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Abstract

We derive dispersion estimates for solutions of the one-dimensional discrete wave
equations. In particular, we weaken the conditions on the potentials of previous works.
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1 Introduction

We are concerned with the one-dimensional discrete wave equation

ü(t) = −Hu, H := −∆L+q, t ∈ R (1.1)

with a real potential q. Here ∆L is the discrete Laplacian given by

(∆Lu)n = un+1−2un+un−1, n ∈ Z.

In matrix form (1.1) reads
iu̇(t) =Hu(t), t ∈ R, (1.2)

where

un(t) =
(
un(t), u̇n(t)

)
, H =

(
0 i
−iH 0

)
We suppose that the potential q satisfies

|qn| ≤C(1+ |n|)−β, n ∈ Z (1.3)

with some β > 3. We will use the weighted spaces ℓ2σ = ℓ
2
σ(Z) with the norm

∥u∥ℓ2σ = ∥(1+ |n|)
σu∥ℓ2 , σ ∈ R.
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Denote
B(σ, σ′) =L(ℓ2σ, ℓ

2
σ′), B(σ, σ′) =L(ℓ2σ⊕ ℓ2σ, ℓ2σ′ ⊕ ℓ2σ′)

the spaces of bounded linear operators from ℓ2σ to ℓ2σ′ and from ℓ2σ⊕ ℓ2σ to ℓ2σ′ ⊕ ℓ2σ′ , respec-
tively. We restrict ourselves to the non-singular case, when the boundary points λ = 0,4 of
the spectrum are not resonances for the operator H = −∆L+q.

Our main results are as follows. In the non-singular case the following asymptotics hold

e−itHPc = O(t−3/2), t→∞ (1.4)

in B(σ,−σ) with σ > 5/2. Here Pc is the Riesz projection in ℓ2 ⊕ ℓ2 onto the (absolutely)
continuous spectrum of H.

In this respect we recall that under the condition (1.3) it is well-known that the spectrum
of H consists of a purely absolutely continuous part covering [0,4] plus a finite number of
eigenvalues located in R \ [0,4]. In addition, there could be resonances at the boundary of
the continuous spectrum.

The dispersion decay of type (1.4) has been obtained for the first time in [6] for dis-
crete Schrödinger, wave and Klein–Gordon equations with compactly supported potentials
(the discrete Klein–Gordon equation corresponds to H = −∆L+m2+q with m > 0 in (1.1)).
The result has been generalized in [8] to discrete Schrödinger equation with non-compactly
supported potentials under the decay condition (1.3) with β > 5. Recently in [2] the dis-
persion decay was obtained under condition

∑
Z |n|2|qn| < ∞ for discrete Schrödinger and

Klein–Gordon equations and under condition∑
n∈Z
|n|3|qn| <∞ (1.5)

for discrete wave equation. The result of [2] is based on generalization of the van der
Corput lemma together with the novel fact that the scattering data associated with H are in
the Wiener algebra.

Here we improve the result [2] for the wave equation by reducing the decay rate (1.5)
to (1.3) with β = 3. We adapt to the discrete casethe approach of [7], which relies on the
Puiseux expansions of the resolvent at the edge points of the continuous spectrum.

2 Free equation

Here we consider the free equation (1.2) with q = 0:

iu̇(t) =H0u(t), t ∈ R, (2.1)

where

H0 =

(
0 i
−iH0 0

)
, H0 = −∆L.

It is well-known that H0 is self-adjoint and the discrete Fourier transform

û(θ) =
∑
n∈Z

uneiθn, θ ∈ T := R/2πZ.
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maps H0 to the operator of multiplication by ϕ(θ) = 2−2cosθ:

−∆̂Lu(θ) = ϕ(θ)̂u(θ).

