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Abstract

We derive dispersion estimates for solutions of the one-dimensional discrete wave
equations. In particular, we weaken the conditions on the potentials of previous works.
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1 Introduction

We are concerned with the one-dimensional discrete wave equation

i(ty=—Hu, H:=-Ap+q, teR (1.1
with a real potential g. Here Ay is the discrete Laplacian given by

(Apw), = upy1 —2uy +u,—, nez.

In matrix form (1.1) reads
ia(r) = Hu(y), t€eR, (1.2)

where
. 0 i
u, (1) = (un(t), ”n(t))a H= (—IH O)
We suppose that the potential g satisfies
lgul <C(L+n)P, nez (1.3)

with some 3 > 3. We will use the weighted spaces £2 = ¢2(Z) with the norm

lullz = I(L+In))ull2, o €R.
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Denote
B(o,0') = L2, 62), B(o,o')=LIEC, 2 0l%)

o’ Yo’

the spaces of bounded linear operators from £2 to 53, and from (2 @ (% to 65, 695(27,, respec-
tively. We restrict ourselves to the non-singular case, when the boundary points A4 = 0,4 of
the spectrum are not resonances for the operator H = —Ay +gq.

Our main results are as follows. In the non-singular case the following asymptotics hold

e ™Mp —013?), 15 (1.4)

in B(o,—0) with o > 5/2. Here P, is the Riesz projection in £? @ £ onto the (absolutely)
continuous spectrum of H.

In this respect we recall that under the condition (1.3) it is well-known that the spectrum
of H consists of a purely absolutely continuous part covering [0,4] plus a finite number of
eigenvalues located in R\ [0,4]. In addition, there could be resonances at the boundary of
the continuous spectrum.

The dispersion decay of type (1.4) has been obtained for the first time in [6] for dis-
crete Schrodinger, wave and Klein—-Gordon equations with compactly supported potentials
(the discrete Klein—-Gordon equation corresponds to H = —A; +m? + ¢ with m > 0 in (1.1)).
The result has been generalized in [8] to discrete Schrodinger equation with non-compactly
supported potentials under the decay condition (1.3) with 8 > 5. Recently in [2] the dis-
persion decay was obtained under condition )7 |n|2|qn| < oo for discrete Schrodinger and
Klein—Gordon equations and under condition

D InPlgal < o0 (1.5)
nez

for discrete wave equation. The result of [2] is based on generalization of the van der
Corput lemma together with the novel fact that the scattering data associated with H are in
the Wiener algebra.

Here we improve the result [2] for the wave equation by reducing the decay rate (1.5)
to (1.3) with 8 = 3. We adapt to the discrete casethe approach of [7], which relies on the
Puiseux expansions of the resolvent at the edge points of the continuous spectrum.

2 Free equation
Here we consider the free equation (1.2) with g = 0:

() = Hou(s), teR, 2.1
where

0 i
HO_(—iHo 0)’ Hy=-AL.

It is well-known that Hy is self-adjoint and the discrete Fourier transform

o) = Z u,e, 9T :=R/27Z.

nez
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maps Hy to the operator of multiplication by ¢(6) = 2 —2cos6:
—~ALu(9) = $(0)i(6).

In particular, the spectrum Spec(Hp) = [0,4] is purely absolutely continuous.
We will use the notation [K], x for the kernel of an operator K, that is,

(K = Y [Klpstti, neZ,
keZ

The kernel of the resolvent Ry(w) = (Hy —w) ! is given by

1 e—i@(n—k) e—i@(w)ln—kl
R = — do = , e =:=C\[0,4], 2.2
Ro@hi =5 | sa—pd0= 5000 @ \[0.4] 2.2)
T
n,k € Z. Here 6(w) is the unique solution of the equation
2-2cosf=w, HeX:={-nm<Ref<m Iml<0}/2nZ. 2.3)

Observe that 8 — w =2 —2cosw is a biholomorphic map from £ — E.
Next we collect some properties obtained in [6].

Lemma 2.1. For Ry(w) the following properties hold:
P1 The resolvent Ry(w) is an analytic function with values in B(0,0) for w € E.

P2 For w € (0,4) the limiting absorption principle holds, which is the convergence
Ro(w xie) - Ro(w £10), & — 0+ 2.4)

in B(o,—o) with o > 1/2.

P3 At the edge points u— =0 and .. = 4 the following asymptotics hold
Ro@) = As(@=112)" 2 +Be +O(w—1ia|'?), @ > ps, weE 2.5)
in B(o, —o) with o > 5/2. Here A., B are the operators associated with the kernels
[Achi = 3G B3 ln- M 26)

respectively.

