^{\dagger}$ E-mail address: aida.sahmurova@okan.edu.tr