In particular, the spectrum Spec(H0) = [0,4] is purely absolutely continuous.
We will use the notation [K]n,k for the kernel of an operator K, that is,

(Ku)n =
∑
k∈Z

[K]n,kuk, n ∈ Z,

The kernel of the resolvent R0(ω) = (H0−ω)−1 is given by

[R0(ω)]n,k =
1

2π

∫
T

e−iθ(n−k)

ϕ(θ)−ωdθ =
e−iθ(ω)|n−k|

2isinθ(ω)
, ω ∈ Ξ := C \ [0,4], (2.2)

n,k ∈ Z. Here θ(ω) is the unique solution of the equation

2−2cosθ = ω, θ ∈ Σ := {−π ≤ Reθ ≤ π, Imθ < 0}/2πZ. (2.3)

Observe that θ 7→ ω = 2−2cosω is a biholomorphic map from Σ→ Ξ.
Next we collect some properties obtained in [6].

Lemma 2.1. For R0(ω) the following properties hold:

P1 The resolvent R0(ω) is an analytic function with values in B(0,0) for ω ∈ Ξ.

P2 For ω ∈ (0,4) the limiting absorption principle holds, which is the convergence

R0(ω± iε)→ R0(ω± i0), ε→ 0+ (2.4)

in B(σ,−σ) with σ > 1/2.

P3 At the edge points µ− = 0 and µ+ = 4 the following asymptotics hold

R0(ω) = A±(ω−µ±)−1/2+B±+O(|ω−µ±|1/2), ω→ µ±, ω ∈ Ξ (2.5)

in B(σ, −σ) with σ > 5/2. Here A±, B± are the operators associated with the kernels

[A±]n,k =
i
2

(∓1)n−k+1, [B±]n,k = −
1
2
|n− k|(∓1)n−k+1, (2.6)

respectively.

P4 The asymptotics (2.5) can be differentiated twice with respect to ω:

R′0(ω) = −1
2 A± (ω−µ±)−3/2+O(|ω−µ±|−1/2),

R′′0 (ω) = 3
4 A± (ω−µ±)−5/2+O(|ω−µ±|−3/2),

ω→ µ±, ω ∈ Ξ, (2.7)

in B(σ, −σ) with σ > 5/2.
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Now we turn to the free wave equation. The resolvent R0(λ) = (H0 − λ)−1 can be ex-
pressed in terms of R0 (see [6]):

R0(λ) =
(

λR0(λ2) iR0(λ2)
−i(1+λ2R0(λ2)) λR0(λ2)

)
, λ ∈ C \ [−2,2]. (2.8)

Then properties P1–P4 imply the corresponding properties of R0. In particular,

[R0]12(λ) = iA−λ−1+ iB−+O(λ), λ→ 0, λ ∈ C \ [−2,2]. (2.9)

where [·]i j denotes the i j entry of the corresponding matrix operator.
The continuous spectrum of H0 coincides with [−2,2]. For the kernel of the free prop-

agator the following spectral representation holds

[e−itH0]n,k =
1

2πi

∫
(−2,0)∪(0,2)

e−itλ[R0(λ+ i0)−R0(λ− i0)]n,k dλ. (2.10)

Due to (2.9) [R0]12(λ+ i0)− [R0]12(λ− i0) ∼ λ−1 and then the first component un(t) of the
solution of the free wave equation (2.1) does not decay as t→±∞.

Remark 2.2. (see [2]). Note that the first component of the solution is given by

un(t) =
∑
m∈Z

cn−m(t)um(0)+ sn−m(t)u̇m(0), (2.11)

where

cn(t) =
1

2π

∫ π

−π
cos(
√

1− cosθ
√

2t)eiθndθ = J2|n|(2t), (2.12)

sn(t) =
1

2π

∫ π

−π

sin(
√

1− cosθ
√

2t)
√

1− cosθ
eiθndθ =

∫ t

0
cn(s)ds

=
t2|n|+1

2|n|(|n|+1)! 1F2
(2|n|+1

2
; (

2|n|+3
2
,2|n|+1);−t2

)
. (2.13)

Here Jn(x), pFq(u;v; x) denote the Bessel and generalized hypergeometric functions, re-
spectively. In particular, while cn(t) = O(t−1/2) for fixed n, we have sn(t) = 1

2 +O(t−1/2) for
fixed n.