P4 The asymptotics (2.5) can be differentiated twice with respect to w:

R)(w) = —3A. (0—p) 22+ Olw — | 7172),

m

WUy, WE 2.7)

RE)’(CL)) = 2Ai (a)—’ui)—S/Z +O(|w_ﬂi|_3/2),

in B(o, —o) with o > 5/2.
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Now we turn to the free wave equation. The resolvent Ro(1) = (Hg — A)~! can be ex-
pressed in terms of Ry (see [6]):

ARy(%) iRo(1%)

RoD =11+ 2Ro(12) RG22

1eC\[-2,2]. (2.8)

Then properties P1-P4 imply the corresponding properties of Ry. In particular,
[Ro]"?() =iA_ A" +iB_+0(1), 1—0, 1e€C\[-2,2]. (2.9)

where [-]/ denotes the i entry of the corresponding matrix operator.
The continuous spectrum of Hy coincides with [-2,2]. For the kernel of the free prop-
agator the following spectral representation holds

. 1 .
[eiMo], = o f e [Ro(1 +i0) — Ro(A —i0)],.4 dA. (2.10)
i
(=2,0)U(0,2)
Due to (2.9) [Rg]'*(1+i0) — [Ro]'?>(1—i0) ~ 2~! and then the first component u,,(f) of the
solution of the free wave equation (2.1) does not decay as t — +oo.

Remark 2.2. (see [2]). Note that the first component of the solution is given by

(1) = " Camm(Ott(0) + 8- m(B)itn(0), @11)
mezZ
where
1 (7 :
() = o f cos( V1 —cos V21)el”dg = Jop (21), (2.12)
TJ-n
1 (7si 1- 2t) . !
5.(0) = _f sin( V1 —cos@ \/_t)elendez f er(s)ds
21 J_y V1 —cosf 0
Pn+ 2nl+1_ 2In|+3

2|+ 1);-£). (2.13)

5 (

= 2+ 1) ! o 2 2

Here J,(x), pF,4(u;v;x) denote the Bessel and generalized hypergeometric functions, re-
spectively. In particular, while ¢,(r) = O(t"'/?) for fixed n, we have s,(f) = % +0(t™1/?) for
fixed n.

3 Ruiseux expansion of resolvent

Consider the resolvent R(w) = (H—w)™!, w € E of perturbed operator H. The next lemma
is a consequence of Lemma 3.3 from [2] (see also [8])

Lemma 3.1. Let g satisfies (1.3) with 8> 1. Then the convergence
R(w+ie) » R(w=i0), &£—-0+, we(0,4) (3.1

holds in B(o,—o) with o > 1/2.
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The resolvent R(w) = (H—w)~! can be expressed in terms of R(w) (see [6]):

wR(w?) iR(w?) ) (32)

R(w)= (—1(1 + W0 R(W?) wR(W?)

Representation (3.2) and Lemma 3.1 imply the limiting absorption principle for the per-
turbed resolvent:
Lemma 3.2. Suppose (1.3) with 8> 1 holds. Then for A € (=2,0)U(0,2) the convergence
R(1+ig) » R(1+i0), &— 0+,
holds in B(o,—o) with o > 1/2.
Now we consider R(w) near the edge points u— =0 and u, =4

Definition 3.3. Any nonzero function u € £*°(Z) satisfying the equation Hu = u_u (orHu =
psu) is called a resonance function, and in this case the point p_ (or uy) is called a reso-
nance.

Below we assume that
Spectral condition: The points y. are no resonances. 3.3)

The condition is equivalent to the boundedness of the resolvent R(w) at the edge points of
the continuous spectrum:

Lemma 3.4. (see [2, Lemma 4.3 and Corollary 4.4]). Let (1.3) with B> 2 holds. Then
condition (3.3) is equivalent to the boundedness of the families

R(w), lw—-psl <€, weE} (3.4
in B(o,—0) with o > 3/2 for sufficiently small & > 0.