3 Ruiseux expansion of resolvent

Consider the resolvent R(ω) = (H−ω)−1, ω ∈ Ξ of perturbed operator H. The next lemma
is a consequence of Lemma 3.3 from [2] (see also [8])

Lemma 3.1. Let q satisfies (1.3) with β > 1. Then the convergence

R(ω± iε)→ R(ω± i0), ε→ 0+, ω ∈ (0,4) (3.1)

holds in B(σ,−σ) with σ > 1/2.
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The resolvent R(ω) = (H−ω)−1 can be expressed in terms of R(ω) (see [6]):

R(ω) =
(

ωR(ω2) iR(ω2)
−i(1+ω2R(ω2)) ωR(ω2)

)
. (3.2)

Representation (3.2) and Lemma 3.1 imply the limiting absorption principle for the per-
turbed resolvent:

Lemma 3.2. Suppose (1.3) with β > 1 holds. Then for λ ∈ (−2,0)∪ (0,2) the convergence

R(λ± iε)→ R(λ± i0), ε→ 0+,

holds in B(σ,−σ) with σ > 1/2.

Now we consider R(ω) near the edge points µ− = 0 and µ+ = 4

Definition 3.3. Any nonzero function u ∈ ℓ∞(Z) satisfying the equation Hu = µ−u (or Hu =
µ+u) is called a resonance function, and in this case the point µ− (or µ+) is called a reso-
nance.

Below we assume that

Spectral condition: The points µ± are no resonances. (3.3)

The condition is equivalent to the boundedness of the resolvent R(ω) at the edge points of
the continuous spectrum:

Lemma 3.4. (see [2, Lemma 4.3 and Corollary 4.4]). Let (1.3) with β > 2 holds. Then
condition (3.3) is equivalent to the boundedness of the families

{R(ω), |ω−µ±| ≤ ε, ω ∈ Ξ} (3.4)

in B(σ,−σ) with σ > 3/2 for sufficiently small ε > 0.

Further we prove that this boundedness provides the asymptotics (1.4).
The Born decomposition formulas

R(ω) = (1+R0(ω)q)−1R0(ω), R(ω) = R0(ω)(1+qR0(ω))−1 (3.5)

imply
(1+R0(ω)q)−1 = 1−R(ω)q, (1+qR0(ω))−1 = 1−qR(ω). (3.6)

Hence, since q ∈ B(σ,σ+β), we obtain from the previous lemma that for any σ ∈ (1/2,β−
1/2) the operators (1+R0(ω)q)−1 and (1+qR0(ω))−1 are bounded in B(−σ,−σ) and B(σ,σ),
respectively. In particular, using the following formulas for the derivatives of R (cf. [4, 5]):

R′ = (1+R0q)−1R′0(1+qR0)−1, R′′ =
[
(1+R0q)−1R′′0 −2R′qR′0

]
(1+qR0)−1. (3.7)

for β > 3 we obtain

R′(ω± iε)→ R′(ω± i0), R′′(ω± iε)→ R′′(ω± i0), ε→ 0+, ω ∈ (0,4), (3.8)

in B(σ,−σ) with σ > 5
2 . Our next task will be to obtain asymptotics of the resolvent R(ω)

at the edge points µ±. We start with the following lemma:
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Lemma 3.5. Assume (3.3), suppose (1.3) holds for some β > 2, and let σ ∈ (3/2,β− 1/2).
Then

∥(1+R0(ω)q)−1α±∥ℓ2−σ = O(|ω−µ±|1/2), ω→ µ±, ω ∈ Ξ, (3.9)

and ∑
n

α±n [(1+qR0(ω))−1f]n = O(|ω−µ±|1/2), ω→ µ±, ω ∈ Ξ, (3.10)

for any f ∈ ℓ2σ, where α±n = (∓1)n.
In particular,

(1+R0(ω)q)−1A±(1+qR0(ω))−1 = O(|ω−µ±|), ω→ µ±, ω ∈ Ξ, (3.11)

in B(σ,−σ), where A± is given in (2.6).

Proof. The asymptotics (2.5) imply

R(ω) = (1+R0(ω)q)−1R0(ω) = (1+R0(ω)q)−1[A±(ω−µ±)−1/2+O(1)],

R(ω) = R0(ω)(1+qR0(ω))−1 = [A±(ω−µ±)−1/2+O(1)](1+qR0(ω))−1.

and the claim follows from the continuity of R(ω), (1+R0(ω)q)−1, and (1+ qR0(ω))−1 in
B(−σ,−σ) and B(σ,σ), respectively. The last claim follows since A± = 1

2iα
±⊗α±. �

Lemma 3.6. Suppose (1.3) holds for some β > 3 and (3.3) holds. Then we have the follow-
ing asymptotics in B(σ,−σ) with σ > 5/2

R(ω) = R±+O(|ω−µ±|1/2),

R′(ω) = O(|ω−µ±|−1/2),

R′′(ω) = O(|ω−µ±|−3/2),

ω→ µ±, ω ∈ Ξ. (3.12)

Proof. Asymptotics (2.5), (3.9)–(3.11), and formulas (3.7) imply

R′(ω) = O(|ω−µ±|−1/2), R′′(ω) = O(|ω−µ±|−3/2), ω→ µ±, ω ∈ Ξ (3.13)

in B(σ,−σ) with σ > 5/2. The asymptotics (3.13) coincide with the asymptotics (3.12) for
the derivatives. Asymptotics (3.12) for R(ω) can be obtained by integration of asymptotics
(3.12) for the first derivative. �

Then representation (3.2) and Lemma 3.6 imply

Corollary 3.7. Let conditions (1.3) and (3.3) hold. Then the following asymptotics hold

R(λ) = R±+O(|λ∓2|1/2),

R′(λ) = O(|λ∓2|−1/2),

R′′(λ) = O(|λ∓2|−3/2),

λ→±2, λ ∈ C \ [−2,2] (3.14)

in B(σ, −σ) with σ > 5/2.

Corollary 3.8. The resolvent R(ω) is analytic function of ω in {|ω| ≤ δ,±Imω ≥ 0} for some
small δ > 0.
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4 Dispersion decay

Theorem 4.1. Let conditions (1.3) with β > 3 and (3.3) hold. Then asymptotics (1.4) hold,
i.e.

e−itHPc = O(t−3/2), t→∞. (4.1)

in B(σ,−σ) with σ > 5/2.

Proof. For the dynamical group associated with the perturbed wave equation (1.2) the spec-
tral representation holds (cf. [6]):

e−itHPc =
1

2πi

∫
[−2,2]

e−itλ(R(λ+ i0)−R(λ− i0))dλ =
∫

[−2,2]

e−itλF(λ)dλ, (4.2)

where F(λ) =
1
π

ImR(λ+ i0). The asymptotic expansion of F(λ) at the points ±2 can be
deduced from (3.14). Thus we obtain

F(λ) = O(|λ∓2|1/2),

F′(λ) = O(|λ∓2|−1/2),

F′′(λ) = O(|λ∓2|−3/2),

λ→±2, λ ∈ (−2,2).

Hence the desired decay for large t follows from Lemma 4.2 below. �

The following lemma is a special case of [4, Lemma 10.2].

Lemma 4.2 ([4]). Assume B is a Banach space, a > 0, and F ∈ C(0,a;B) satisfies F(0) =
F(a) = 0, F′′ ∈ L1

loc(0,a;B), as well as F′′(λ) = O(λ−3/2) and F′′(a−λ) = O(λ−3/2) as λ→
0+. Then

a∫
0

e−itλF(λ)dλ = O(t−3/2), t→∞.
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