Further we prove that this boundedness provides the asymptotics (1.4).
The Born decomposition formulas

R(w) = (1 +Ro(w)q) 'Ro(w),  R(w) = Ro(w)(1 +qRp(w))™" (3.5)

imply
(1+Ro(w)9) ' =1-R(w)q,  (1+qRo(w))™" = 1-qR(w). (3.6)

Hence, since g € B(o, 0 + ), we obtain from the previous lemma that for any o € (1/2,5—
1/2) the operators (1 +Ro(w)q)’1 and (1 +qRo(w))’1 are bounded in B(—o,—0) and B(o,0),
respectively. In particular, using the following formulas for the derivatives of R (cf. [4, 5]):

R’ = (1+Roq) 'Rj(1+qRo)™", R” =[(1+Roq) 'R{ —2R'qR{|(1 +qRp) ™. (3.7)
for 5 > 3 we obtain
R'(wzie) > R (w=i0), R’(w=ie) >R’ (w=i0), -0+ we(0,4), (3.8)

in B(o,—o) with o > % Our next task will be to obtain asymptotics of the resolvent R(w)
at the edge points p.. We start with the following lemma:
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Lemma 3.5. Assume (3.3), suppose (1.3) holds for some > 2, and let o € (3/2,8—1/2).
Then

I(1+Ro(@)9) ™' o*ll, = Ow=psl'?), @ = pa, w€E, (3.9)
and
D el +qRo(@) o = 0w =l /), 0 > prs, w€E, (3.10)
n
for any f € €2, where aF = (F1)".
In particular,
(1+Ro(w)q) ' Ac(1+gRo(w) ' =O(lw - pel), @ > pe, w€E, (3.11)

in B(o,—0), where A. is given in (2.6).
Proof. The asymptotics (2.5) imply
R(w) = (1 +Ro(w)q)'Ro(w) = (1 +Ro(w)q) ' [Ax(w - u2) " +O(1)],

R(w) = Ro(w)(1 +qRo(w)) ™" = [Ax(w—p2)"* +O()](1 +qRo(w) .

and the claim follows from the continuity of R(w), (1 + Ro(a))q)‘l, and (1 +¢Ry(w))"! in

B(—o0,—0) and B(o,0), respectively. The last claim follows since A = %a* ®a*. O

Lemma 3.6. Suppose (1.3) holds for some 8>3 and (3.3) holds. Then we have the follow-
ing asymptotics in B(o,—o) with o > 5/2

R(w) = Re +O(|lw —ps|'?),
R'(w) = O(w—pl ™), W= py, wEE (3.12)
R”(w) = O(lw—ps| /%),
Proof. Asymptotics (2.5), (3.9)—(3.11), and formulas (3.7) imply
R'@)=0(w-pu:["?), R'@)=0(w-p7?), w—ps weE (13

in B(o,—0o) with o > 5/2. The asymptotics (3.13) coincide with the asymptotics (3.12) for
the derivatives. Asymptotics (3.12) for R(w) can be obtained by integration of asymptotics
(3.12) for the first derivative. O

Then representation (3.2) and Lemma 3.6 imply
Corollary 3.7. Let conditions (1.3) and (3.3) hold. Then the following asymptotics hold
R(1) =R:+0(2F2['),
R'(D) =0(AF2[71/), 1> £2, 2e€C\[-2,2] (3.14)
R”(1) = O(A%2|73?),
in B(o, —o) with o > 5/2.

Corollary 3.8. The resolvent R(w) is analytic function of w in {|w| < 6, £Imw > 0} for some
small 6 > 0.
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4 Dispersion decay

Theorem 4.1. Let conditions (1.3) with 8> 3 and (3.3) hold. Then asymptotics (1.4) hold,
ie.
e Mp. =013, - . 4.1

in B(o,—o) with o> 5/2.

Proof. For the dynamical group associated with the perturbed wave equation (1.2) the spec-
tral representation holds (cf. [6]):

. 1 . .
esMp - o f e "Y(R(1+10) - R(1—i0))dA = f e MM FQ)dA, (4.2)
1
[-2,2] [-2,2]

1
where F(1) = —ImR(4+10). The asymptotic expansion of F(A1) at the points +2 can be
bl
deduced from (3.14). Thus we obtain
F()=0(1%2/'?),
F'(Q)=001%21"1?), 21-+2, 1€(-2,2).
F''() = 0(A7F2[7/?),

Hence the desired decay for large ¢ follows from Lemma 4.2 below. O
The following lemma is a special case of [4, Lemma 10.2].

Lemma 4.2 ([4]). Assume B is a Banach space, a > 0, and F € C(0,a; B) satisfies F(0) =
F(a)=0, F” €L} (0,a;8B), as well as F""(1) = O(A7/?) and F"(a—2) = O(A7*?) as 1 >
O+. Then

a

f e MF)dA=0(3?), t— .
0
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